Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 26(2): 126-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043051

RESUMO

BACKGROUND AIMS: Amyotrophic lateral sclerosis (ALS) is a fatal disease associated with motor neuron degeneration, accumulation of aggregated misfolded proteins and neuroinflammation in motor regions of the central nervous system (CNS). Clinical trials using regulatory T cells (Tregs) are ongoing because of Tregs' immunomodulatory function, ability to traffic to the CNS, high numbers correlating with slower disease in ALS and disease-modifying activity in ALS mouse models. In the current study, a chimeric antigen receptor (CAR) was developed and characterized in human Tregs to enhance their immunomodulatory activity when in contact with an ALS protein aggregate. METHODS: A CAR (DG05-28-3z) consisting of a human superoxide dismutase 1 (hSOD1)-binding single-chain variable fragment, CD28 hinge, transmembrane and co-stimulatory domain and CD3ζ signaling domain was created and expressed in human Tregs. Human Tregs were isolated by either magnetic enrichment for CD4+CD25hi cells (Enr-Tregs) or cell sorting for CD4+CD25hiCD127lo cells (FP-Tregs), transduced and expanded for 17 days. RESULTS: The CAR bound preferentially to the ALS mutant G93A-hSOD1 protein relative to the wild-type hSOD1 protein. The CAR Tregs produced IL-10 when cultured with aggregated G93A-hSOD1 proteins or spinal cord explants from G93A-hSOD1 transgenic mice. Co-culturing DG05-28-3z CAR Tregs with human monocytes/macrophages inhibited production of tumor necrosis factor alpha and reactive oxygen species. Expanded FP-Tregs resulted in more robust Tregs compared with Enr-Tregs. FP-Tregs produced similar IL-10 and less interferon gamma, had lower Treg-specific demethylated region methylation and expressed higher FoxP3 and CD39. CONCLUSIONS: Taken together, this study demonstrates that gene-modified Tregs can be developed to target an aggregated ALS-relevant protein to elicit CAR-mediated Treg effector functions and provides an approach for generating Treg therapies for ALS with the goal of enhanced disease site-specific immunomodulation.


Assuntos
Esclerose Lateral Amiotrófica , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Interleucina-10/genética , Superóxido Dismutase/metabolismo , Camundongos Transgênicos , Linfócitos T CD4-Positivos/metabolismo , Imunomodulação , Modelos Animais de Doenças
2.
Cancer Immunol Immunother ; 71(1): 165-176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34046711

RESUMO

B7H6, a stress-induced ligand which binds to the NK cell receptor NKp30, has recently emerged as a promising candidate for immunotherapy due to its tumor-specific expression on a broad array of human tumors. NKp30 can function as a chimeric antigen receptor (CAR) extracellular domain but exhibits weak binding with a fast on and off rate to B7H6 compared to the TZ47 anti-B7H6 single-chain variable fragment (scFv). Here, directed evolution using yeast display was employed to isolate novel NKp30 variants that bind to B7H6 with higher affinity compared to the native receptor but retain its fast association and dissociation profile. Two variants, CC3 and CC5, were selected for further characterization and were expressed as soluble Fc-fusion proteins and CARs containing CD28 and CD3ς intracellular domains. We observed that Fc-fusion protein forms of NKp30 and its variants were better able to bind tumor cells expressing low levels of B7H6 than TZ47, and that the novel variants generally exhibited improved in vitro tumor cell killing relative to NKp30. Interestingly, CAR T cells expressing the engineered variants produced unique cytokine signatures in response to multiple tumor types expressing B7H6 compared to both NKp30 and TZ47. These findings suggest that natural CAR receptors can be fine-tuned to produce more desirable signaling outputs while maintaining evolutionary advantages in ligand recognition relative to scFvs.


Assuntos
Antígenos B7/química , Receptor 3 Desencadeador da Citotoxicidade Natural/química , Receptores de Antígenos Quiméricos/química , Animais , Antígenos CD28/química , Complexo CD3/química , Linhagem Celular Tumoral , Separação Celular , Citocinas/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Biblioteca Gênica , Variação Genética , Células HEK293 , Humanos , Imunoterapia , Cinética , Ligantes , Camundongos , Mutação , Conformação Proteica , Anticorpos de Cadeia Única/química
3.
J Immunol ; 204(11): 2973-2983, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295875

RESUMO

Bispecific T cell engagers have demonstrated clinical efficacy; however, their use can be accompanied by severe toxicity. Mechanistic understanding of these toxicities is limited by a lack of suitable immunocompetent preclinical models. In this study, we describe an immunocompetent mouse tumor model that exhibits bispecific T cell engager-induced toxicity and recapitulates key features similar to those in human cytokine release syndrome. In this study, toxicity occurred between the second and fourth injections of an NK Group 2D bispecific T cell engager protein. Symptoms were transient, peaking 3-4 h after treatment and resolving by 8 h. Mice developed weight loss, elevated plasma cytokines, a significant reduction in spleen white pulp, and lymphocyte infiltration in the liver. Systemic cellular immune changes also occurred; notably, an increase in CD8+ T cell activation, an increase in myeloid cells in the blood, and a population of Ly-6Cint monocytes (CD11b+Ly-6G-F4/80-) emerged in the liver and spleens of bispecific protein-treated mice. IFN-γ was primarily produced by CD8+ T cells in the spleen and was required for the observed changes in both T cell and myeloid populations. Rag deficiency, IFN-γ deficiency, or depletion of either CD4+ or CD8+ T cells prevented toxicity, whereas perforin deficiency, GM-CSF deficiency, or modulation of the myeloid population through clodronate-mediated depletion showed a partial abrogation of toxicity. Together, these findings reveal that T cell activation by a bispecific T cell engager leads to changes in the host myeloid cell population, both of which contribute to treatment induced toxicity in immunocompetent mice.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Animais , Complexo CD3 , Linhagem Celular Tumoral , Ácido Clodrônico/metabolismo , Neoplasias do Colo/terapia , Síndrome da Liberação de Citocina/etiologia , Modelos Animais de Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Receptores de Antígenos Quiméricos/genética , Especificidade do Receptor de Antígeno de Linfócitos T
4.
Cancer Immunol Immunother ; 67(5): 749-759, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29453518

RESUMO

B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.


Assuntos
Antígenos B7/imunologia , Imunoterapia , Linfoma/imunologia , Melanoma Experimental/imunologia , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Animais , Feminino , Humanos , Linfoma/metabolismo , Linfoma/terapia , Melanoma Experimental/metabolismo , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cytotherapy ; 20(7): 952-963, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30180944

RESUMO

BACKGROUND AIMS: Adoptive cell therapy employing natural killer group 2D (NKG2D) chimeric antigen receptor (CAR)-modified T cells has demonstrated preclinical efficacy in several model systems, including hematological and solid tumors. We present comprehensive data on manufacturing development and clinical production of autologous NKG2D CAR T cells for treatment of acute myeloid leukemia and multiple myeloma (ClinicalTrials.gov Identifier: NCT02203825). An NKG2D CAR was generated by fusing native full-length human NKG2D to the human CD3ζ cytoplasmic signaling domain. NKG2D naturally associates with native costimulatory molecule DAP10, effectively generating a second-generation CAR against multiple ligands upregulated during malignant transformation including MIC-A, MIC-B and the UL-16 binding proteins. METHODS: CAR T cells were infused fresh after a 9-day process wherein OKT3-activated T cells were genetically modified with replication-defective gamma-retroviral vector and expanded ex vivo for 5 days with recombinant human interleukin-2. RESULTS: Despite sizable interpatient variation in originally collected cells, release criteria, including T-cell expansion and purity (median 98%), T-cell transduction (median 66% CD8+ T cells), and functional activity against NKG2D ligand-positive cells, were met for 100% of healthy donors and patients enrolled and collected. There was minimal carryover of non-T cells, particularly malignant cells; both effector memory and central memory cells were generated, and inflammatory cytokines such as granulocyte colony-stimulating factor, RANTES, interferon-γ and tumor necrosis factor-α were selectively up-regulated. CONCLUSIONS: The process resulted in production of required cell doses for the first-in-human phase I NKG2D CAR T clinical trial and provides a robust, flexible base for further optimization of NKG2D CAR T-cell manufacturing.


Assuntos
Imunoterapia Adotiva , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Humanos , Ligantes , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/citologia , Transplante Autólogo
6.
J Immunol ; 197(12): 4674-4685, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27849169

RESUMO

Targeting cancer through the use of effector T cells bearing chimeric Ag receptors (CARs) leads to elimination of tumors in animals and patients, but recognition of normal cells or excessive activation can result in significant toxicity and even death. CAR T cells based on modified NKG2D receptors are effective against many types of tumors, and their efficacy is mediated through direct cytotoxicity and cytokine production. Under certain conditions, their ligands can be expressed on nontumor cells, so a better understanding of the potential off-tumor activity of these NKG2D CAR T cells is needed. Injection of very high numbers of activated T cells expressing CARs based on murine NKG2D or DNAM1 resulted in increased serum cytokines (IFN-γ, IL-6, and MCP-1) and acute toxicity similar to cytokine release syndrome. Acute toxicity required two key effector molecules in CAR T cells-perforin and GM-CSF. Host immune cells also contributed to this toxicity, and mice with severe immune cell defects remained healthy at the highest CAR T cell dose. These data demonstrate that specific CAR T cell effector mechanisms and the host immune system are required for this cytokine release-like syndrome in murine models.


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Linfoma de Células T/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Linfócitos T/fisiologia , Animais , Complexo CD3/genética , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Ativação Linfocitária , Linfoma de Células T/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias Experimentais , Perforina/metabolismo , Proteínas Recombinantes de Fusão/genética , Linfócitos T/transplante
7.
J Immunol ; 194(11): 5305-11, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25911747

RESUMO

Substantial evidence showed that T cells are the key effectors in immune-mediated tumor eradication; however, most T cells do not exhibit antitumor specificity. In this study, a bispecific T cell engager (BiTE) approach was used to direct T cells to recognize B7H6(+) tumor cells. B7H6 is a specific ligand for the NK cell-activating receptor NKp30. B7H6 is expressed on various types of primary human tumors, including leukemia, lymphoma, and gastrointestinal stromal tumors, but it is not constitutively expressed on normal tissues. Data from this study showed that B7H6-specific BiTEs direct T cells to mediate cellular cytotoxicity and IFN-γ secretion upon coculturing with B7H6(+) tumors. Furthermore, B7H6-specific BiTE exhibited no self-reactivity to proinflammatory monocytes. In vivo, B7H6-specific BiTE greatly enhanced the survival benefit of RMA/B7H6 lymphoma-bearing mice through perforin and IFN-γ effector mechanisms. In addition, long-term survivor mice were protected against an RMA lymphoma tumor rechallenge. The B7H6-specific BiTE therapy also decreased tumor burden in murine melanoma and ovarian cancer models. In conclusion, B7H6-specific BiTE activates host T cells and has the potential to treat various B7H6(+) hematological and solid tumors.


Assuntos
Anticorpos Biespecíficos/imunologia , Antineoplásicos/imunologia , Antígenos B7/imunologia , Interferon gama/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Leucócitos Mononucleares/imunologia , Linfoma/imunologia , Linfoma/terapia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Perforina/imunologia
8.
Future Oncol ; 13(18): 1593-1605, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28613086

RESUMO

Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Ensaios Clínicos como Assunto , Citotoxicidade Imunológica , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunoterapia Adotiva/métodos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Resultado do Tratamento
9.
J Cell Physiol ; 231(12): 2590-8, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27163336

RESUMO

Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Humanos , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/química
10.
Cancer Immunol Immunother ; 64(4): 409-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25549845

RESUMO

Chimeric antigen receptor (CAR) T cell therapies hold great potential for treating cancers, and new CARs that can target multiple tumor types and have the potential to target non-hematological malignancies are needed. In this study, the tumor recognition ability of a natural killer cell-activating receptor, DNAM-1 was harnessed to design CARs that target multiple tumor types. DNAM-1 ligands, PVR and nectin-2, are expressed on primary human leukemia, myeloma, ovarian cancer, melanoma, neuroblastoma, and Ewing sarcoma. DNAM-1 CARs exhibit high tumor cell cytotoxicity but low IFN-γ secretion in vitro. In contrast to other CAR designs, co-stimulatory domains did not improve the expression and function of DNAM-1 CARs. A DNAM-1/CD3zeta CAR reduced tumor burden in a murine melanoma model in vivo. In conclusion, DNAM-1-based CARs may have the potential to treat PVR and nectin-2 expressing hematological and solid tumors.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Complexo CD3/metabolismo , Citotoxicidade Imunológica/imunologia , Melanoma/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Western Blotting , Complexo CD3/genética , Complexo CD3/imunologia , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
11.
Immunol Cell Biol ; 93(3): 290-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25367186

RESUMO

Bispecific T-cell engagers (BiTEs) are a new class of immunotherapeutic molecules intended for the treatment of cancer. These molecules enhance the patient's immune response to tumors by retargeting T cells to tumor cells. BiTEs are constructed of two single-chain variable fragments (scFv) connected in tandem by a flexible linker. One scFv binds to a T-cell-specific molecule, usually CD3, whereas the second scFv binds to a tumor-associated antigen. This structure and specificity allows a BiTE to physically link a T cell to a tumor cell, ultimately stimulating T-cell activation, tumor killing and cytokine production. BiTEs have been developed, which target several tumor-associated antigens, for a variety of both hematological and solid tumors. Several BiTEs are currently in clinical trials for their therapeutic efficacy and safety. This review examines the salient structural and functional features of BiTEs, as well as the current state of their clinical and preclinical development.


Assuntos
Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária , Neoplasias/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/genética
12.
J Immunol ; 190(5): 2455-63, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23355740

RESUMO

Tumor angiogenesis plays an important role in the development of solid tumors, and targeting the tumor vasculature has emerged as a strategy to prevent growth and progression of solid tumors. In this study, we show that murine tumor vasculature expresses Rae1, a ligand for a stimulatory NK receptor NKG2D. By genetic modification of T cells with an NKG2D-based chimeric Ag receptor, referred to as chNKG2D in which the NKG2D receptor is fused to the signaling domain of CD3ζ-chain, T cells were capable of targeting tumor vasculature leading to reduced tumor angiogenesis and tumor growth. This occurred even in tumors where the tumor cells themselves did not express NKG2D ligands. H5V, an endothelial cell line, expresses Rae1 and was lysed by chNKG2D-bearing T cells in a perforin-dependent manner. In vitro capillary tube formation was inhibited by chNKG2D T cells through IFN-γ and cell-cell contact mechanisms. The in vivo antiangiogenesis effects mediated by chNKG2D-bearing T cells at the tumor site were dependent on IFN-γ and perforin. These results provide a novel mechanism for NKG2D-based targeting of solid tumors.


Assuntos
Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/terapia , Linfócitos T/imunologia , Animais , Bioensaio , Complexo CD3/genética , Complexo CD3/imunologia , Linhagem Celular Tumoral , Vetores Genéticos , Humanos , Injeções Intralesionais , Interferon gama/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Neovascularização Patológica , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/imunologia , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/imunologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Cultura Primária de Células , Retroviridae , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Linfócitos T/citologia , Linfócitos T/transplante
13.
Transfusion ; 54(6): 1515-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24446786

RESUMO

BACKGROUND: The NKG2D receptor, one of the natural killer (NK) cell-activating receptors, is expressed on the surface of CD3+CD8+ T cells, γδ+ T cells, NK cells, NKT cells, and a few CD4+ T cells. We show, for the first time, a critical role for the NKG2D receptor on CD3+CD8+ T cells isolated from myeloma patients, in identifying and killing autologous myeloma cells isolated from the same patients' marrow. We also show that blocking NKG2D using anti-NKG2D reverses the cytotoxicity while blocking HLA-I using antibodies does not have the same effect, showing that the autologous cytotoxicity is NKG2D dependent and major histocompatibility complex (MHC)-I independent. We further confirmed the NKG2D specificity by small interfering RNA (siRNA) down regulation of NKG2D receptor. STUDY DESIGN AND METHODS: Using ex vivo expansion methods that enrich for NKG2D+CD3+CD8+ T cells, we investigated whether these ex vivo expanded NKG2D+CD3+CD8+ T cells would recognize and lyse autologous and allogeneic myeloma cells, independent of T-cell receptor or MHC-I expression. RESULTS: Myeloma cell lysis by the NKG2D+CD3+CD8+ T cells correlated with the amount of NKG2D ligand expression. With receptor-ligand interaction, interferon-γ and tumor necrosis factor-α were released. Blocking the NKG2D receptor by using either monoclonal antibodies or siRNAs inhibited the receptor's function and prevented myeloma cell lysis. CONCLUSION: Clinical trials are ongoing to determine a correlation with the number and function of NKG2D+CD3+CD8+ T cells and clinical outcomes in transplanted myeloma patients, including lymphocyte recovery following transplant and overall survival.


Assuntos
Complexo CD3/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Interleucina-7/metabolismo , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa/metabolismo
14.
Nanotechnology ; 25(47): 475101, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25371538

RESUMO

Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.


Assuntos
Nanopartículas de Magnetita/química , Subfamília K de Receptores Semelhantes a Lectina de Células NK/química , Neoplasias/tratamento farmacológico , Animais , Humanos , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/uso terapêutico
15.
J Immunol ; 189(5): 2290-9, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22851709

RESUMO

NKp30 is a natural cytotoxicity receptor that is expressed on NK cells and recognizes B7-H6, which is expressed on several types of tumors but few normal cells. To target effector T cells against B7-H6+ tumors, we developed several chimeric AgRs (CARs) based on NKp30, which contain the CD28- and/or CD3ζ-signaling domains with the transmembrane domains from CD3ζ, CD28, or CD8α. The data show that chimeric NKp30-expressing T cells responded to B7-H6+ tumor cells. The NKp30 CAR-expressing T cells produced IFN-γ and killed B7-H6 ligand-expressing tumor cells; this response was dependent upon ligand expression on target cells but not on MHC expression. PBMC-derived dendritic cells also express NKp30 ligands, including immature dendritic cells, and they can stimulate NKp30 CAR-bearing T cells to produce IFN-γ, but to a lesser extent. The addition of a CD28-signaling domain significantly enhanced the activity of the NKp30 CAR in a PI3K-dependent manner. Adoptive transfer of T cells expressing a chimeric NKp30 receptor containing a CD28-signaling domain inhibited the growth of a B7-H6-expressing murine lymphoma (RMA/B7-H6) in vivo. Moreover, mice that remained tumor-free were resistant to a subsequent challenge with the wild-type RMA tumor cells, suggesting the generation of immunity against other tumor Ags. Overall, this study demonstrates the specificity and therapeutic potential of adoptive immunotherapy with NKp30 CAR-expressing T cells against B7-H6+ tumor cells in vivo.


Assuntos
Antígenos Ly/uso terapêutico , Biomarcadores Tumorais/uso terapêutico , Receptores Imunológicos/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Antígenos B7/antagonistas & inibidores , Antígenos B7/biossíntese , Antígenos B7/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Morte Celular/imunologia , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/terapia , Células HeLa , Humanos , Interferon gama/biossíntese , Células Jurkat , Células K562 , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Linfoma/imunologia , Linfoma/patologia , Linfoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 3 Desencadeador da Citotoxicidade Natural , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Células Estromais/patologia , Subpopulações de Linfócitos T/patologia , Células U937
16.
J Immunol ; 188(12): 6389-98, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22586039

RESUMO

The infiltration of suppressive myeloid cells into the tumor microenvironment restrains anti-tumor immunity. However, cytokines may alter the function of myeloid lineage cells to support tumor rejection, regulating the balance between pro- and anti-tumor immunity. In this study, it is shown that effector cytokines secreted by adoptively transferred T cells expressing a chimeric Ag receptor (CAR) shape the function of myeloid cells to promote endogenous immunity and tumor destruction. Mice bearing the ovarian ID8 tumor were treated with T cells transduced with a chimeric NKG2D receptor. GM-CSF secreted by the adoptively transferred T cells recruited peripheral F4/80(lo)Ly-6C(+) myeloid cells to the tumor microenvironment in a CCR2-dependent fashion. T cell IFN-γ and GM-CSF activated local, tumor-associated macrophages, decreased expression of regulatory factors, increased IL-12p40 production, and augmented Ag processing and presentation by host macrophages to Ag-specific T cells. In addition, T cell-derived IFN-γ, but not GM-CSF, induced the production of NO by F4/80(hi) macrophages and enhanced their lysis of tumor cells. The ability of CAR T cell therapy to eliminate tumor was moderately impaired when inducible NO synthase was inhibited and greatly impaired in the absence of peritoneal macrophages after depletion with clodronate encapsulated liposomes. This study demonstrates that the activation of host macrophages by CAR T cell-derived cytokines transformed the tumor microenvironment from immunosuppressive to immunostimulatory and contributed to inhibition of ovarian tumor growth.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interferon gama/imunologia , Macrófagos/imunologia , Neoplasias Experimentais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Quimera , Citometria de Fluxo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Mieloides/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/imunologia , Linfócitos T/transplante
17.
Biol Blood Marrow Transplant ; 19(1): 129-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22975165

RESUMO

The number of circulating lymphocytes on day 15 after transplantation correlates with improved survival in patients with myeloma, but the lymphocyte subset responsible is unknown. NKG2D is a natural killer (NK) cell activating receptor that mediates non-MHC restricted and TCR-independent cell lysis. Our preliminary results indicate that CD3(+)CD8(+) T cells expressing NKG2D may be a critical lymphocyte population. A phase II trial examined the feasibility of infusing ex vivo-expanded cells enriched for NKG2D(+)CD3(+)CD8(+) T cells at weeks 1, 2, 4, and 8 after an autologous transplantation. In addition, low-dose IL-2 (6 × 10(5) IU/m(2)/day) was administered for 4 weeks, beginning on the day of transplantation. Twenty-three patients were accrued and 19 patients are evaluable. There were no treatment-related deaths. All patients completed their course of IL-2 and demonstrated normal engraftment. When compared with patients with myeloma who underwent transplantation not receiving posttransplantation immune therapy, the treated patients demonstrated an increase in the number of circulating NKG2D(+)CD3(+)CD8(+) T cells/µL (P < .004), CD3(+)CD8(+) T cells/µL (P < .04), CD3(+)CD8(+)CD56(+) T cells/µL (P < .004), and NKG2D(+)CD3(-)CD56(+) T cells/µL (P < .003). Myeloma cell-directed cytotoxicity by the circulating mononuclear cells increased after transplantation (P < .002). When compared to posttransplantation IL-2 therapy alone in this patient population, the addition of cells enriched for NKG2D(+)CD3(+)CD8(+) T cells increased tumor-specific immunity, as demonstrated by enhanced lysis of autologous myeloma cells (P = .02). We postulate that this regimen that increased the number and function of the NKG2D(+)CD3(+)CD8(+) T cells after transplantation may improve clinical outcomes by eliminating residual malignant cells in vivo.


Assuntos
Transferência Adotiva , Complexo CD3 , Linfócitos T CD8-Positivos/transplante , Mieloma Múltiplo/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Transplante de Células-Tronco de Sangue Periférico , Adolescente , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Interleucina-2/administração & dosagem , Transfusão de Linfócitos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/mortalidade , Transplante Autólogo
18.
Immunol Cell Biol ; 91(6): 435-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23628805

RESUMO

Tumor heterogeneity presents a substantial barrier to increasing clinical responses mediated by targeted therapies. Broadening the immune response elicited by treatments that target a single antigen is necessary for the elimination of tumor variants that fail to express the targeted antigen. In this study, it is shown that adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) inhibited the growth of target-expressing and -deficient tumor cells within ovarian and lymphoma tumors. Mice bearing the ID8 ovarian or RMA lymphoma tumors were treated with T cells transduced with a NKG2D-based CAR (chNKG2D). NKG2D CAR T-cell therapy protected mice from heterogeneous RMA tumors. Moreover, adoptive transfer of chNKG2D T cells mediated tumor protection against highly heterogeneous ovarian tumors in which 50, 20 or only 7% of tumor cells expressed significant amounts of NKG2D ligands. CAR T cells did not mediate an in vivo response against tumor cells that did not express sufficient amounts of NKG2D ligands, and the number of ligand-expressing tumor cells correlated with therapeutic efficacy. In addition, tumor-free surviving mice were protected against a tumor re-challenge with NKG2D ligand-negative ovarian tumor cells. These data indicate that NKG2D CAR T-cell treatment can be an effective therapy against heterogeneous tumors and induce tumor-specific immunity against ligand-deficient tumor cells.


Assuntos
Imunoterapia Adotiva/métodos , Linfoma/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células T Matadoras Naturais/imunologia , Neoplasias Ovarianas/terapia , Proteínas Recombinantes de Fusão/metabolismo , Animais , Processos de Crescimento Celular/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Humanos , Interferon gama/metabolismo , Linfoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Células T Matadoras Naturais/transplante , Neoplasias Ovarianas/imunologia , Proteínas Recombinantes de Fusão/genética
19.
Cancer Immun ; 13: 8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23833565

RESUMO

The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Ligantes , Terapia de Alvo Molecular , Transdução de Sinais
20.
Blood ; 117(24): 6571-81, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21518928

RESUMO

Although innate immune signals shape the activation of naive T cells, it is unclear how innate signals influence effector T-cell function. This study determined the effects of stimulating the NKG2D receptor in conjunction with the TCR on human effector CD8(+) T cells. Stimulation of CD8(+) T cells through CD3 and NKG2D simultaneously or through a chimeric NKG2D receptor, which consists of NKG2D fused to the intracellular region of CD3ζ, activated ß-catenin and increased expression of ß-catenin-induced genes, whereas T cells stimulated through the TCR or a combination of the TCR and CD28 did not. Activation by TCR and NKG2D prevented expression and production of anti-inflammatory cytokines IL-10, IL-9, IL-13, and VEGF-α in a ß-catenin- and PPARγ- dependent manner. NKG2D stimulation also modulated the cytokine secretion of T cells activated simultaneously through CD3 and CD28. These data indicate that activating CD8(+) T cells through the NKG2D receptor along with the TCR modulates signal transduction and the production of anti-inflammatory cytokines. Thus, human effector T cells alter their function depending on which innate receptors are engaged in conjunction with the TCR complex.


Assuntos
Citocinas/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/fisiologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Células Cultivadas , Citocinas/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/fisiologia , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/agonistas , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína Oncogênica v-akt/metabolismo , Proteína Oncogênica v-akt/fisiologia , PPAR gama/metabolismo , PPAR gama/fisiologia , Células U937 , beta Catenina/metabolismo , beta Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA