Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Brain Res ; 241(6): 1489-1499, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37085647

RESUMO

Alzheimer's disease (AD) is characterized by a distinct pattern of cortical thinning and resultant changes in cognition and function. These result in prominent deficits in cognitive-motor automaticity. The relationship between AD-related cortical thinning and decreased automaticity is not well-understood. We aimed to investigate the relationship between cortical thickness regions-of-interest (ROI) and automaticity and attention allocation in AD using hypothesis-driven and exploratory approaches. We performed an ROI analysis of 46 patients with AD. Data regarding MR images, demographic characteristics, cognitive-motor dual task performance, and cognition were extracted from medical records. Cortical thickness was calculated from MR T1 images using FreeSurfer. Data from the dual task assessment was used to calculate the combined dual task effect (cDTE), a measure of cognitive-motor automaticity, and the modified attention allocation index (mAAI). Four hierarchical multiple linear regression models were conducted regressing cDTE and mAAI separately on (1) hypothesis-generated ROIs and (2) exploratory ROIs. For cDTE, cortical thicknesses explained 20.5% (p = 0.014) and 25.9% (p = 0.002) variability in automaticity in the hypothesized ROI and exploratory models, respectively. The dorsal lateral prefrontal cortex (DLPFC) (ß = - 0.479, p = 0.018) and superior parietal cortex (SPC) (ß = 0.467, p = 0.003), and were predictors of automaticity. For mAAI, cortical thicknesses explained 20.7% (p = 0.025) and 28.3% (p = 0.003) variability in attention allocation in the hypothesized ROI and exploratory models, respectively. Thinning of SPC and fusiform gyrus were associated with motor prioritization (ß = - 0.405, p = 0.013 and ß = - 0.632, p = 0.004, respectively), whereas thinning of the DLPFC was associated with cognitive prioritization (ß = 0.523, p = 0.022). Cortical thinning in AD was related to cognitive-motor automaticity and task prioritization, particularly in the DLPFC and SPC. This suggests that these regions may play a primary role in automaticity and attentional strategy during dual-tasking.


Assuntos
Doença de Alzheimer , Compostos de Cádmio , Pontos Quânticos , Humanos , Doença de Alzheimer/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Afinamento Cortical Cerebral , Imageamento por Ressonância Magnética/métodos , Telúrio , Cognição , Atenção
2.
Neuroimage ; 223: 117340, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32898682

RESUMO

Functional MRI (fMRI) is a prominent imaging technique to probe brain function, however, a substantial proportion of noise from multiple sources influences the reliability and reproducibility of fMRI data analysis and limits its clinical applications. Extensive effort has been devoted to improving fMRI data quality, but in the last two decades, there is no consensus reached which technique is more effective. In this study, we developed a novel deep neural network for denoising fMRI data, named denoising neural network (DeNN). This deep neural network is 1) applicable without requiring externally recorded data to model noise; 2) spatially and temporally adaptive to the variability of noise in different brain regions at different time points; 3) automated to output denoised data without manual interference; 4) trained and applied on each subject separately and 5) insensitive to the repetition time (TR) of fMRI data. When we compared DeNN with a number of nuisance regression methods for denoising fMRI data from Alzheimer's Disease Neuroimaging Initiative (ADNI) database, only DeNN had connectivity for functionally uncorrelated regions close to zero and successfully identified unbiased correlations between the posterior cingulate cortex seed and multiple brain regions within the default mode network or task positive network. The whole brain functional connectivity maps computed with DeNN-denoised data are approximately three times as homogeneous as the functional connectivity maps computed with raw data. Furthermore, the improved homogeneity strengthens rather than weakens the statistical power of fMRI in detecting intrinsic functional differences between cognitively normal subjects and subjects with Alzheimer's disease.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Idoso , Artefatos , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Reprodutibilidade dos Testes
3.
Neuroimage ; 218: 116947, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32474081

RESUMO

In this study, we developed a multi-scale Convolutional neural network based Automated hippocampal subfield Segmentation Toolbox (CAST) for automated segmentation of hippocampal subfields. Although training CAST required approximately three days on a single workstation with a high-quality GPU card, CAST can segment a new subject in less than 1 â€‹min even with GPU acceleration disabled, thus this method is more time efficient than current automated methods and manual segmentation. This toolbox is highly flexible with either a single modality or multiple modalities and can be easily set up to be trained with a researcher's unique data. A 3D multi-scale deep convolutional neural network is the key algorithm used in the toolbox. The main merit of multi-scale images is the capability to capture more global structural information from down-sampled images without dramatically increasing memory and computational burden. The original images capture more local information to refine the boundary between subfields. Residual learning is applied to alleviate the vanishing gradient problem and improve the performance with a deeper network. We applied CAST with the same settings on two datasets, one 7T dataset (the UMC dataset) with only the T2 image and one 3T dataset (the MNI dataset) with both T1 and T2 images available. The segmentation accuracy of both CAST and the state-of-the-art automated method ASHS, in terms of the dice similarity coefficient (DSC), were comparable. CAST significantly improved the reliability of segmenting small subfields, such as CA2, CA3, and the entorhinal cortex (ERC), in terms of the intraclass correlation coefficient (ICC). Both ASHS and manual segmentation process some subfields (e.g. CA2 and ERC) with high DSC values but low ICC values, consequently increasing the difficulty of judging segmentation quality. CAST produces very consistent DSC and ICC values, with a maximal discrepancy of 0.01 (DSC-ICC) across all subfields. The pre-trained model, source code, and settings for the CAST toolbox are publicly available.


Assuntos
Hipocampo/diagnóstico por imagem , Redes Neurais de Computação , Adulto , Algoritmos , Automação , Bases de Dados Factuais , Aprendizado Profundo , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
4.
Neuroimage ; 220: 117111, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32615255

RESUMO

During the past ten years, dynamic functional connectivity (FC) has been extensively studied using the sliding-window method. A fixed window-size is usually selected heuristically, since no consensus exists yet on choice of the optimal window-size. Furthermore, without a known ground-truth, the validity of the computed dynamic FC remains unclear and questionable. In this study, we computed single-scale time-dependent (SSTD) window-sizes for the sliding-window method. SSTD window-sizes were based on the frequency content at every time point of a time series and were computed without any prior information. Therefore, they were time-dependent and data-driven. Using simulated sinusoidal time series with frequency shifts, we demonstrated that SSTD window-sizes captured the time-dependent period (inverse of frequency) information at every time point. We further validated the dynamic FC values computed with SSTD window-sizes with both a classification analysis using fMRI data with a low sampling rate and a regression analysis using fMRI data with a high sampling rate. Specifically, we achieved both a higher classification accuracy in predicting cognitive impairment status in fighters and a larger explained behavioral variance in healthy young adults when using dynamic FC matrices computed with SSTD window-sizes as features, as compared to using dynamic FC matrices computed with the conventional fixed window-sizes. Overall, our study computed and validated SSTD window-sizes in the sliding-window method for dynamic FC analysis. Our results demonstrate that dynamic FC matrices computed with SSTD window-sizes can capture more temporal dynamic information related to behavior and cognitive function.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Neuroimagem Funcional/métodos , Rede Nervosa/diagnóstico por imagem , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino
5.
Neuroimage ; 194: 25-41, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894332

RESUMO

Task-based functional Magnetic Resonance Imaging (fMRI) has been widely used to determine population-based brain activations for cognitive tasks. Popular group-level analysis in fMRI is based on the general linear model and constitutes a univariate method. However, univariate methods are known to suffer from low sensitivity for a given specificity because the spatial covariance structure at each voxel is not taken entirely into account. In this study, a spatially constrained local multivariate model is introduced for group-level analysis to improve sensitivity at a given specificity for activation detection. The proposed model is formulated in terms of a multivariate constrained optimization problem based on the maximum log likelihood method and solved efficiently with numerical optimization techniques. Both simulated data mimicking real fMRI time series at multiple noise fractions and real fMRI episodic memory data have been used to evaluate the performance of the proposed method. For simulated data, the area under the receiver operating characteristic curves in detecting group activations increases for the subject and group level multivariate method by 20%, as compared to the univariate method. Results from real fMRI data indicate a significant increase in group-level activation detection, particularly in hippocampus, para-hippocampal area and nearby medial temporal lobe regions with the proposed method.


Assuntos
Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Memória Episódica , Modelos Neurológicos , Algoritmos , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Hum Brain Mapp ; 40(17): 5108-5122, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403734

RESUMO

Long-term traumatic brain injury due to repeated head impacts (RHI) has been shown to be a risk factor for neurodegenerative disorders, characterized by a loss in cognitive performance. Establishing the correlation between changes in the white matter (WM) structural connectivity measures and neuropsychological test scores might help to identify the neural correlates of the scores that are used in daily clinical setting to investigate deficits due to repeated head blows. Hence, in this study, we utilized high angular diffusion MRI (dMRI) of 69 cognitively impaired and 70 nonimpaired active professional fighters from the Professional Fighters Brain Health Study, and constructed structural connectomes to understand: (a) whether there is a difference in the topological WM organization between cognitively impaired and nonimpaired active professional fighters, and (b) whether graph-theoretical measures exhibit correlations with neuropsychological scores in these groups. A dMRI derived structural connectome was constructed for every participant using brain regions defined in AAL atlas as nodes, and the product of fiber number and average fractional anisotropy of the tracts connecting the nodes as edges. Our study identified a topological WM reorganization due to RHI in fighters prone to cognitive decline that was correlated with neuropsychological scores. Furthermore, graph-theoretical measures were correlated differentially with neuropsychological scores between groups. We also found differentiated WM connectivity involving regions of hippocampus, precuneus, and insula within our cohort of cognitively impaired fighters suggesting that there is a discernible WM topological reorganization in fighters prone to cognitive decline.


Assuntos
Atletas , Disfunção Cognitiva/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Cognição/fisiologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adulto Jovem
7.
Neuroimage ; 172: 64-84, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355770

RESUMO

The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for each group and used to compare network dynamics between groups. The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and detailed comparisons between the proposed method and existing CAP-based methods were conducted using simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Progression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC group. Furthermore, an overall negative association between switching probability among d-CAPs and disease severity was observed in most networks in the PD group as well. These results expand upon previous findings from in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Rede Nervosa/fisiopatologia , Idoso , Encéfalo/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Descanso/fisiologia
8.
Neuroimage ; 169: 240-255, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29248697

RESUMO

Local spatially-adaptive canonical correlation analysis (local CCA) with spatial constraints has been introduced to fMRI multivariate analysis for improved modeling of activation patterns. However, current algorithms require complicated spatial constraints that have only been applied to 2D local neighborhoods because the computational time would be exponentially increased if the same method is applied to 3D spatial neighborhoods. In this study, an efficient and accurate line search sequential quadratic programming (SQP) algorithm has been developed to efficiently solve the 3D local CCA problem with spatial constraints. In addition, a spatially-adaptive kernel CCA (KCCA) method is proposed to increase accuracy of fMRI activation maps. With oriented 3D spatial filters anisotropic shapes can be estimated during the KCCA analysis of fMRI time courses. These filters are orientation-adaptive leading to rotational invariance to better match arbitrary oriented fMRI activation patterns, resulting in improved sensitivity of activation detection while significantly reducing spatial blurring artifacts. The kernel method in its basic form does not require any spatial constraints and analyzes the whole-brain fMRI time series to construct an activation map. Finally, we have developed a penalized kernel CCA model that involves spatial low-pass filter constraints to increase the specificity of the method. The kernel CCA methods are compared with the standard univariate method and with two different local CCA methods that were solved by the SQP algorithm. Results show that SQP is the most efficient algorithm to solve the local constrained CCA problem, and the proposed kernel CCA methods outperformed univariate and local CCA methods in detecting activations for both simulated and real fMRI episodic memory data.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Disfunção Cognitiva/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Memória Episódica , Lobo Temporal/diagnóstico por imagem
9.
Radiology ; 285(2): 555-567, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28741982

RESUMO

Purpose To investigate whether combining multiple magnetic resonance (MR) imaging modalities such as T1-weighted and diffusion-weighted MR imaging could reveal imaging biomarkers associated with cognition in active professional fighters. Materials and Methods Active professional fighters (n = 297; 24 women and 273 men) were recruited at one center. Sixty-two fighters (six women and 56 men) returned for a follow-up examination. Only men were included in the main analysis of the study. On the basis of computerized testing, fighters were separated into the cognitively impaired and nonimpaired groups on the basis of computerized testing. T1-weighted and diffusion-weighted imaging were performed, and volume and cortical thickness, along with diffusion-derived metrics of 20 major white matter tracts were extracted for every subject. A classifier was designed to identify imaging biomarkers related to cognitive impairment and was tested in the follow-up dataset. Results The classifier allowed identification of seven imaging biomarkers related to cognitive impairment in the cohort of active professional fighters. Areas under the curve of 0.76 and 0.69 were obtained at baseline and at follow-up, respectively, with the optimized classifier. The number of years of fighting had a significant (P = 8.8 × 10-7) negative association with fractional anisotropy of the forceps major (effect size [d] = 0.34) and the inferior longitudinal fasciculus (P = .03; d = 0.17). A significant difference was observed between the impaired and nonimpaired groups in the association of fractional anisotropy in the forceps major with number of fights (P = .03, d = 0.38) and years of fighting (P = 6 × 10-8, d = 0.63). Fractional anisotropy of the inferior longitudinal fasciculus was positively associated with psychomotor speed (P = .04, d = 0.16) in nonimpaired fighters but no association was observed in impaired fighters. Conclusion Without enforcement of any a priori assumptions on the MR imaging-derived measurements and with a multivariate approach, the study revealed a set of seven imaging biomarkers that were associated with cognition in active male professional fighters. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Adulto , Atletas , Boxe , Feminino , Humanos , Masculino , Artes Marciais , Adulto Jovem
10.
Hum Brain Mapp ; 36(4): 1442-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25504918

RESUMO

BACKGROUND: Impairment in episodic memory is one of the most robust findings in schizophrenia. Disruptions of fronto-temporal functional connectivity that could explain some aspects of these deficits have been reported. Recent work has identified abnormal hippocampal function in unmedicated patients with schizophrenia (SZ), such as increased metabolism and glutamate content that are not always seen in medicated SZ. For these reasons, we hypothesized that altered fronto-temporal connectivity might originate from the hippocampus and might be partially restored by antipsychotic medication. METHODS: Granger causality methods were used to evaluate the effective connectivity between frontal and temporal regions in 21 unmedicated SZ and 20 matched healthy controls (HC) during performance of an episodic memory retrieval task. In 16 SZ, effective connectivity between these regions was evaluated before and after 1-week of antipsychotic treatment. RESULTS: In HC, significant effective connectivity originating from the right hippocampus to frontal regions was identified. Compared to HC, unmedicated SZ showed significant altered fronto-temporal effective connectivity, including reduced right hippocampal to right medial frontal connectivity. After 1-week of antipsychotic treatment, connectivity more closely resembled the patterns observed in HC, including increased effective connectivity from the right hippocampus to frontal regions. CONCLUSIONS: These results support the notion that memory disruption in schizophrenia might originate from hippocampal dysfunction and that medication restores some aspects of fronto-temporal dysconnectivity. Patterns of fronto-temporal connectivity could provide valuable biomarkers to identify new treatments for the symptoms of schizophrenia, including memory deficits.


Assuntos
Antipsicóticos/uso terapêutico , Encéfalo/fisiopatologia , Memória Episódica , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico/métodos , Causalidade , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Transtornos Psicóticos/tratamento farmacológico , Risperidona/uso terapêutico , Esquizofrenia/tratamento farmacológico , Psicologia do Esquizofrênico , Processamento de Sinais Assistido por Computador , Resultado do Tratamento
11.
Hum Brain Mapp ; 35(9): 4815-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24737710

RESUMO

OBJECTIVE: Early life trauma (ELT) is a significant risk factor for the onset of depression. Emerging findings indicate ELT is associated with enhanced amygdala reactivity to aversive stimuli in never-depressed healthy controls as well as those with acute depression but may be absent in non-ELT exposed depressed. The precise mechanism mediating these differences in amygdala reactivity remains unclear. METHOD: The authors used Granger causality methods to evaluate task-based directional connectivity between medial or lateral prefrontal cortex (PFC) and amygdala in 20 unmedicated patients with current major depressive disorder (MDD) and 19 healthy matched controls while participants engaged in an affective variant of the flanker task comparing response to sad and neutral faces. These data were correlated with childhood trauma history. RESULTS: Exposure to ELT was associated with failure of inhibition within the MDD group based on medial PFC-amygdala connectivity. In contrast, non-ELT exposed MDD was associated with a negative causal pathway from medial prefrontal cortex to amygdala, despite reduced dorsolateral PFC input in comparison to healthy controls. Neither MDD group demonstrated significant lateral PFC-amygdala connectivity in comparison to healthy controls. CONCLUSIONS: Failure of the circuit implicated in emotion regulation was associated with a significant history of ELT but not with MDD more broadly. Non-ELT related depression was associated with intact regulation of emotion despite the absence of difference in severity of illness. These findings indicate opposing system-level differences within depression relative to ELT are expressed as differential amygdala reactivity.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Maus-Tratos Infantis , Transtorno Depressivo Maior/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Algoritmos , Mapeamento Encefálico , Criança , Feminino , Lateralidade Funcional , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica
12.
J Alzheimers Dis ; 96(4): 1505-1514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980664

RESUMO

BACKGROUND: Emerging evidence suggests a potential causal role of neuroinflammation in Alzheimer's disease (AD). Using positron emission tomography (PET) to image overexpressed 18 kDA translocator protein (TSPO) by activated microglia has gained increasing interest. The uptake of 18F-GE180 TSPO PET was observed to co-localize with inflammatory markers and have a two-stage association with amyloid PET in mice. Very few studies evaluated the diagnostic power of 18F-GE180 PET in AD population and its interpretation in human remains controversial about whether it is a marker of microglial activation or merely reflects disrupted blood-brain barrier integrity in humans. OBJECTIVE: The goal of this study was to study human GE180 from the perspective of the previous animal observations. METHODS: With data from twenty-four participants having 18F-GE180 and 18F-AV45 PET scans, we evaluated the group differences of 18F-GE180 uptake between participants with and without cognitive impairment. An association analysis of 18F-GE180 and 18F-AV45 was then conducted to test if the relationship in humans is consistent with the two-stage association in AD mouse model. RESULTS: Elevated 18F-GE180 was observed in participants with cognitive impairment compared to those with normal cognition. No regions showed reduced 18F-GE180 uptake. Consistent with mouse model, a two-stage association between 18F-GE180 and 18F-AV45 was observed. CONCLUSIONS: 18F-GE180 PET imaging showed promising utility in detecting pathological alterations in a symptomatic AD population. Consistent two-stage association between 18F-GE180 and amyloid PET in human and mouse suggested that 18F-GE180 uptake in human might be considerably influenced by microglial activation.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Microglia/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/patologia , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptores de GABA/metabolismo
13.
J Neuroimaging ; 33(4): 547-557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37080778

RESUMO

BACKGROUND AND PURPOSE: Resting-state functional MRI (rs-fMRI) studies in Parkinson's disease (PD) patients with freezing of gait (FOG) have implicated dysfunctional connectivity over multiple resting-state networks (RSNs). While these findings provided network-specific insights and information related to the aberrant or altered regional functional connectivity (FC), whether these alterations have any effect on topological reorganization in PD-FOG patients is incompletely understood. Understanding the higher order functional organization, which could be derived from the "hub" and the "rich-club" organization of the functional networks, could be crucial to identifying the distinct and unique pattern of the network connectivity associated with PD-FOG. METHODS: In this study, we use rs-fMRI data and graph theoretical approaches to explore the reorganization of RSN topology in PD-FOG when compared to those without FOG. We also compared the higher order functional organization derived using the hub and rich-club measures in the FC networks of these PD-FOG patients to understand whether there is a topological reorganization of these hubs in PD-FOG. RESULTS: We found that the PD-FOG patients showed a noticeable reorganization of hub regions. Regions that are part of the prefrontal cortex, primary somatosensory, motor, and visuomotor coordination areas were some of the regions exhibiting altered hub measures in PD-FOG patients. We also found a significantly altered feeder and local connectivity in PD-FOG. CONCLUSIONS: Overall, our findings demonstrate a widespread topological reorganization and disrupted higher order functional network topology in PD-FOG that may further assist in improving our understanding of functional network disturbances associated with PD-FOG.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/complicações , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Marcha
14.
Alzheimers Res Ther ; 15(1): 190, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924152

RESUMO

INTRODUCTION: There is a tremendous need for identifying reliable blood-based biomarkers for Alzheimer's disease (AD) that are tied to the biological ATN (amyloid, tau and neurodegeneration) framework as well as clinical assessment and progression. METHODS: One hundred forty-four elderly participants underwent 18F-AV45 positron emission tomography (PET) scan, structural magnetic resonance imaging (MRI) scan, and blood sample collection. The composite standardized uptake value ratio (SUVR) was derived from 18F-AV45 PET to assess brain amyloid burden, and the hippocampal volume was determined from structural MRI scans. Plasma glial fibrillary acidic protein (GFAP), phosphorylated tau-181 (ptau-181), and neurofilament light (NfL) measured by single molecular array (SIMOA) technology were assessed with respect to ATN framework, genetic risk factor, age, clinical assessment, and future functional decline among the participants. RESULTS: Among the three plasma markers, GFAP best discriminated participants stratified by clinical diagnosis and brain amyloid status. Age was strongly associated with NfL, followed by GFAP and ptau-181 at much weaker extent. Brain amyloid was strongly associated with plasma GFAP and ptau-181 and to a lesser extent with plasma NfL. Moderate association was observed between plasma markers. Hippocampal volume was weakly associated with all three markers. Elevated GFAP and ptau-181 were associated with worse cognition, and plasma GFAP was the most predictive of future functional decline. Combining GFAP and ptau-181 together was the best model to predict brain amyloid status across all participants (AUC = 0.86) or within cognitively impaired participants (AUC = 0.93); adding NfL as an additional predictor only had a marginal improvement. CONCLUSION: Our findings indicate that GFAP is of potential clinical utility in screening amyloid pathology and predicting future cognitive decline. GFAP, NfL, and ptau-181 were moderately associated with each other, with discrepant relevance to age, sex, and AD genetic risk, suggesting their relevant but differential roles for AD assessment. The combination of GFAP with ptau-181 provides an accurate model to predict brain amyloid status, with the superior performance of GFAP over ptau-181 when the prediction is limited to cognitively impaired participants.


Assuntos
Doença de Alzheimer , Idoso , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Proteína Glial Fibrilar Ácida , Filamentos Intermediários , Proteínas tau , Proteínas Amiloidogênicas , Biomarcadores , Peptídeos beta-Amiloides
15.
Front Neurosci ; 15: 663403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093115

RESUMO

Traditionally, functional networks in resting-state data were investigated with linear Fourier and wavelet-related methods to characterize their frequency content by relying on pre-specified frequency bands. In this study, Empirical Mode Decomposition (EMD), an adaptive time-frequency method, is used to investigate the naturally occurring frequency bands of resting-state data obtained by Group Independent Component Analysis. Specifically, energy-period profiles of Intrinsic Mode Functions (IMFs) obtained by EMD are created and compared for different resting-state networks. These profiles have a characteristic distribution for many resting-state networks and are related to the frequency content of each network. A comparison with the linear Short-Time Fourier Transform (STFT) and the Maximal Overlap Discrete Wavelet Transform (MODWT) shows that EMD provides a more frequency-adaptive representation of different types of resting-state networks. Clustering of resting-state networks based on the energy-period profiles leads to clusters of resting-state networks that have a monotone relationship with frequency and energy. This relationship is strongest with EMD, intermediate with MODWT, and weakest with STFT. The identification of these relationships suggests that EMD has significant advantages in characterizing brain networks compared to STFT and MODWT. In a clinical application to early Parkinson's disease (PD) vs. normal controls (NC), energy and period content were studied for several common resting-state networks. Compared to STFT and MODWT, EMD showed the largest differences in energy and period between PD and NC subjects. Using a support vector machine, EMD achieved the highest prediction accuracy in classifying NC and PD subjects among STFT, MODWT, and EMD.

16.
Med Image Anal ; 60: 101622, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31811979

RESUMO

In this study, a deep neural network (DNN) is proposed to reduce the noise in task-based fMRI data without explicitly modeling noise. The DNN artificial neural network consists of one temporal convolutional layer, one long short-term memory (LSTM) layer, one time-distributed fully-connected layer, and one unconventional selection layer in sequential order. The LSTM layer takes not only the current time point but also what was perceived in a previous time point as its input to characterize the temporal autocorrelation of fMRI data. The fully-connected layer weights the output of the LSTM layer, and the output denoised fMRI time series is selected by the selection layer. Assuming that task-related neural response is limited to gray matter, the model parameters in the DNN network are optimized by maximizing the correlation difference between gray matter voxels and white matter or ventricular cerebrospinal fluid voxels. Instead of targeting a particular noise source, the proposed neural network takes advantage of the task design matrix to better extract task-related signal in fMRI data. The DNN network, along with other traditional denoising techniques, has been applied on simulated data, working memory task fMRI data acquired from a cohort of healthy subjects and episodic memory task fMRI data acquired from a small set of healthy elderly subjects. Qualitative and quantitative measurements were used to evaluate the performance of different denoising techniques. In the simulation, DNN improves fMRI activation detection and also adapts to varying hemodynamic response functions across different brain regions. DNN efficiently reduces physiological noise and generates more homogeneous task-response correlation maps in real data.


Assuntos
Mapeamento Encefálico/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Memória Episódica , Memória de Curto Prazo , Redes Neurais de Computação , Idoso , Humanos , Análise e Desempenho de Tarefas
17.
Front Neurol ; 11: 602586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362704

RESUMO

Previous neuroimaging studies have identified structural brain abnormalities in active professional fighters with repetitive head trauma and correlated these changes with fighters' neuropsychological impairments. However, functional brain changes in these fighters derived using neuroimaging techniques remain unclear. In this study, both static and dynamic functional connectivity alterations were investigated (1) between healthy normal control subjects (NC) and fighters and (2) between non-impaired and impaired fighters. Resting-state fMRI data were collected on 35 NC and 133 active professional fighters, including 68 impaired fighters and 65 non-impaired fighters, from the Professional Fighters Brain Health Study at our center. Impaired fighters performed worse on processing speed (PSS) tasks with visual-attention and working-memory demands. The static functional connectivity (sFC) matrix was estimated for every pair of regions of interest (ROI) using a subject-specific parcellation. The dynamic functional connectivity (dFC) was estimated using a sliding-window method, where the variability of each ROI pair across all windows represented the temporal dynamics. A linear regression model was fitted for all 168 subjects, and different t-contrast vectors were used for between-group comparisons. An association analysis was further conducted to evaluate FC changes associated with PSS task performances without creating artificial impairment group-divisions in fighters. Following corrections for multiple comparisons using network-based statistics, our study identified significantly reduced long-range frontal-temporal, frontal-occipital, temporal-occipital, and parietal-occipital sFC strengths in fighters than in NCs, corroborating with previously observed structural damages in corresponding white matter tracts in subjects experiencing repetitive head trauma. In impaired fighters, significantly decreased sFC strengths were found among key regions involved in visual-attention, executive and cognitive process, as compared to non-impaired fighters. Association analysis further reveals similar sFC deficits to worse PSS task performances in all 133 fighters. With our choice of dFC indices, we were not able to observe any significant dFC changes beyond a trend-level increased temporal variability among similar regions with weaker sFC strengths in impaired fighters. Collectively, our functional brain findings supplement previously reported structural brain abnormalities in fighters and are important to comprehensively understand brain changes in fighters with repetitive head trauma.

18.
Neurology ; 94(8): e774-e784, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31882528

RESUMO

OBJECTIVE: To investigate the topographic arrangement and strength of whole-brain white matter (WM) structural connectivity in patients with early-stage drug-naive Parkinson disease (PD). METHODS: We employed a model-free data-driven approach for computing whole-brain WM topologic arrangement and connectivity strength between brain regions by utilizing diffusion MRI of 70 participants with early-stage drug-naive PD and 41 healthy controls. Subsequently, we generated a novel group-specific WM anatomical network by minimizing variance in anatomical connectivity of each group. Global WM connectivity strength and network measures were computed on this group-specific WM anatomical network and were compared between the groups. We tested correlations of these network measures with clinical measures in PD to assess their pathophysiologic relevance. RESULTS: PD-relevant cortical and subcortical regions were identified in the novel PD-specific WM anatomical network. Impaired modular organization accompanied by a correlation of network measures with multiple clinical variables in early PD were revealed. Furthermore, disease duration was negatively correlated with global connectivity strength of the PD-specific WM anatomical network. CONCLUSION: By minimizing variance in anatomical connectivity, this study found the presence of a novel WM structural connectome in early PD that correlated with clinical symptoms, despite the lack of a priori analytic assumptions. This included the novel finding of increased structural connectivity between known PD-relevant brain regions. The current study provides a framework for further investigation of WM structural changes underlying the clinical and pathologic heterogeneity of PD.


Assuntos
Rede Nervosa/patologia , Doença de Parkinson/patologia , Substância Branca/patologia , Idoso , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
19.
Front Neurosci ; 13: 169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057348

RESUMO

Resting-state functional magnetic resonance imaging (rs-fMRI) based on the blood-oxygen-level-dependent (BOLD) signal has been widely used in healthy individuals and patients to investigate brain functions when the subjects are in a resting or task-negative state. Head motion considerably confounds the interpretation of rs-fMRI data. Nuisance regression is commonly used to reduce motion-related artifacts with six motion parameters estimated from rigid-body realignment as regressors. To further compensate for the effect of head movement, the first-order temporal derivatives of motion parameters and squared motion parameters were proposed previously as possible motion regressors. However, these additional regressors may not be sufficient to model the impact of head motion because of the complexity of motion artifacts. In addition, while using more motion-related regressors could explain more variance in the data, the neural signal may also be removed with increasing number of motion regressors. To better model how in-scanner motion affects rs-fMRI data, a robust and automated convolutional neural network (CNN) model is developed in this study to obtain optimal motion regressors. The CNN network consists of two temporal convolutional layers and the output from the network are the derived motion regressors used in the following nuisance regression. The temporal convolutional layer in the network can non-parametrically model the prolonged effect of head motion. The set of regressors derived from the neural network is compared with the same number of regressors used in a traditional nuisance regression approach. It is demonstrated that the CNN-derived regressors can more effectively reduce motion-related artifacts.

20.
Front Neurosci ; 13: 642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333396

RESUMO

Collecting multiple modalities of neuroimaging data on the same subject is increasingly becoming the norm in clinical practice and research. Fusing multiple modalities to find related patterns is a challenge in neuroimaging analysis. Canonical correlation analysis (CCA) is commonly used as a symmetric data fusion technique to find related patterns among multiple modalities. In CCA-based data fusion, principal component analysis (PCA) is frequently applied as a preprocessing step to reduce data dimension followed by CCA on dimension-reduced data. PCA, however, does not differentiate between informative voxels from non-informative voxels in the dimension reduction step. Sparse PCA (sPCA) extends traditional PCA by adding sparse regularization that assigns zero weights to non-informative voxels. In this study, sPCA is incorporated into CCA-based fusion analysis and applied on neuroimaging data. A cross-validation method is developed and validated to optimize the parameters in sPCA. Different simulations are carried out to evaluate the improvement by introducing sparsity constraint to PCA. Four fusion methods including sPCA+CCA, PCA+CCA, parallel ICA and sparse CCA were applied on structural and functional magnetic resonance imaging data of mild cognitive impairment subjects and normal controls. Our results indicate that sPCA significantly can reduce the impact of non-informative voxels and lead to improved statistical power in uncovering disease-related patterns by a fusion analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA