Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 140(4): 107709, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922836

RESUMO

Intravenous idursulfase is standard treatment for mucopolysaccharidosis II (MPS II) in Japan. In the interim analysis of this open-label, phase 1/2 study (Center for Clinical Trials, Japan Medical Association: JMA-IIA00350), intracerebroventricular (ICV) idursulfase beta was well tolerated, suppressed cerebrospinal fluid (CSF) heparan sulfate (HS) levels, and stabilized developmental decline over 100 weeks in Japanese children with MPS II. Here, we report the final study results, representing 5 years of ICV idursulfase beta treatment. Six male patients with MPS II and developmental delay were enrolled starting in June 2016 and followed until March 2021. Patients received up to 30 mg ICV idursulfase beta every 4 weeks. Outcomes included CSF HS levels, developmental age (DA) (assessed by the Kyoto Scale of Psychological Development), and safety (adverse events). Monitoring by laboratory biochemistry tests, urinary uronic tests, immunogenicity tests, and head computed tomography or magnetic resonance imaging were also conducted regularly. Following ICV idursulfase beta administration, mean CSF HS concentrations decreased from 7.75 µg/mL at baseline to 2.15 µg/mL at final injection (72.3% reduction). Mean DA increased from 23.2 months at screening to 36.0 months at final observation. In five patients with null mutations, mean DA at the final observation was higher than or did not regress compared with that of historical controls receiving intravenous idursulfase only, and the change in DA was greater in patients who started administration aged ≤3 years than in those aged >3 years (+28.7 vs -6.5 months). The difference in DA change versus historical controls in individual patients was +39.5, +40.8, +17.8, +10.5, +7.6 and - 4.5 (mean + 18.6). Common ICV idursulfase beta-related adverse events were vomiting, pyrexia, gastroenteritis, and upper respiratory tract infection (most mild/moderate). These results suggest that long-term ICV idursulfase beta treatment improved neurological symptoms in Japanese children with neuronopathic MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Criança , Humanos , Masculino , Mucopolissacaridose II/patologia , Japão , Terapia de Reposição de Enzimas/métodos , Administração Intravenosa , Pesquisa
2.
Biotechnol Bioeng ; 116(12): 3324-3332, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31478191

RESUMO

3-Fucosyllactose (3-FL) is one of the major fucosylated oligosaccharides in human milk. Along with 2'-fucosyllactose (2'-FL), it is known for its prebiotic, immunomodulator, neonatal brain development, and antimicrobial function. Whereas the biological production of 2'-FL has been widely studied and made significant progress over the years, the biological production of 3-FL has been hampered by the low activity and insoluble expression of α-1,3-fucosyltransferase (FutA), relatively low abundance in human milk oligosaccharides compared with 2'-FL, and lower digestibility of 3-FL than 2'-FL by bifidobacteria. In this study, we report the gram-scale production of 3-FL using E. coli BL21(DE3). We previously generated the FutA quadruple mutant (mFutA) with four site mutations at S46F, A128N, H129E, Y132I, and its specific activity was increased by nearly 15 times compared with that of wild-type FutA owing to the increase in kcat and the decrease in Km . We overexpressed mFutA in its maximum expression level, which was achieved by the optimization of yeast extract concentration in culture media. We also overexpressed L-fucokinase/GDP- L-fucose pyrophosphorylase to increase the supply of GDP-fucose in the cytoplasm. To increase the mass of recombinant whole-cell catalysts, the host E. coli BW25113 was switched to E. coli BL21(DE3) because of the lower acetate accumulation of E. coli BL21(DE3) than that of E. coli BW25113. Finally, the lactose operon was modified by partially deleting the sequence of LacZ (lacZΔm15) for better utilization of D-lactose. Production using the lacZΔm15 mutant yielded 3-FL concentration of 4.6 g/L with the productivity of 0.076 g·L-1 ·hr-1 and the specific 3-FL yield of 0.5 g/g dry cell weight.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Guanosina Trifosfato , Engenharia Metabólica , Leite Humano/química , Oligossacarídeos , beta-Galactosidase , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Difosfato Fucose/genética , Guanosina Difosfato Fucose/metabolismo , Guanosina Trifosfato/biossíntese , Guanosina Trifosfato/genética , Humanos , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Oligossacarídeos/genética , Trissacarídeos/genética , Trissacarídeos/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
3.
Biotechnol Bioeng ; 116(2): 250-259, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414290

RESUMO

A key point of protein stability engineering is to identify specific target residues whose mutations can stabilize the protein structure without negatively affecting the function or activity of the protein. Here, we propose a method called RiSLnet (Rapid identification of Smart mutant Library using residue network) to identify such residues by combining network analysis for protein residue interactions, identification of conserved residues, and evaluation of relative solvent accessibility. To validate its performance, the method was applied to four proteins, that is, T4 lysozyme, ribonuclease H, barnase, and cold shock protein B. Our method predicted beneficial mutations in thermal stability with ~62% average accuracy when the thermal stability of the mutants was compared with the ones in the Protherm database. It was further applied to lysine decarboxylase (CadA) to experimentally confirm its accuracy and effectiveness. RiSLnet identified mutations increasing the thermal stability of CadA with the accuracy of ~60% and significantly reduced the number of candidate residues (~99%) for mutation. Finally, combinatorial mutations designed by RiSLnet and in silico saturation mutagenesis yielded a thermally stable triple mutant with the half-life (T 1/2 ) of 114.9 min at 58°C, which is approximately twofold higher than that of the wild-type.


Assuntos
Biologia Computacional/métodos , Testes Genéticos/métodos , Temperatura Alta , Proteínas Mutantes/química , Estabilidade Proteica , Proteínas Mutantes/genética , Fatores de Tempo
4.
J Inherit Metab Dis ; 41(6): 1235-1246, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29978271

RESUMO

Mucopolysaccharidosis II (MPS II) is caused by a deficiency of iduronate-2-sulfatase that results in accumulation of glycosaminoglycans (GAG), including heparan sulfate (HS), which is considered to contribute to neuropathology. We examined the efficacy of intracerebroventricular (ICV) enzyme replacement therapy (ERT) of idursulfase-beta (IDS-ß) and evaluated the usefulness of HS as a biomarker for neuropathology in MPS II mice. We first examined the efficacy of three different doses (3, 10, and 30 µg) of single ICV injections of IDS-ß in MPS II mice. After the single-injection study, its long-term efficacy was elucidated with 30 µg of IDS-ß ICV injections repeated every 4 weeks for 24 weeks. The efficacy was assessed by the HS content in the cerebrospinal fluid (CSF) and the brain of the animals along with histologic examinations and behavioral tests. In the single-injection study, the 30 µg of IDS-ß ICV injection showed significant reductions of HS content in brain and CSF that were maintained for 28 days. Furthermore, HS content in CSF was significantly correlated with HS content in brain. In the long-term repeated-injection study, the HS content in the brain and CSF was also significantly reduced and correlated. The histologic examinations showed a reduction in lysosomal storage. A significant improvement in memory/learning function was observed in open-field and fear-conditioning tests. ICV ERT with 30 µg of IDS-ß produced significant improvements in biochemical, histological, and functional parameters in MPS II mice. Furthermore, we demonstrate for the first time that the HS in the CSF had significant positive correlation with brain tissue HS and GAG levels, suggesting HS in CSF as a useful clinical biomarker for neuropathology.


Assuntos
Terapia de Reposição de Enzimas , Heparitina Sulfato/líquido cefalorraquidiano , Iduronato Sulfatase/farmacologia , Mucopolissacaridose II/terapia , Animais , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Infusões Intraventriculares , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose II/líquido cefalorraquidiano
5.
Mol Genet Metab ; 118(3): 190-197, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27246110

RESUMO

Mucopolysaccharidosis type II (MPS II: also called as Hunter syndrome) is an X-linked recessive lysosomal storage disorder characterized by the accumulation of extracellular glycosaminoglycans due to the deficiency of the enzyme iduronate-2-sulfatase (IDS). Previous observations suggested that MPS II can be classified into two distinct disease subtypes: (1) severe type of MPS II involves a decline in the cognitive ability of a patient and (2) attenuated type of MPS II exhibits no such intellectual phenotype. To determine whether such disease subtypes of MPS II could be explained by genetic diagnosis, we analyzed mutations in the IDS gene of 65 patients suffering from MPS II among the Japanese population who were diagnosed with both the accumulation of urinary glycosaminoglycans and a decrease in their IDS enzyme activity between 2004 and 2014. Among the specimens examined, we identified the following mutations: 33 missense, 8 nonsense, 7 frameshift, 4 intronic changes affecting splicing, 8 recombinations involving IDS-IDS2, and 7 other mutations including 4 large deletions. Consistent with the previous data, the results of our study showed that most of the attenuated phenotype was derived from the missense mutations of the IDS gene, whereas mutations associated with a large structural alteration including recombination, splicing, frameshift, and nonsense mutations were linked to the severe phenotype of MPS II. Furthermore, we conducted a homology modeling study of IDS P120R and N534I mutant as representatives of the causative mutation of the severe and attenuated type of MPS II, respectively. We found that the substitution of P120R of the IDS enzyme was predicted to deform the α-helix generated by I119-F123, leading to the major structural alteration of the wild-type IDS enzyme. In sharp contrast, the effect of the structural alteration of N534I was marginal; thus, this mutation was pathogenically predicted to be associated with the attenuated type of MPS II. These results suggest that a combination of the genomic diagnosis of the IDS gene and the structural prediction of the IDS enzyme could enable the prediction of a phenotype more effectively.


Assuntos
Glicoproteínas/química , Glicoproteínas/genética , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Mutação , Povo Asiático/genética , Feminino , Predisposição Genética para Doença , Glicosaminoglicanos/urina , Humanos , Japão , Masculino , Modelos Moleculares , Linhagem , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
6.
PLoS Genet ; 8(8): e1002867, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912590

RESUMO

Genome-wide transcription start site (TSS) profiles of the enterobacteria Escherichia coli and Klebsiella pneumoniae were experimentally determined through modified 5' RACE followed by deep sequencing of intact primary mRNA. This identified 3,746 and 3,143 TSSs for E. coli and K. pneumoniae, respectively. Experimentally determined TSSs were then used to define promoter regions and 5' UTRs upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence, reflecting conserved gene expression apparatuses between the two species. In both species, over 70% of primary transcripts were expressed from operons having orthologous genes during exponential growth. However, expressed orthologous genes in E. coli and K. pneumoniae showed a strikingly different organization of upstream regulatory regions with only 20% identical promoters with TSSs in both species. Over 40% of promoters had TSSs identified in only one species, despite conserved promoter sequences existing in the other species. 662 conserved promoters having TSSs in both species resulted in the same number of comparable 5' UTR pairs, and that regulatory element was found to be the most variant region in sequence among promoter, 5' UTR, and ORF. In K. pneumoniae, 48 sRNAs were predicted and 36 of them were expressed during exponential growth. Among them, 34 orthologous sRNAs between two species were analyzed in depth, and the analysis showed that many sRNAs of K. pneumoniae, including pleiotropic sRNAs such as rprA, arcZ, and sgrS, may work in the same way as in E. coli. These results reveal a new dimension of comparative genomics such that a comparison of two genomes needs to be comprehensive over all levels of genome organization.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Klebsiella pneumoniae/genética , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Perfilação da Expressão Gênica , Genômica , Dados de Sequência Molecular , Óperon/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
7.
Appl Microbiol Biotechnol ; 97(18): 8031-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23812276

RESUMO

Using enrichment culture, Sphingobacterium multivorum GIN723 (KCCM80060) was isolated as having activity for deglycosylation of compound K and ginsenoside F1 to produce ginsenoside aglycons such as S-protopanaxadiol (PPD(S)) and S-protopanaxatriol (PPT(S)). Through BLAST search, purified enzyme from S. multivorum GIN723 was revealed to be the outer membrane protein. The purified enzyme from S. multivorum GIN723 has unique specificity for the glucose moiety. However, it has activity with PPD and PPT group ginsenosides such as ginsenosides Rb1, Rb2, Rb3, Rc, F2, CK, Rh2, Re, and F1. From these results, it was predicted that the enzyme has activity on several ginsenosides. Therefore, the biotransformation pathway from Rb1, which is a major, highly glycosylated compound of ginseng, was analyzed using high-performance liquid chromatography and electrospray ionization mass spectrometry/mass spectrometry. The dominant biotransformation pathway from Rb1 to PPD(S) was determined to be Rb1 → Gp-XVII → Gp-LXXV → CK → PPD(S). S. multivorum GIN723 can be used as a whole cell biocatalyst because its activity as whole cells is nine times higher than its activity as cell extracts. The specific activity of whole cells is 2.89 nmol/mg/min in the production of PPD(S). On the other hand, the specific activity of cell extracts is 0.32 nmol/mg/min. The productivity of this enzyme in whole cell form is 500 mg/1 l of cultured cell. Its optimum reaction condition is 10 mM of calcium ions added to a phosphate buffer with a pH of 8.5.


Assuntos
Ginsenosídeos/metabolismo , Extratos Vegetais/metabolismo , Sapogeninas/metabolismo , Sphingobacterium/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos/química , Glicosilação , Estrutura Molecular , Extratos Vegetais/química , Sapogeninas/química , Sphingobacterium/química , Espectrometria de Massas em Tandem/métodos
8.
ACS Synth Biol ; 12(5): 1474-1486, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37071041

RESUMO

Although recent advances in deep learning approaches for protein engineering have enabled quick prediction of hot spot residues improving protein solubility, the predictions do not always correspond to an actual increase in solubility under experimental conditions. Therefore, developing methods that rapidly confirm the linkage between computational predictions and empirical results is essential to the success of improving protein solubility of target proteins. Here, we present a simple hybrid approach to computationally predict hot spots possibly improving protein solubility by sequence-based analysis and empirically explore valuable mutants using split GFP as a reporter system. Our approach, Consensus design Soluble Mutant Screening (ConsenSing), utilizes consensus sequence prediction to find hot spots for improvement of protein solubility and constructs a mutant library using Darwin assembly to cover all possible mutations in one pot but still keeps the library as compact as possible. This approach allowed us to identify multiple mutants of Escherichia coli lysine decarboxylase, LdcC, with substantial increases in soluble expression. Further investigation led us to pinpoint a single critical residue for the soluble expression of LdcC and unveiled its mechanism for such improvement. Our approach demonstrated that following a protein's natural evolutionary path provides insights to improve protein solubility and/or increase protein expression by a single residue mutation, which can significantly change the profile of protein solubility.


Assuntos
Carboxiliases , Proteínas de Fluorescência Verde/metabolismo , Carboxiliases/genética , Engenharia de Proteínas/métodos , Biblioteca Gênica
9.
BMC Genomics ; 13: 679, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23194155

RESUMO

BACKGROUND: The increasing number of infections caused by strains of Klebsiella pneumoniae that are resistant to multiple antibiotics has developed into a major medical problem worldwide. The development of next-generation sequencing technologies now permits rapid sequencing of many K. pneumoniae isolates, but sequence information alone does not provide important structural and operational information for its genome. RESULTS: Here we take a systems biology approach to annotate the K. pneumoniae MGH 78578 genome at the structural and operational levels. Through the acquisition and simultaneous analysis of multiple sample-matched -omics data sets from two growth conditions, we detected 2677, 1227, and 1066 binding sites for RNA polymerase, RpoD, and RpoS, respectively, 3660 RNA polymerase-guided transcript segments, and 3585 transcription start sites throughout the genome. Moreover, analysis of the transcription start site data identified 83 probable leaderless mRNAs, while analysis of unannotated transcripts suggested the presence of 119 putative open reading frames, 15 small RNAs, and 185 antisense transcripts that are not currently annotated. CONCLUSIONS: These findings highlight the strengths of systems biology approaches to the refinement of sequence-based annotations, and to provide new insight into fundamental genome-level biology for this important human pathogen.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genoma Bacteriano , Klebsiella pneumoniae/genética , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta , RNA Antissenso , Pequeno RNA não Traduzido , Análise de Sequência de DNA , Fator sigma/genética , Biologia de Sistemas , Sítio de Iniciação de Transcrição
10.
Appl Environ Microbiol ; 78(1): 242-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22020506

RESUMO

Using enrichment culture, Rhizobium sp. strain GIN611 was isolated as having activity for deglycosylation of a ginsenoside, compound K (CK). The purified heterodimeric protein complex from Rhizobium sp. GIN611 consisted of two subunits with molecular masses of 63.5 kDa and 17.5 kDa. In the genome, the coding sequence for the small subunit was located right after the sequence for the large subunit, with one nucleotide overlapping. The large subunit showed CK oxidation activity, and the deglycosylation of compound K was performed via oxidation of ginsenoside glucose by glycoside oxidoreductase. Coexpression of the small subunit helped soluble expression of the large subunit in recombinant Escherichia coli. The purified large subunit also showed oxidation activity against other ginsenoside compounds, such as Rb1, Rb2, Rb3, Rc, F2, CK, Rh2, Re, F1, and the isoflavone daidzin, but at a much lower rate. When oxidized CK was extracted and incubated in phosphate buffer with or without enzyme, (S)-protopanaxadiol [PPD(S)] was detected in both cases, which suggests that deglycosylation of oxidized glucose is spontaneous.


Assuntos
Ginsenosídeos/metabolismo , Oxirredutases/isolamento & purificação , Panax , Extratos Vegetais/metabolismo , Rhizobium/enzimologia , Sapogeninas/metabolismo , Sequência de Bases , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/análise , Eletroforese em Gel de Poliacrilamida , Ginsenosídeos/química , Dados de Sequência Molecular , Estrutura Molecular , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Panax/microbiologia , Extratos Vegetais/química , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Sapogeninas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Biosci Biotechnol Biochem ; 76(7): 1308-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22785472

RESUMO

ω-Aminotransferase (ω-AT) is an important class of enzymes for the synthesis of chiral amines or ß-amino acids. Family profile analysis was applied to screen putative ω-ATs from Mesorhizobium loti MAFF303099, a nitrogen fixation bacterium that has a larger number of ATs than other microorganisms. By family profile analysis, we selected 10 putative ω-ATs according to E-value. The functions of the putative ω-ATs were investigated by examining activities towards amines and/or ß-amino acids. 10 putative proteins were found to have ω-AT activity with narrow or broad substrate specificity. Structure analysis using crystal structure of mll7127 and homology models of mll1632 and mll3663 indicated that the structures of active sites of the enzymes were very similar and highly conserved, but their substrate specificities appeared to be determined by residues positioned at the entrance region of the active site binding pockets.


Assuntos
Aminoácidos/química , Proteínas de Bactérias/química , Genoma Bacteriano , Mesorhizobium/química , Transaminases/química , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Mapeamento Cromossômico , Biologia Computacional , Cristalografia por Raios X , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mesorhizobium/enzimologia , Mesorhizobium/genética , Modelos Moleculares , Família Multigênica , Mutagênese Sítio-Dirigida , Fixação de Nitrogênio/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo
12.
Metabolites ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323662

RESUMO

Carbofuran is one of the most commonly used N-methylcarbamate-based pesticides and is excellent for controlling pests; however, carbofuran also causes soil and water pollution. Although various studies have been conducted on the bioremediation of pesticide-contaminated soil, the changes occurring in the metabolome during the bioremediation of carbofuran are not fully understood. In this study, the intracellular and extracellular metabolites of the Chryseobacterium sp. BSC2-3 strain were analysed during carbofuran degradation by using a liquid chromatography-mass spectrometry-based metabolomics approach. We found that the BSC2-3 strain extracellularly transformed carbofuran into 3-hydroxycarbofuran. Intracellular metabolite analysis revealed that carbofuran mainly affected aminobenzoate degradation, ubiquinone and terpenoid-quinone biosynthesis, and arginine and proline metabolism. Carbofuran especially affected the metabolic pathway for the degradation of naphthalene and aminobenzoate. Metabolomics additionally revealed that the strain produces disease resistance inducers and plant growth regulators. We also identified the genes involved in the production of indole-3-acetic acid, which is one of the most active auxins. Overall, we identified the metabolic changes induced in carbofuran-degrading bacteria and the genes predicted to be responsible for the degradation of carbofuran.

13.
Biotechnol Bioeng ; 108(2): 253-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20824676

RESUMO

The half reactions of ω-aminotransferase (ω-AT) from Vibrio fluvialis JS17 (ω-ATVf) were carried out using purified pyridoxal 5'-phosphate-enzyme (PLP-Enz) and pyridoxamine 5'-phosphate-enzyme (PMP-Enz) complexes to investigate the relative activities of substrates. In the reaction generating PMP-Enz from PLP-Enz using L-alanine as an amine donor, L-alanine showed about 70% of the initial reaction rate of (S)-α-methylbenzylamine ((S)-α-MBA). However, in the subsequent half reaction recycling PLP-Enz from PMP-Enz using acetophenone as an amine acceptor, acetophenone showed nearly negligible reactivity compared to pyruvate. These results indicate that the main bottleneck in the asymmetric synthesis of (S)-α-MBA lies not in the amination of PLP by alanine, but in the amination of acetophenone by PMP-Enz, where conformational restraints of the enzyme structure is likely to be the main reason for limiting the amine group transfer from PMP-Enz to acetophenone. Based upon those half reaction experiments using the two amino acceptors of different activity, it appears that the relative activities of the two amine donors and the two acceptors involved in the ω-AT reactions can roughly determine the asymmetric synthesis yield of the target chiral amine compound. Predicted conversion yields of several target chiral amines were calculated and compared with the experimental conversion yields. Approximately, a positive linear correlation (Pearson's correlation coefficient = 0.92) was observed between the calculated values and the experimental conversion yields. To overcome the low (S)-α-MBA productivity of ω-ATVf caused by the possible disadvantageous structural constraints for acetophenone, new ω-ATs showing higher affinity to benzene ring of acetophenone than ω-ATVf were computationally screened using comparative modeling and protein-ligand docking. ω-ATs from Streptomyces avermitilis MA-4680 (SAV2612) and Agrobacterium tumefaciens str. C58 (Atu4761) were selected, and the two screened ω-ATs showed higher asymmetric synthesis reaction rate of (S)-α-MBA and lower (S)-α-MBA degradation reaction rate than ω-ATVf. To verify the higher conversion yield of the variants of ω-ATs, the reaction with 50 mM acetophenone and 50 mM alanine was performed with coupling of lactate dehydrogenase and two-phase reaction system. SAV2612 and Atu4761 showed 70% and 59% enhanced yield in the synthesis of (S)-α-MBA compared to that of ω-ATVf, respectively.


Assuntos
Alanina/metabolismo , Aminas/metabolismo , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Transaminases/metabolismo , Acetofenonas/metabolismo , Agrobacterium tumefaciens/enzimologia , Isomerismo , L-Lactato Desidrogenase/metabolismo , Conformação Molecular , Piridoxamina/metabolismo , Streptomyces/enzimologia , Vibrio/enzimologia
14.
Mol Ther Methods Clin Dev ; 21: 67-75, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33768130

RESUMO

This open-label, phase 1/2 study (JMACCT CTR JMA-IIA00350) evaluated the efficacy and safety of intracerebroventricular idursulfase beta in patients with mucopolysaccharidosis II (MPS II). Herein, we report the 100-week results. Six patients with severe MPS II aged 23-65 months were enrolled. Idursulfase beta (increasing from 1 to 30 mg between weeks 0 and 24, followed by a 30-mg final dose) was administered intracerebroventricularly once every 4 weeks using an implanted cerebrospinal fluid (CSF) reservoir; intravenous administration of idursulfase was also continued throughout the study. Efficacy endpoints included developmental age by the Kyoto Scale of Psychological Development 2001 and heparan sulfate (HS) concentration in CSF (primary outcome). In all six patients, HS concentrations decreased (40%-80%) from baseline to week 100. For overall developmental age, the difference in change from baseline to week 100 in each patient compared with patients treated by intravenous idursulfase administration (n = 13) was +8.0, +14.5, +4.5, +3.7, +8.2, and -8.3 months (mean, +5.1 months). Idursulfase beta was well tolerated. The most common adverse events were pyrexia, upper respiratory tract infection, and vomiting. The results suggest that intracerebroventricular idursulfase beta is well tolerated and can be effective at preventing and stabilizing developmental decline in patients with neuronopathic MPS II.

15.
Appl Environ Microbiol ; 76(18): 6295-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20656866

RESUMO

Herewith we report the expression and screening of microbial enzymes without involving cloning procedures. Computationally predicted putative omega-transaminase (omega-TA) genes were PCR amplified from the bacterial colonies and expressed in a cell-free protein synthesis system for subsequent analysis of their enzymatic activity and substrate specificity. Through the cell-free expression analysis of the putative omega-TA genes, a number of enzyme-substrate pairs were identified in a matter of hours. We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function to accelerate the discovery of novel enzymes.


Assuntos
Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Transaminases/genética , Sistema Livre de Células , Cromatografia Líquida de Alta Pressão , Colorimetria , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Especificidade por Substrato
16.
Mov Disord ; 25(12): 1953-9, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20623770

RESUMO

A few case-control studies of multiple system atrophy (MSA) have been reported in Western populations. In this study, we included various epidemiological factors to evaluate whether the risk factors for MSA differed in Korean and Western populations. A total of 100 consecutive MSA patients and 104 controls at two referral hospitals participated. Information was obtained through face-to-face interviews using a structured questionnaire: history of living area, occupational history, food habits, alcohol and tobacco consumption, and use of drugs. Odds ratios and 95% confident intervals (OR [95% CI]) were computed using logistic regression. The multivariate logistic regression analysis revealed that use of antihypertensive medication (OR = 0.30 [0.12-0.78]) and vitamins (OR = 0.30 [0.14-0.64]) and consumption of meat and poultry (OR = 0.27 [0.13-0.56]) were associated with decreasing risk for MSA, whereas use of herbal medications (OR = 3.17 [1.28-7.84]) was associated with increasing risk for MSA. In univariate analysis adjusted for age, sex, education level, and recruitment center, use of aspirin (OR = 0.21 [0.07-0.61]) and coffee consumption (OR = 0.44 [0.23-0.84]) were significantly less frequent in MSA patients than in controls, whereas heavy smoking (≥40 pack-years) was significantly more prevalent in MSA patients than in controls (OR = 3.44 [1.05-11.23]). There was no difference in living area, participation in farming, or exposure to agrichemicals and solvents between groups. This study showed that MSA in Korea is characterized by risk factors that are both similar to and different from those affecting Western populations and that herbal medicines constitute a new MSA risk factor for the Korean population.


Assuntos
Atrofia de Múltiplos Sistemas/epidemiologia , Fatores Etários , Povo Asiático , Estudos de Casos e Controles , Dieta , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Razão de Chances , Prevalência , Análise de Regressão , República da Coreia/epidemiologia , Fatores de Risco , Fatores Sexuais , Fumar , Inquéritos e Questionários
17.
Mol Genet Metab Rep ; 24: 100630, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32775211

RESUMO

The natural history of cognitive growth in the neuronopathic form of Mucopolysaccharidosis type II (MPS II) is not well defined especially their patterns of development and decline. The ability to predict the developmental course of the neurologically impaired patient is necessary to assess treatment outcomes aimed at the brain. Thirteen intravenous enzyme replacement therapy-treated Japanese patients with neuronopathic MPSII who had mutation analysis were followed on one standard measure of cognitive development over time. Six children in Group MS had missense mutations and 7 children in Group NT had null type mutations such as deletions, recombination with the pseudogene, and nonsense mutations. The patients as a whole demonstrated cognitive growth until about 36-42 months of age, followed by a plateau in development. The mean age equivalent score at age 3 was similar to that at age 6. While the decline was slow for the entire group, the patients in Group NT showed a more rapid decline than those in Group MS. Two patients with deletions showed decline to a very low level by age 5. The long plateau in cognitive development in patents with MPS II was substantiated and was consistent with other studies. This is the first demonstration that different mutation types within the neuronopathic MPS II patients are associated with different rates of decline. We also were able to identify the chronological age before which a trial would need to start in order to maintain cognitive growth and a ceiling beyond which a relatively normal outcome would not be likely.

18.
Proteins ; 75(4): 1010-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19089941

RESUMO

We have investigated the effect of rigorous optimization of the MODELLER energy function for possible improvement in protein all-atom chain-building. For this we applied the global optimization method called conformational space annealing (CSA) to the standard MODELLER procedure to achieve better energy optimization than what MODELLER provides. The method, which we call MODELLERCSA, is tested on two benchmark sets. The first is the 298 proteins taken from the HOMSTRAD multiple alignment set. By simply optimizing the MODELLER energy function, we observe significant improvement in side-chain modeling, where MODELLERCSA provides about 10.7% (14.5%) improvement for chi(1) (chi(1) + chi(2)) accuracy compared to the standard MODELLER modeling. The improvement of backbone accuracy by MODELLERCSA is shown to be less prominent, and a similar improvement can be achieved by simply generating many standard MODELLER models and selecting lowest energy models. However, the level of side-chain modeling accuracy by MODELLERCSA could not be matched either by extensive MODELLER strategies, side-chain remodeling by SCWRL3, or copying unmutated rotamers. The identical procedure was successfully applied to 100 CASP7 template base modeling domains during the prediction season in a blind fashion, and the results are included here for comparison. From this study, we observe a good correlation between the MODELLER energy and the side-chain accuracy. Our findings indicate that, when a good alignment between a target protein and its templates is provided, thorough optimization of the MODELLER energy function leads to accurate all-atom models.


Assuntos
Modelos Químicos , Conformação Proteica , Proteínas/química , Software , Caspase 7/química , Simulação por Computador , Bases de Dados de Proteínas , Termodinâmica
19.
Biotechnol Bioeng ; 102(5): 1323-9, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19016485

RESUMO

2-Phenylethanol is a widely used aroma compound with rose-like fragrance and L-homophenylalanine is a building block of angiotensin-converting enzyme (ACE) inhibitor. 2-phenylethanol and L-homophenylalanine were synthesized simultaneously with high yield from 2-oxo-4-phenylbutyric acid and L-phenylalanine, respectively. A recombinant Escherichia coli harboring a coupled reaction pathway comprising of aromatic transaminase, phenylpyruvate decarboxylase, carbonyl reductase, and glucose dehydrogenase (GDH) was constructed. In the coupled reaction pathway, the transaminase reaction was coupled with the Ehrlich pathway of yeast; (1) a phenylpyruvate decarboxylase (YDR380W) as the enzyme to generate the substrate for the carbonyl reductase from phenylpyruvate (i.e., byproduct of the transaminase reaction) and to shift the reaction equilibrium of the transaminase reaction, and (2) a carbonyl reductase (YGL157W) to produce the 2-phenylethanol. Selecting the right carbonyl reductase showing the highest activity on phenylacetaldehyde with narrow substrate specificity was the key to success of the constructing the coupling reaction. In addition, NADPH regeneration was achieved by incorporating the GDH from Bacillus subtilis in the coupled reaction pathway. Based on 40 mM of L-phenylalanine used, about 96% final product conversion yield of 2-phenylethanol was achieved using the recombinant E. coli.


Assuntos
Aminobutiratos/metabolismo , Proteínas Fúngicas/metabolismo , Álcool Feniletílico/metabolismo , Saccharomyces cerevisiae/enzimologia , Transaminases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Bacillus subtilis/enzimologia , Carboxiliases/genética , Carboxiliases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucose 1-Desidrogenase/genética , Glucose 1-Desidrogenase/metabolismo , Fenilalanina/metabolismo , Fenilbutiratos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Transaminases/genética
20.
Bioorg Med Chem Lett ; 19(19): 5586-9, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19700313

RESUMO

Kojic acid (KA), a well known tyrosinase inhibitor, has insufficient inhibitory activity and stability. We modified KA with amino acids and screened their tyrosinase inhibitory activity. Among them, kojic acid-phenylalanine amide (KA-F-NH(2)) showed the strongest inhibitory activity, which was maintained for over 3 months at 50 degrees C, and acted as a noncompetitive inhibitor as determined by kinetic analysis. It also exhibited dopachrome reducing activity. We also propose a new tyrosinase inhibition mechanism based on the docking simulation data.


Assuntos
Aminoácidos/química , Inibidores Enzimáticos/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Pironas/química , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Cinética , Monofenol Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA