Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(19): 3216-3230, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34957497

RESUMO

Mutations in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene, GABRG2, have been associated with a variety of epilepsy syndromes. A de novo mutation (c.T1027C, p.F343L) in GABRG2 was identified in a patient with early onset epileptic encephalopathy. Zebrafish overexpressing mutant human GABRG2 (F343L) subunits displayed spontaneous seizure activity and convulsive behaviors. In this study, we demonstrated that Tg (hGABRG2F343L) zebrafish displayed hyperactivity during light phase with normal circadian rhythm, as well as increased drug-induced locomotor activity. Real-time quantitative PCR, whole mount in situ hybridization and western blotting showed that Tg(hGABRG2F343L) zebrafish had altered expression of GABAA receptor subunits. Furthermore, investigation of synaptic protein expression and synapse ultrastructure uncovered a robust synaptic phenotype that is causally linked to GABRG2(F343L) mutation. Strikingly, Tg(hGABRG2F343L) zebrafish not only had postsynaptic defects, but also displayed an unanticipated deficit at the presynaptic level. Overall, our Tg(hGABRG2F343L) overexpression zebrafish model has expanded the GABAergic paradigm in epileptic encephalopathy from channelopathy to synaptopathy.


Assuntos
Encefalopatias , Receptores de GABA-A , Animais , Humanos , Mutação , Mutação de Sentido Incorreto/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsões , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácido gama-Aminobutírico/genética
2.
Epilepsia ; 64(4): 1061-1073, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36495145

RESUMO

OBJECTIVE: Infantile spasms is an epileptic encephalopathy of childhood, and its pathophysiology is largely unknown. We generated a heterozygous knock-in mouse with the human infantile spasms-associated de novo mutation GABRB3 (c.A328G, p.N110D) to investigate its molecular mechanisms and to establish the Gabrb3+/N110D knock-in mouse as a model of infantile spasms syndrome. METHODS: We used electroencephalography (EEG) and video monitoring to characterize seizure types, and a suite of behavioral tests to identify neurological and behavioral impairment in Gabrb3+/N110D knock-in mice. Miniature inhibitory postsynaptic currents (mIPSCs) were recorded from layer V/VI pyramidal neurons in somatosensory cortex, and extracellular multi-unit recordings from the ventral basal nucleus of the thalamus in a horizontal thalamocortical slice were used to assess spontaneous thalamocortical oscillations. RESULTS: The infantile spasms-associated human de novo mutation GABRB3 (c.A328G, p.N110D) caused epileptic spasms early in development and multiple seizure types in adult Gabrb3+/N110D knock-in mice. Signs of neurological impairment, anxiety, hyperactivity, social impairment, and deficits in spatial learning and memory were also observed. Gabrb3+/N110D mice had reduced cortical mIPSCs and increased duration of spontaneous oscillatory firing in the somatosensory thalamocortical circuit. SIGNIFICANCE: The Gabrb3+/N110D knock-in mouse has epileptic spasms, seizures, and other neurological impairments that are consistent with infantile spasms syndrome in patients. Multiple seizure types and abnormal behaviors indicative of neurological impairment both early and late in development suggest that Gabrb3+/N110D mice can be used to study the pathophysiology of infantile spasms. Reduced cortical inhibition and increased duration of thalamocortical oscillatory firing suggest perturbations in thalamocortical circuits.


Assuntos
Espasmos Infantis , Humanos , Camundongos , Animais , Espasmos Infantis/genética , Receptores de GABA-A/genética , Convulsões , Células Piramidais , Eletroencefalografia , Síndrome , Espasmo
3.
J Neuroinflammation ; 19(1): 140, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690819

RESUMO

BACKGROUND: Anti-IgLON5 disease is a rare neurological disorder associated with autoantibodies against the neuronal cell adhesion protein, IgLON5. Cellular investigations with human IgLON5 antibodies have suggested an antibody-mediated pathogenesis, but whether human IgLON5 autoantibodies can induce disease symptoms in mice is yet to be shown. Moreover, the effects of anti-IgLON5 autoantibodies on neurons and the precise molecular mechanisms in vivo remain controversial. METHODS: We investigated the effects of anti-IgLON5 antibodies in vivo and evaluated their long-term effects. We used two independent passive-transfer animal models and evaluated the effects of the antibodies on mouse behaviors at different time points from day 1 until day 30 after IgG infusion. A wide range of behaviors, including tests of locomotion, coordination, memory, anxiety, depression and social interactions were established. At termination, brain tissue was analyzed for human IgG, neuronal markers, glial markers, synaptic markers and RNA sequencing. RESULTS: These experiments showed that patient's anti-IgLON5 antibodies induced progressive and irreversible behavioral deficits in vivo. Notably, cognitive abnormality was supported by impaired average gamma power in the CA1 during novel object recognition testing. Accompanying brain tissue studies showed progressive increase of brain-bound human antibodies in the hippocampus of anti-IgLON5 IgG-injected mice, which persisted 30 days after the injection of patient's antibodies was stopped. Microglial and astrocyte density was increased in the hippocampus of anti-IgLON5 IgG-injected mice at Day 30. Whole-cell voltage clamp recordings proved that anti-IgLON5 antibodies affected synaptic homeostasis. Further western blot investigation of synaptic proteins revealed a reduction of presynaptic (synaptophysin) and post-synaptic (PSD95 and NMDAR1) expression in anti-IgLON5 IgG-injected mice. CONCLUSIONS: Overall, our findings indicated an irreversible effect of anti-IgLON5 antibodies and supported the pathogenicity of these antibodies in vivo.


Assuntos
Moléculas de Adesão Celular Neuronais , Doenças do Sistema Nervoso , Animais , Autoanticorpos , Moléculas de Adesão Celular Neuronais/metabolismo , Imunoglobulina G/farmacologia , Camundongos , Doenças do Sistema Nervoso/patologia , Neurônios
4.
Eur J Neurol ; 29(1): 267-276, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543501

RESUMO

BACKGROUND: We conducted this study to describe detailed the clinical characteristics, ancillary test results and treatment response of a group of Chinese patients with anti-IgLON5 disease. METHODS: We recruited 13 patients with positive IgLON5 antibodies in serum and/or cerebrospinal fluid from nine tertiary referral centers. Patients were enrolled from February 2017 to July 2021. We retrospectively collected information on the presenting and main symptoms, treatment response and follow-up outcomes. RESULTS: The median age of onset for symptoms was 60 (range: 33-73) years and six of the 13 patients were females. The predominant clinical presentations included sleep disturbance (eight patients) and cognitive impairment (seven patients), followed by movement disorders (six patients). Parainfectious cause seemed plausible. Notably, we identified the first case of possible Epstein-Barr virus (EBV)-related anti-IgLON5 disease. Coexisting neural autoantibodies were identified in two patients. Furthermore, two patients had other autoimmune diseases. The IgG subclass was determined in four patients, including two with dominant IgG4 subtype and two with dominant IgG1 subtype. Additionally, 10 patients were treated with immunotherapy and four patients exhibited improvement. Overall, six of 10 patients for whom follow-up results were assessable had favorable clinical outcomes (modified Rankin Scale score ≤2). CONCLUSIONS: The clinical spectrum of anti-IgLON5 disease is variable. Our results highlight a boarder spectrum of anti-IgLON5 disease.


Assuntos
Infecções por Vírus Epstein-Barr , Doença de Hashimoto , Adulto , Idoso , Autoanticorpos , Moléculas de Adesão Celular Neuronais , Feminino , Herpesvirus Humano 4 , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
5.
Brain ; 142(7): 1938-1954, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31056671

RESUMO

We performed next generation sequencing on 1696 patients with epilepsy and intellectual disability using a gene panel with 480 epilepsy-related genes including all GABAA receptor subunit genes (GABRs), and we identified six de novo GABR mutations, two novel GABRA5 mutations (c.880G>T, p.V294F and c.1238C>T, p.S413F), two novel GABRA1 mutations (c.778C>T, p.P260S and c.887T>C, p.L296S/c.944G>T, p.W315L) and two known GABRA1 mutations (c.335G>A, p.R112Q and c.343A>G, p.N115D) in six patients with intractable early onset epileptic encephalopathy. The α5(V294F and S413F) and α1(P260S and L296S/W315L) subunit residue substitutions were all in transmembrane domains, while the α1(R112Q and N115R) subunit residue substitutions were in the N-terminal GABA binding domain. Using multidisciplinary approaches, we compared effects of mutant GABAA receptor α5 and α1 subunits on the properties of recombinant α5ß3γ2 and α1ß3γ2 GABAA receptors in both neuronal and non-neuronal cells and characterized their effects on receptor clustering, biogenesis and channel function. GABAA receptors containing mutant α5 and α1 subunits all had reduced cell surface and total cell expression with altered endoplasmic reticulum processing, impaired synaptic clustering, reduced GABAA receptor function and decreased GABA binding potency. Our study identified GABRA5 as a causative gene for early onset epileptic encephalopathy and expands the mutant GABRA1 phenotypic spectrum, supporting growing evidence that defects in GABAergic neurotransmission contribute to early onset epileptic encephalopathy phenotypes.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Receptores de GABA-A/genética , Sinapses/genética , Criança , Pré-Escolar , Epilepsia/complicações , Feminino , Predisposição Genética para Doença/genética , Humanos , Deficiência Intelectual/complicações , Masculino , Potenciais da Membrana/fisiologia , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Mutação , Cultura Primária de Células , Receptores de GABA-A/biossíntese , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
6.
J Neurosci ; 38(29): 6574-6585, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915133

RESUMO

As the major glia in PNS, Schwann cells play a critical role in peripheral nerve injury repair. Finding an efficient approach to promote Schwann cell activation might facilitate peripheral nerve repair. Long noncoding RNAs (lncRNAs) have been shown to regulate gene expression and take part in many biological processes. However, the role of lncRNAs in peripheral nerve regeneration is not fully understood. In this study, we obtained a global lncRNA portrayal following sciatic nerve injury in male rats using microarray and further investigated one of these dys-regulated lncRNAs, TNXA-PS1, confirming its vital role in regulating Schwann cells. Silencing TNAX-PS1 could promote Schwann cell migration and mechanism analyses showed that TNXA-PS1 might exert its regulatory role by sponging miR-24-3p/miR-152-3p and affecting dual specificity phosphatase 1 (Dusp1) expression. Systematic lncRNA expression profiling of sciatic nerve segments following nerve injury in rats suggested lncRNA TNXA-PS1 as a key regulator of Schwann cell migration, providing a potential therapeutic target for nerve injury repair.SIGNIFICANCE STATEMENT The PNS has an intrinsic regeneration capacity after injury in which Schwann cells play a crucial role. Therefore, further exploration of functional molecules in the Schwann cell phenotype modulation is of great importance. We have identified a set of dys-regulated long noncoding RNAs (lncRNAs) in rats following sciatic nerve injury and found that the expression of TNXA-PS1 was significantly downregulated. Mechanically analyses showed that TNXA-PS1 might act as a competing endogenous RNA to affect dual specificity phosphatase 1 (Dusp1) expression, regulating migration of Schwann cells. This study provides for the first time a global landscape of lncRNAs following sciatic nerve injury in rats and broadens the known functions of lncRNA during nerve injury. The investigation of TNXA-PS1 might facilitate the development of novel targets for nerve injury therapy.


Assuntos
Regeneração Nervosa/fisiologia , RNA Longo não Codificante/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/lesões , Animais , Movimento Celular/fisiologia , Fosfatase 1 de Especificidade Dupla/biossíntese , Regulação da Expressão Gênica/genética , Masculino , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo
7.
Brain ; 140(1): 49-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864268

RESUMO

Epileptic encephalopathies are a devastating group of severe childhood onset epilepsies with medication-resistant seizures and poor developmental outcomes. Many epileptic encephalopathies have a genetic aetiology and are often associated with de novo mutations in genes mediating synaptic transmission, including GABAA receptor subunit genes. Recently, we performed next generation sequencing on patients with a spectrum of epileptic encephalopathy phenotypes, and we identified five novel (A106T, I107T, P282S, R323W and F343L) and one known (R323Q) de novo GABRG2 pathogenic variants (mutations) in eight patients. To gain insight into the molecular basis for how these mutations contribute to epileptic encephalopathies, we compared the effects of the mutations on the properties of recombinant α1ß2γ2L GABAA receptors transiently expressed in HEK293T cells. Using a combination of patch clamp recording, immunoblotting, confocal imaging and structural modelling, we characterized the effects of these GABRG2 mutations on GABAA receptor biogenesis and channel function. Compared with wild-type α1ß2γ2L receptors, GABAA receptors containing a mutant γ2 subunit had reduced cell surface expression with altered subunit stoichiometry or decreased GABA-evoked whole-cell current amplitudes, but with different levels of reduction. While a causal role of these mutations cannot be established directly from these results, the functional analysis together with the genetic information suggests that these GABRG2 variants may be major contributors to the epileptic encephalopathy phenotypes. Our study further expands the GABRG2 phenotypic spectrum and supports growing evidence that defects in GABAergic neurotransmission participate in the pathogenesis of genetic epilepsies including epileptic encephalopathies.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia/genética , Epilepsia/fisiopatologia , Receptores de GABA-A/genética , Criança , Pré-Escolar , Fenômenos Eletrofisiológicos , Exoma , Feminino , Células HEK293 , Humanos , Masculino , Mutação , Técnicas de Patch-Clamp , Fenótipo
9.
Neural Regen Res ; 19(8): 1842-1848, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103252

RESUMO

JOURNAL/nrgr/04.03/01300535-202408000-00039/figure1/v/2023-12-16T180322Z/r/image-tiff Biomarkers are required for the early detection, prognosis prediction, and monitoring of amyotrophic lateral sclerosis, a progressive disease. Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarkers. In this study, we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral sclerosis compared with five healthy controls. Substantial upregulation of serum proteins related to multiple functional clusters was observed in patients with sporadic amyotrophic lateral sclerosis. Potential biomarkers were selected based on functionality and expression specificity. To validate the proteomics profiles, blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay. Eight substantially upregulated serum proteins in patients with sporadic amyotrophic lateral sclerosis were selected, of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls (area under the curve [AUC] = 0.713, P < 0.0001). To further enhance diagnostic accuracy, a multi-protein combined discriminant algorithm was developed incorporating five proteins (hemoglobin beta, cathelicidin-related antimicrobial peptide, talin-1, zyxin, and translationally-controlled tumor protein). The algorithm achieved an AUC of 0.811 and a P-value of < 0.0001, resulting in 79% sensitivity and 71% specificity for the diagnosis of sporadic amyotrophic lateral sclerosis. Subsequently, the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls, as well as patients with different disease severities, was examined. A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls (AUC = 0.766, P < 0.0001). Moreover, the expression of three proteins (FK506 binding protein 1A, cathelicidin-related antimicrobial peptide, and hemoglobin beta-1) was found to increase with disease progression. The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in combination with current clinical-based parameters.

10.
CNS Neurosci Ther ; 30(2): e14583, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38357846

RESUMO

OBJECTIVE: To explore the mechanism involved in variable phenotypes of epilepsy models induced by γ-aminobutyric acid type A γ2 subunit (GABRG2) mutations. METHODS: The zebrafish carrying wild-type (WT) GABRG2, mutant GABRG2(P282S), GABRG2(F343L) and GABRG2(I107T) were established by Tol2kit transgenesis system and Gateway method. Behavioral analysis of different transgenic zebrafish was performed with the DanioVision Video-Track framework and the brain activity was analyzed by field potential recording with MD3000 Bio-signal Acquisition and Processing System. The transcriptome analysis was applied to detect the underlying mechanisms of variable phenotypes caused by different GABRG2 mutations. RESULTS: The established Tg(hGABRG2P282S ) zebrafish showed hyperactivity and spontaneous seizures, which were more sensitive to chemical and physical epileptic stimulations. Traditional antiepileptic drugs, such as Clonazepam (CBZ) and valproic acid (VPA), could ameliorate the hyperactivity in Tg(hGABRG2P282S ) zebrafish. The metabolic pathway was significantly changed in the brain transcriptome of Tg(hGABRG2P282S ) zebrafish. In addition, the behavioral activity, production of pro-inflammatory factors, and activation of the IL-2 receptor signal pathway varied among the three mutant zebrafish lines. CONCLUSION: We successfully established transgenic zebrafish epileptic models expressing human mutant GABRG2(P282S), in which CBZ and VPA showed antiepileptic effects. Differential inflammatory responses, especially the SOCS/JAK/STAT signaling pathway, might be related to the phenotypes of genetic epilepsy induced by GABRG2 mutations. Further study will expand the pathological mechanisms of genetic epilepsies and provide a theoretical basis for searching for effective drug treatment.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Epilepsia/genética , Mutação/genética , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Fenótipo , Inflamação/genética
11.
Int Immunopharmacol ; 116: 109802, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738682

RESUMO

Inflammation is considered to be involved in epileptogenesis. However, the relationship between fever and inflammation as well as the mechanisms of fever in the occurrence and development of childhood epilepsy need further investigation. Here, we described an in vivo model of hyperthermia-induced seizures in zebrafish larvae with pentylenetetrazole (PTZ) exposure. Hyperthermia increased the susceptibility to seizure and the production of pro-inflammatory factors in PTZ-induced zebrafish larvae. As mutations in GABRG2 have been associated with fever-associated epilepsy, we used a Tg(hGABRG2F343L) zebrafish model expressing mutant human GABRG2(F343L) to further investigate the involvement of inflammation in fever-induced seizures. Our data indicated that hyperthermia also increased the locomotor activity in Tg(hGABRG2F343L) zebrafish larvae. Although the production of pro-inflammatory factors was upregulated by GABRG2 mutation, hyperthermia did not change the production of pro-inflammatory factors significantly. Lipopolysaccharide (LPS) stimulation was sufficient to increase the locomotor activity in zebrafish larvae, suggesting that inflammation contributed to fever-associated epilepsy. The expression of GABRG2 was increased with PTZ induction, especially at a higher temperature. Moreover, inhibition of inflammation by dexamethasone (DEX) reduced the excitability of zebrafish larvae, especially at a higher temperature. Finally, in vitro experiments proved that LPS stimulation increased the production of IL-1ß and IL-6 in GABRG2(F343L) transfected cells. Collectively, our study demonstrated that neuroinflammation was induced in febrile seizures, and the increased expression of IL-1ß and IL-6 might be responsible for epileptogenesis. The vicious cycle between fever and inflammation might induce seizure onset, and anti-inflammatory strategies might be a potential treatment for fever-associated epilepsy.


Assuntos
Epilepsia , Convulsões Febris , Animais , Humanos , Modelos Animais de Doenças , Epilepsia/genética , Epilepsia/induzido quimicamente , Febre , Inflamação , Interleucina-6/genética , Larva , Lipopolissacarídeos/efeitos adversos , Pentilenotetrazol , Peixe-Zebra , Interleucina-1beta
12.
Mol Neurobiol ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102515

RESUMO

Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease, accompanied by the gradual loss of motor neuron, even life-threatening. However, the pathogenesis, early diagnosis, and effective strategies of ALS are not yet completely understood. In this study, the function of differentially expressed genes (DEGs) in non-neuronal cells of the primary motor cortex of ALS patients (DATA1), the brainstem of SOD1 mutant ALS mice (DATA2), and the whole blood tissue of ALS patients (DATA3) were explored. The results showed that the functions of DEGs in non-neuronal cells were mainly related to energy metabolism (such as oxidative phosphorylation) and protein synthesis. In non-neuronal cells, six upregulated DEGs (HSPA8, SOD1, CALM1, CALM2, NEFL, COX6C) and three downregulated DEGs (SNRNP70, HSPA1A, HSPA1B) might be key factors in regulating ALS. Microglia played a key role in the development of ALS. The expression of SOD1 and TUBA4A in microglia in DATA1 was significantly increased. The integration analysis of DEGs in DATA1 and DATA2 showed that SOD1 and CALM1 might be potential biomarkers. The integration analysis of DEGs in DATA1 and DATA3 showed that CALM2 and HSPA1A might be potential biomarkers. Cell interaction showed that the interaction between microglia and other cells was reduced in high oxidative phosphorylation states, which might be a risk factor in ALS. Our research provided evidence for the pathogenesis, early diagnosis, and potential targeted therapy for ALS.

13.
Neural Regen Res ; 18(5): 1017-1022, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254983

RESUMO

Anti-IgLON5 disease is a recently defined autoimmune disorder of the nervous system associated with autoantibodies against IgLON5. Given its broad clinical spectrum and extremely complex pathogenesis, as well as difficulties in its early diagnosis and treatment, anti-IgLON5 disease has become the subject of considerable research attention in the field of neuroimmunology. Anti-IgLON5 disease has characteristics of both autoimmunity and neurodegeneration due to the unique activity of the anti-IgLON5 antibody. Neuropathologic examination revealed the presence of a tauopathy preferentially affecting the hypothalamus and brainstem tegmentum, potentially broadening our understanding of tauopathies. In contrast to that seen with other autoimmune encephalitis-related antibodies, basic studies have demonstrated that IgLON5 antibody-induced neuronal damage and degeneration are irreversible, indicative of a potential link between autoimmunity and neurodegeneration in anti-IgLON5 disease. Herein, we comprehensively review and discuss basic and clinical studies relating to anti-IgLON5 disease to better understand this complicated disorder.

14.
Brain Behav Immun Health ; 26: 100535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267833

RESUMO

SARS-CoV-2 vaccine has considered being the most effective method to prevent SARS-CoV-2 infection. The safety and effectiveness of the SARS-CoV-2 vaccine has been confirmed. However, in very rare cases, autoimmune neurological diseases may occur. In this article, we report three rare cases of autoimmune encephalitis with definite auto-antibody after SARS-CoV-2 vaccination. They all have good prognosis after treatment. In addition, we first use 18F-DPA-714 PET/MRI to evaluate microglia activation in our patients. We found that 18F-DPA-714 PET/MRI may be a powerful tool for quantitative analysis of neuroinflammation in patients of autoimmune encephalitis. Finally, although rare complications may happen after vaccination, we still consider the benefits of vaccination far outweigh the risks. People without contraindications should be vaccinated without delay to prevent infection in current outbreak situation.

15.
Biomedicines ; 11(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672596

RESUMO

Epilepsy is a common and severe chronic neurological disorder. Recently, post-translational modification (PTM) mechanisms, especially protein acetylation modifications, have been widely studied in various epilepsy models or patients. Acetylation is regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs catalyze the transfer of the acetyl group to a lysine residue, while HDACs catalyze acetyl group removal. The expression of many genes related to epilepsy is regulated by histone acetylation and deacetylation. Moreover, the acetylation modification of some non-histone substrates is also associated with epilepsy. Various molecules have been developed as HDAC inhibitors (HDACi), which have become potential antiepileptic drugs for epilepsy treatment. In this review, we summarize the changes in acetylation modification in epileptogenesis and the applications of HDACi in the treatment of epilepsy as well as the mechanisms involved. As most of the published research has focused on the differential expression of proteins that are known to be acetylated and the knowledge of whole acetylome changes in epilepsy is still minimal, a further understanding of acetylation regulation will help us explore the pathological mechanism of epilepsy and provide novel ideas for treating epilepsy.

16.
Front Med ; 16(5): 723-735, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35648369

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. At present, no definite ALS biomarkers are available. In this study, exosomes from the plasma of patients with ALS and healthy controls were extracted, and differentially expressed exosomal proteins were compared. Among them, the expression of exosomal coronin-1a (CORO1A) was 5.3-fold higher than that in the controls. CORO1A increased with disease progression at a certain proportion in the plasma of patients with ALS and in the spinal cord of ALS mice. CORO1A was also overexpressed in NSC-34 motor neuron-like cells, and apoptosis, oxidative stress, and autophagic protein expression were evaluated. CORO1A overexpression resulted in increased apoptosis and oxidative stress, overactivated autophagy, and hindered the formation of autolysosomes. Moreover, CORO1A activated Ca2+-dependent phosphatase calcineurin, thereby blocking the fusion of autophagosomes and lysosomes. The inhibition of calcineurin activation by cyclosporin A reversed the damaged autolysosomes. In conclusion, the role of CORO1A in ALS pathogenesis was discovered, potentially affecting the disease onset and progression by blocking autophagic flux. Therefore, CORO1A might be a potential biomarker and therapeutic target for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Calcineurina/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteínas dos Microfilamentos/metabolismo , Proteínas do Citoesqueleto/metabolismo
17.
Brain Sci ; 12(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35741658

RESUMO

Immune checkpoint inhibitors (ICIs) are being used in patients with various advanced malignancies, and patient outcomes have improved considerably. Although ICIs can effectively treat tumors, 30-60% of patients experience immune-related adverse events (irAEs). Autoimmune encephalitis (AE) is a rare irAE that has become a novel topic in neuroimmunology and has received increasing attention in recent years. Herein, we report a rare case of GAD65-antibody-associated AE after metastatic small cell lung cancer treatment with pembrolizumab. The patient received IVIg therapy for AE and continuous pembrolizumab therapy without suspension of tumor treatment. At 1 year follow-up, both the patient's AE symptoms and tumors were stable. We consider that the treatment of ICI-associated AE should be more individualized with prudent decision-making and should balance the tumor progression and AE treatment. In addition, we have also comprehensively reviewed the literature of ICI-associated AE, and summarized the clinical features, treatment, and prognosis of AE caused by ICI, thus broadening our understanding of the neurological complications caused by ICI.

18.
Antioxidants (Basel) ; 11(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35204186

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of motor neurons, leading to muscle atrophy, paralysis and even death. Immune disorder, redox imbalance, autophagy disorder, and iron homeostasis disorder have been shown to play critical roles in the pathogenesis of ALS. However, the exact pathogenic genes and the underlying mechanism of ALS remain unclear. The purpose of this study was to screen for pathogenic regulatory genes and prognostic markers in ALS using bioinformatics methods. We used Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and expression regulation network analysis to investigate the function of differentially expressed genes in the nerve tissue, lymphoid tissue, and whole blood of patients with ALS. Our results showed that the up-regulated genes were mainly involved in immune regulation and inflammation, and the down-regulated genes were mainly involved in energy metabolism and redox processes. Eleven up-regulated transcription factors (CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, and FOXJ1) and one down-regulated transcription factor (NOG) in the nerve tissue of patients with ALS likely play important regulatory roles in the pathogenesis of ALS. Based on construction and evaluation of the ALS biomarker screening model, cluster analysis of the identified characteristic genes, univariate Cox proportional hazards regression analysis, and the random survival forest algorithm, we found that MAEA, TPST1, IFNGR2, and ALAS2 may be prognostic markers regarding the survival of ALS patients. High expression of MAEA, TPST1, and IFNGR2 and low expression of ALAS2 in ALS patients may be closely related to short survival of ALS patients. Taken together, our results indicate that immune disorders, inflammation, energy metabolism, and redox imbalance may be the important pathogenic factors of ALS. CEBPB, CEBPD, STAT5A, STAT6, RUNX1, REL, SMAD3, GABPB2, FOXO1, PAX6, FOXJ1, and NOG may be important regulatory factors linked to the pathogenesis of ALS. MAEA, TPST1, IFNGR2, and ALAS2 are potential important ALS prognostic markers. Our findings provide evidence on the pathogenesis of ALS, potential targets for the development of new drugs for ALS, and important markers for predicting ALS prognosis.

19.
J Clin Med ; 11(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078903

RESUMO

BACKGROUND: As a typical high-disability neurodegenerative disease, Parkinson's disease (PD) progresses variably, and patients who are clinically insensitive to dopaminergic therapy and whose symptoms fail to improve are commonly observed. As a result, achieving early neuron protection is critical. METHODS/DESIGN: The NET-PD study is a 2-year prospective single-center, double-blind, multi-arm, delayed-start, sham-controlled clinical trial assessing the long-term neuroprotective effect of intermittent theta burst stimulation (iTBS) in PD patients. Patients diagnosed with PD, aged 50-80, Hoehn-Yahr stage ≤4, and who maintain medication stability during the study will be enrolled. Clinical assessment and multi-modal markers are used to clarify the clinical improvement and dynamic neuronal changes in PD patients. With a standard deviation of 2, a test level of 0.05, a dropout rate of 10%, and a degree of certainty of 0.9, 60 PD patients are required for this study. RESULTS: The NET-PD project was funded in March 2022, data collection began in July 2022, and is currently in the recruitment phase with two PD patients already enrolled. Data collection is expected to be completed in June 2024. The results are expected for publication in December 2024. DISCUSSION: Previous research has demonstrated a rudimentary method for assessing and delaying PD progression in clinical medication trials. The NET-PD study adopts a rigorous methodology and specific disease-modifying designs to demonstrate the neuroprotective effect of iTBS on PD and investigate the potential mechanism of iTBS in regulating brain and motor functions. We hope to provide supposition for the subsequent exploration of diverse neuroprotection methods.

20.
Front Hum Neurosci ; 16: 1023917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699962

RESUMO

Objective: We aimed to compare the motor effect of bilateral globus pallidus interna (GPi) deep brain stimulation (DBS) on motor subtypes of Parkinson's disease (PD) patients and identify preoperative predictive factors of short-term motor outcome. Methods: We retrospectively investigated bilateral GPi DBS clinical outcomes in 55 PD patients in 1 year follow up. Motor outcome was measured by the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III before and 1 year after surgery. Clinical outcomes were compared among different motor subtypes. Preoperative predictors of motor outcome were assessed by performing univariate and multivariate linear regression and logistic regression analyses. Results: At 1 year following implantation, GPi DBS significantly improved the off-medication MDS-UPDRS III scores in all motor subtype cohorts, with prominent improvement in tremor. No significant difference of postoperative motor symptoms changes was found except greater tremor improvement achieved in both the tremor-dominant (TD) and indeterminate (IND) patients compared to the postural instability and gait difficulty (PIGD) patients. High percentage of PIGD patients were weak responders to DBS. Better levodopa responsiveness and more severe tremor predicted greater overall improvement of motor function in the entire cohort. Similarly, both levodopa responsiveness and tremor improvement were confirmed as predictors for motor improvement in PIGD patients. Conclusion: Bilateral GPi DBS could effectively improve motor outcomes in PD patients regardless of motor subtypes. Both TD and IND patients obtained larger tremor improvement. The intensity of levodopa responsiveness and the severity of tremor could serve as predictors of motor improvement 1 year after GPi DBS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA