Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305490

RESUMO

Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells for application in disease modeling, diagnostics, drug screening and cell-based therapies for Parkinson's disease. An increased understanding of the timing and molecular mechanisms that promote the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from pluripotent stem cells. Here, we use droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11 weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach reveals that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence, they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons that can be used to guide stem cell-based therapies and disease modeling approaches in Parkinson's disease.


Assuntos
Doença de Parkinson , Células-Tronco Pluripotentes , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Neurônios Dopaminérgicos , Mesencéfalo , Diferenciação Celular/genética
2.
Brain ; 145(9): 3035-3057, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34936701

RESUMO

Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Adulto , Autofagia/fisiologia , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Neurônios
3.
EMBO J ; 36(14): 2107-2125, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28637794

RESUMO

Ca2+-sensor proteins are generally implicated in insulin release through SNARE interactions. Here, secretagogin, whose expression in human pancreatic islets correlates with their insulin content and the incidence of type 2 diabetes, is shown to orchestrate an unexpectedly distinct mechanism. Single-cell RNA-seq reveals retained expression of the TRP family members in ß-cells from diabetic donors. Amongst these, pharmacological probing identifies Ca2+-permeable transient receptor potential vanilloid type 1 channels (TRPV1) as potent inducers of secretagogin expression through recruitment of Sp1 transcription factors. Accordingly, agonist stimulation of TRPV1s fails to rescue insulin release from pancreatic islets of glucose intolerant secretagogin knock-out(-/-) mice. However, instead of merely impinging on the SNARE machinery, reduced insulin availability in secretagogin-/- mice is due to ß-cell loss, which is underpinned by the collapse of protein folding and deregulation of secretagogin-dependent USP9X deubiquitinase activity. Therefore, and considering the desensitization of TRPV1s in diabetic pancreata, a TRPV1-to-secretagogin regulatory axis seems critical to maintain the structural integrity and signal competence of ß-cells.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/fisiologia , Proteínas/metabolismo , Secretagoginas/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Sobrevivência Celular , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Secretagoginas/deficiência , Análise de Célula Única
4.
J Biol Chem ; 291(41): 21644-21655, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27566545

RESUMO

C4BP (C4b-binding protein) is a polymer of seven identical α chains and one unique ß chain synthesized in liver and pancreas. We showed previously that C4BP enhances islet amyloid polypeptide (IAPP) fibril formation in vitro Now we report that polymeric C4BP strongly inhibited lysis of human erythrocytes incubated with monomeric IAPP, whereas no lysis was observed after incubation with preformed IAPP fibrils. In contrast, incubation with the monomeric α-chain of C4BP was less effective. These data indicate that polymeric C4BP with multiple binding sites for IAPP neutralizes lytic activity of IAPP. Furthermore, addition of monomeric IAPP to a rat insulinoma cell line (INS-1) resulted in decreased cell viability, which was restored in the presence of physiological concentrations of C4BP. Treatment of INS-1 cells and primary rat islets with IAPP also diminished their ability to secrete insulin upon stimulation with glucose, which was reversed in the presence of C4BP. Further, C4BP was internalized together with IAPP into INS-1 cells. Pathway analyses of mRNA expression microarray data indicated that cells exposed to C4BP and IAPP in comparison with IAPP alone increased expression of genes involved in cholesterol synthesis. Depletion of cholesterol through methyl-ß-cyclodextrin or cholesterol oxidase abolished the protective effect of C4BP on IAPP cytotoxicity of INS-1 cells. Also, inhibition of phosphoinositide 3-kinase but not NF-κB had a similar effect. Taken together, C4BP protects ß-cells from IAPP cytotoxicity by modulating IAPP fibril formation extracellularly and also, after uptake by the cells, by enhancing cholesterol synthesis.


Assuntos
Colesterol/biossíntese , Proteína de Ligação ao Complemento C4b/metabolismo , Regulação da Expressão Gênica/fisiologia , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/biossíntese , Animais , Linhagem Celular Tumoral , Colesterol Oxidase/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Wistar
5.
Biochem Biophys Res Commun ; 491(3): 740-746, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28739256

RESUMO

High blood glucose triggers the release of insulin from pancreatic beta cells, but if chronic, causes cellular stress, partly due to impaired Ca2+ homeostasis. Ca2+ influx is controlled by voltage-gated calcium channels (CaV) and high density of CaV in the plasma membrane could lead to Ca2+ overload. Trafficking of the pore-forming CaVα1 subunit to the plasma membrane is regulated by auxiliary subunits, such as the CaVß2a subunit. This study investigates, using Ca2+ imaging and immunohistochemistry, the role of palmitoylation of CaVß2a in maintaining Ca2+ homeostasis and beta cell function. RNA sequencing data showed that gene expression of human CACNB2, in particular CACNB2A (CaVß2a), is highest in islets when compared to other tissues. Since CaVß2a can be regulated through palmitoylation of its two cysteines, CaVß2a and its mutant form were overexpressed in pancreatic beta cells. Palmitoylated CaVß2a tethered to the plasma membrane and colocalized with CaV1.2 while the mutant form remained in the cytosol. Interestingly, CaVß2a overexpression raised basal intracellular Ca2+ and increased beta cell apoptosis. Our study shows that palmitoylation of CaVß2a is necessary for CaVα1 trafficking to the plasma membrane. However, excessive number of palmitoylated CaVß2a leads to Ca2+ overload and beta cell death.


Assuntos
Apoptose/fisiologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Células Secretoras de Insulina/fisiologia , Lipoilação/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Células Secretoras de Insulina/citologia , Ativação do Canal Iônico/fisiologia , Ligação Proteica , Subunidades Proteicas , Ratos
6.
Proc Natl Acad Sci U S A ; 111(38): 13924-9, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201977

RESUMO

Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.


Assuntos
Genômica , Glucose , Transcriptoma/fisiologia , 5'-Nucleotidase/biossíntese , 5'-Nucleotidase/genética , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Glucose/genética , Glucose/metabolismo , Humanos , Ilhotas Pancreáticas , Masculino , Edição de RNA/fisiologia , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Tetraspaninas/biossíntese , Tetraspaninas/genética , Proteínas de Transporte Vesicular/biossíntese , Proteínas de Transporte Vesicular/genética , Quinases Ativadas por p21/biossíntese , Quinases Ativadas por p21/genética
7.
Hum Mol Genet ; 23(21): 5733-49, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916378

RESUMO

We have previously identified transcription factor B1 mitochondrial (TFB1M) as a type 2 diabetes (T2D) risk gene, using human and mouse genetics. To further understand the function of TFB1M and how it is associated with T2D, we created a ß-cell-specific knockout of Tfb1m, which gradually developed diabetes. Prior to the onset of diabetes, ß-Tfb1m(-/-) mice exhibited retarded glucose clearance owing to impaired insulin secretion. ß-Tfb1m(-/-) islets released less insulin in response to fuels, contained less insulin and secretory granules and displayed reduced ß-cell mass. Moreover, mitochondria in Tfb1m-deficient ß-cells were more abundant with disrupted architecture. TFB1M is known to control mitochondrial protein translation by adenine dimethylation of 12S ribosomal RNA (rRNA). Here, we found that the levels of TFB1M and mitochondrial-encoded proteins, mitochondrial 12S rRNA methylation, ATP production and oxygen consumption were reduced in ß-Tfb1m(-/-) islets. Furthermore, the levels of reactive oxygen species (ROS) in response to cellular stress were increased whereas induction of defense mechanisms was attenuated. We also show increased apoptosis and necrosis as well as infiltration of macrophages and CD4(+) cells in the islets. Taken together, our findings demonstrate that Tfb1m-deficiency in ß-cells caused mitochondrial dysfunction and subsequently diabetes owing to combined loss of ß-cell function and mass. These observations reflect pathogenetic processes in human islets: using RNA sequencing, we found that the TFB1M risk variant exhibited a negative gene-dosage effect on islet TFB1M mRNA levels, as well as insulin secretion. Our findings highlight the role of mitochondrial dysfunction in impairments of ß-cell function and mass, the hallmarks of T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/biossíntese , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fatores de Transcrição/genética , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/deficiência
8.
Diabetologia ; 58(11): 2525-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26208603

RESUMO

AIMS/HYPOTHESIS: Our aim was to investigate the association between birthweight and latent autoimmune diabetes in adults (LADA), a common diabetes form with features of both type 1 and type 2 diabetes. METHODS: We used data from the Epidemiological Study of Risk Factors for LADA and Type 2 Diabetes (ESTRID), a Swedish population-based study. Eligible for the analysis were 134 incident LADA cases (glutamic acid decarboxylase antibody [GADA] positive), 350 incident type 2 diabetes cases (GADA negative) and 603 randomly selected controls. We present ORs and 95% CIs for LADA and type 2 diabetes in relation to birthweight, adjusted for sex, age, BMI and family history of diabetes. RESULTS: Low birthweight increased the risk of LADA as well as the risk of type 2 diabetes; OR per kg reduction was estimated as 1.52 (95% CI 1.12, 2.08) and 1.58 (1.23, 2.04), respectively. The OR for participants weighing <3 kg compared with ≥4 kg at birth was estimated as 2.38 (1.23, 4.60) for LADA and 2.37 (1.37, 4.10) for type 2 diabetes. A combination of low birthweight (<3 kg) and current overweight (BMI ≥ 25) further augmented the risk: LADA, OR 3.26 (1.69, 6.29); and type 2 diabetes, OR 39.93 (19.27, 82.71). Family history of diabetes had little impact on these estimates. CONCLUSIONS/INTERPRETATION: Our results suggest that low birthweight may be a risk factor for LADA of the same strength as for type 2 diabetes. These findings support LADA, despite its autoimmune component, having an aetiology that includes factors related to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Recém-Nascido de Baixo Peso , Adulto , Idoso , Autoanticorpos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/imunologia , Feminino , Glutamato Descarboxilase/imunologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Risco , Suécia
9.
Biochem Biophys Res Commun ; 460(3): 518-24, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25797618

RESUMO

CD55 is a glycosylphosphatidylinositol-anchored protein, which inhibits complement activation by acting on the complement C3 convertases. CD55 is widely localized in the cholesterol rich regions of the cell plasma membrane termed membrane rafts. CD55 is attached to these specialized regions via a GPI link on the outer leaflet of the plasma membrane. Membrane rafts anchor many important signaling proteins, which control several cellular functions within the cell. For example, we recently demonstrated that the membrane raft protein and complement inhibitor CD59 also controls insulin secretion by an intracellular mechanism. Therefore, we have in this study aimed at addressing the expression and function of CD55 in pancreatic beta cells. To this end, we observe that CD55 is highly expressed in INS1 832/13 beta cells as well as human pancreatic islets. Diabetic human islets show a tendency for increased expression of CD55 when compared to the healthy controls. Importantly, silencing of CD55 in INS1 832/13 cells does not affect their insulin secretory capacity. On the other hand, silencing of CD55 diminished the intensity of membrane rafts as determined by Atto-SM staining. We hence conclude that CD55 expression is affected by glycemic status in human islets and plays a critical role in maintaining the conserved structure of rafts in pancreatic islets, which is similar to that of the related complement inhibitor CD59. However CD55 does not interfere with insulin secretion in beta cells, which is in sharp contrast to the action of the complement inhibitor CD59.


Assuntos
Antígenos CD55/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Antígenos CD55/genética , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Secreção de Insulina , Ratos
10.
Gut ; 63(1): 131-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23348960

RESUMO

BACKGROUND: Most colon cancers start with dysregulated Wnt/ß-catenin signalling and remain a major therapeutic challenge. Examining whether HAMLET (human α-lactalbumin made lethal to tumour cells) may be used for colon cancer treatment is logical, based on the properties of the complex and its biological context. OBJECTIVE: To investigate if HAMLET can be used for colon cancer treatment and prevention. Apc(Min)(/+) mice, which carry mutations relevant to hereditary and sporadic human colorectal tumours, were used as a model for human disease. METHOD: HAMLET was given perorally in therapeutic and prophylactic regimens. Tumour burden and animal survival of HAMLET-treated and sham-fed mice were compared. Tissue analysis focused on Wnt/ß-catenin signalling, proliferation markers and gene expression, using microarrays, immunoblotting, immunohistochemistry and ELISA. Confocal microscopy, reporter assay, immunoprecipitation, immunoblotting, ion flux assays and holographic imaging were used to determine effects on colon cancer cells. RESULTS: Peroral HAMLET administration reduced tumour progression and mortality in Apc(Min)(/+) mice. HAMLET accumulated specifically in tumour tissue, reduced ß-catenin and related tumour markers. Gene expression analysis detected inhibition of Wnt signalling and a shift to a more differentiated phenotype. In colon cancer cells with APC mutations, HAMLET altered ß-catenin integrity and localisation through an ion channel-dependent pathway, defining a new mechanism for controlling ß-catenin signalling. Remarkably, supplying HAMLET to the drinking water from the time of weaning also significantly prevented tumour development. CONCLUSIONS: These data identify HAMLET as a new, peroral agent for colon cancer prevention and treatment, especially needed in people carrying APC mutations, where colon cancer remains a leading cause of death.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Lactalbumina/uso terapêutico , Ácidos Oleicos/uso terapêutico , Administração Oral , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/prevenção & controle , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes APC , Marcadores Genéticos , Predisposição Genética para Doença , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Taxa de Sobrevida , Resultado do Tratamento , Carga Tumoral
11.
J Biol Chem ; 288(24): 17460-71, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23629662

RESUMO

Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance (13)C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 µm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 µm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein.


Assuntos
Antineoplásicos/farmacologia , Lactalbumina/farmacologia , Ácido Oleico/farmacologia , Ácidos Oleicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células Jurkat , Lactalbumina/química , Metaboloma/efeitos dos fármacos , Ácido Oleico/química , Ácidos Oleicos/química , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma/efeitos dos fármacos
12.
Mol Ther Methods Clin Dev ; 29: 381-394, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37251982

RESUMO

Cell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation in vivo has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue. Unlike earlier transcriptomics analyses using single-cell technologies, we observe that cells derived from human embryonic stem cells (hESCs) in the grafts adopt mature dopaminergic signatures. We show that the presence of phenotypic dopaminergic genes, which were found to be differentially expressed in the transplants, is concentrated toward the edges of the grafts, in agreement with the immunohistochemical analyses. Deconvolution shows dopamine neurons being the dominating cell type in many features beneath the graft area. These findings further support the preferred environmental niche of TH-positive cells and confirm their dopaminergic phenotype through the presence of multiple dopaminergic markers.

13.
Cell Stem Cell ; 30(10): 1299-1314.e9, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802036

RESUMO

Cell replacement therapies for Parkinson's disease (PD) based on transplantation of pluripotent stem cell-derived dopaminergic neurons are now entering clinical trials. Here, we present quality, safety, and efficacy data supporting the first-in-human STEM-PD phase I/IIa clinical trial along with the trial design. The STEM-PD product was manufactured under GMP and quality tested in vitro and in vivo to meet regulatory requirements. Importantly, no adverse effects were observed upon testing of the product in a 39-week rat GLP safety study for toxicity, tumorigenicity, and biodistribution, and a non-GLP efficacy study confirmed that the transplanted cells mediated full functional recovery in a pre-clinical rat model of PD. We further observed highly comparable efficacy results between two different GMP batches, verifying that the product can be serially manufactured. A fully in vivo-tested batch of STEM-PD is now being used in a clinical trial of 8 patients with moderate PD, initiated in 2022.


Assuntos
Células-Tronco Embrionárias Humanas , Doença de Parkinson , Humanos , Ratos , Animais , Doença de Parkinson/terapia , Distribuição Tecidual , Diferenciação Celular/fisiologia , Transplante de Células-Tronco/métodos , Neurônios Dopaminérgicos/fisiologia
14.
PLoS Pathog ; 6(9): e1001109, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20886096

RESUMO

The mucosal immune system identifies and fights invading pathogens, while allowing non-pathogenic organisms to persist. Mechanisms of pathogen/non-pathogen discrimination are poorly understood, as is the contribution of human genetic variation in disease susceptibility. We describe here a new, IRF3-dependent signaling pathway that is critical for distinguishing pathogens from normal flora at the mucosal barrier. Following uropathogenic E. coli infection, Irf3(-/-) mice showed a pathogen-specific increase in acute mortality, bacterial burden, abscess formation and renal damage compared to wild type mice. TLR4 signaling was initiated after ceramide release from glycosphingolipid receptors, through TRAM, CREB, Fos and Jun phosphorylation and p38 MAPK-dependent mechanisms, resulting in nuclear translocation of IRF3 and activation of IRF3/IFNß-dependent antibacterial effector mechanisms. This TLR4/IRF3 pathway of pathogen discrimination was activated by ceramide and by P-fimbriated E. coli, which use ceramide-anchored glycosphingolipid receptors. Relevance of this pathway for human disease was supported by polymorphic IRF3 promoter sequences, differing between children with severe, symptomatic kidney infection and children who were asymptomatic bacterial carriers. IRF3 promoter activity was reduced by the disease-associated genotype, consistent with the pathology in Irf3(-/-) mice. Host susceptibility to common infections like UTI may thus be strongly influenced by single gene modifications affecting the innate immune response.


Assuntos
Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/fisiologia , Neoplasias Renais/etiologia , Pielonefrite/etiologia , Transdução de Sinais , Infecções Urinárias/etiologia , Adulto , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Ceramidas/metabolismo , Criança , Escherichia coli/patogenicidade , Infecções por Escherichia coli/etiologia , Infecções por Escherichia coli/mortalidade , Infecções por Escherichia coli/prevenção & controle , Fímbrias Bacterianas , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/fisiologia , Fator Regulador 3 de Interferon/genética , Rim/metabolismo , Rim/patologia , Rim/virologia , Neoplasias Renais/mortalidade , Neoplasias Renais/prevenção & controle , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Estudos Prospectivos , Transporte Proteico , Pielonefrite/mortalidade , Pielonefrite/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Células Tumorais Cultivadas , Infecções Urinárias/mortalidade , Infecções Urinárias/prevenção & controle
15.
Future Oncol ; 8(10): 1301-13, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23130929

RESUMO

Human α-lactalbumin made lethal to tumor cells (HAMLET) is the first member in a new family of protein-lipid complexes that kills tumor cells with high selectivity. The protein component of HAMLET is α-lactalbumin, which in its native state acts as a substrate specifier in the lactose synthase complex, thereby defining a function essential for the survival of lactating mammals. In addition, α-lactalbumin acquires tumoricidal activity after partial unfolding and binding to oleic acid. The lipid cofactor serves the dual role as a stabilizer of the altered fold of the protein and a coactivator of specific steps in tumor cell death. HAMLET is broadly tumoricidal, suggesting that the complex identifies conserved death pathways suitable for targeting by novel therapies. Sensitivity to HAMLET is defined by oncogene expression including Ras and c-Myc and by glycolytic enzymes. Cellular targets are located in the cytoplasmic membrane, cytoskeleton, mitochondria, proteasomes, lysosomes and nuclei, and specific signaling pathways are rapidly activated, first by interactions of HAMLET with the cell membrane and subsequently after HAMLET internalization. Therapeutic effects of HAMLET have been demonstrated in human skin papillomas and bladder cancers, and HAMLET limits the progression of human glioblastomas, with no evidence of toxicity for normal brain or bladder tissue. These findings open up new avenues for cancer therapy and the understanding of conserved death responses in tumor cells.


Assuntos
Glioblastoma , Lactalbumina/administração & dosagem , Terapia de Alvo Molecular , Ácidos Oleicos/administração & dosagem , Neoplasias Cutâneas , Neoplasias da Bexiga Urinária , Morte Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Lactalbumina/química , Lactalbumina/metabolismo , Lactose Sintase/química , Lactose Sintase/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Ácidos Oleicos/química , Ácidos Oleicos/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo
16.
Front Cell Dev Biol ; 10: 1023279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313550

RESUMO

Human pluripotent stem cells (hPSCs) are intrinsically able to self-organize into cerebral organoids that mimic features of developing human brain tissue. These three-dimensional structures provide a unique opportunity to generate cytoarchitecture and cell-cell interactions reminiscent of human brain complexity in a dish. However, current in vitro brain organoid methodologies often result in intra-organoid variability, limiting their use in recapitulating later developmental stages as well as in disease modeling and drug discovery. In addition, cell stress and hypoxia resulting from long-term culture lead to incomplete maturation and cell death within the inner core. Here, we used a recombinant silk microfiber network as a scaffold to drive hPSCs to self-arrange into engineered cerebral organoids. Silk scaffolding promoted neuroectoderm formation and reduced heterogeneity of cellular organization within individual organoids. Bulk and single cell transcriptomics confirmed that silk cerebral organoids display more homogeneous and functionally mature neuronal properties than organoids grown in the absence of silk scaffold. Furthermore, oxygen sensing analysis showed that silk scaffolds create more favorable growth and differentiation conditions by facilitating the delivery of oxygen and nutrients. The silk scaffolding strategy appears to reduce intra-organoid variability and enhances self-organization into functionally mature human brain organoids.

17.
Stem Cell Reports ; 17(10): 2203-2219, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150382

RESUMO

We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Adulto , Autofagia/fisiologia , Neurônios Dopaminérgicos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Doença de Parkinson/genética , alfa-Sinucleína/genética
18.
Life Sci Alliance ; 5(12)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948367

RESUMO

Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (<i>GCG</i>, 56%), amylin (<i>IAPP</i>, 52%), insulin (<i>INS</i>, 44%), and somatostatin (<i>SST</i>, 24%). Inhibition of two DEGs, <i>UNC5D</i> and <i>SERPINE2</i>, impaired glucose-stimulated insulin secretion and impacted cell survival in a human ß-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 2/genética , Glucagon/genética , Glucagon/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Serpina E2/metabolismo
19.
Cells ; 10(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206038

RESUMO

Human midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson's disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsychiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain. No systematic molecular classification at the genome-wide level has been proposed to date. Although many years of scientific efforts in embryonic and adult mouse brain have positioned us to better understand the complexity of DA neuron biology, many biological phenomena specific to humans are not amenable to being reproduced in animal models. The establishment of human cell-based systems combined with advanced computational single-cell transcriptomics holds great promise for decoding the mechanisms underlying maturation and diversification of human DA neurons, and linking their molecular heterogeneity to functions in the midbrain. Human pluripotent stem cells have emerged as a useful tool to recapitulate key molecular features of mature DA neuron subtypes. Here, we review some of the most recent advances and discuss the current challenges in using stem cells, to model human DA biology. We also describe how single cell RNA sequencing may provide key insights into the molecular programs driving DA progenitor specification into mature DA neuron subtypes. Exploiting the state-of-the-art approaches will lead to a better understanding of stem cell-derived DA neurons and their use in disease modeling and regenerative medicine.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Doença de Parkinson , Células-Tronco Pluripotentes/metabolismo , RNA-Seq , Análise de Célula Única , Animais , Neurônios Dopaminérgicos/patologia , Humanos , Mesencéfalo/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/patologia
20.
Cells ; 10(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445654

RESUMO

Dopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) represent a renewable and available source of cells useful for understanding development, developing disease models, and stem-cell therapies for Parkinson's disease (PD). To assess the utility of stem cell cultures as an in vitro model system of human DA neurogenesis, we performed high-throughput transcriptional profiling of ~20,000 ventral midbrain (VM)-patterned stem cells at different stages of maturation using droplet-based single-cell RNA sequencing (scRNAseq). Using this dataset, we defined the cellular composition of human VM cultures at different timepoints and found high purity DA progenitor formation at an early stage of differentiation. DA neurons sharing similar molecular identities to those found in authentic DA neurons derived from human fetal VM were the major cell type after two months in culture. We also developed a bioinformatic pipeline that provided a comprehensive long noncoding RNA landscape based on temporal and cell-type specificity, which may contribute to unraveling the intricate regulatory network of coding and noncoding genes in DA neuron differentiation. Our findings serve as a valuable resource to elucidate the molecular steps of development, maturation, and function of human DA neurons, and to identify novel candidate coding and noncoding genes driving specification of progenitors into functionally mature DA neurons.


Assuntos
Diferenciação Celular/genética , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Perfilação da Expressão Gênica , Fases de Leitura Aberta/genética , Análise de Célula Única , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica , Genômica , Humanos , Mesencéfalo/citologia , Células-Tronco Pluripotentes/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA