Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 106(4): 958-967, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381576

RESUMO

Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are incurable hematological malignancies that are pathologically linked with aberrant NF-κB activation. In this study, we identified a group of novel C8-linked benzofused Pyrrolo[2,1-c][1,4]benzodiazepines (PBD) monomeric hybrids capable of sequence-selective inhibition of NF-κB with low nanomolar LD50 values in CLL (n=46) and MM cell lines (n=5). The lead compound, DC-1-192, significantly inhibited NF-κB DNA binding after just 4h exposure and demonstrating inhibitory effects on both canonical and non-canonical NF-κB subunits. In primary CLL cells, sensitivity to DC-1-192 was inversely correlated with RelA subunit expression (r2=0.2) and samples with BIRC3 or NOTCH1 mutations showed increased sensitivity (P=0.001). RNA-sequencing and gene set enrichment analysis confirmed the over-representation of NF-κB regulated genes in the down-regulated gene list. Furthermore, In vivo efficacy studies in NOD/SCID mice, using a systemic RPMI 8226 human multiple myeloma xenograft model, showed that DC-1-192 significantly prolonged survival (P=0.017). In addition, DC1-192 showed synergy with bortezomib and ibrutinib; synergy with ibrutinib was enhanced when CLL cells were co-cultured on CD40L-expressing fibroblasts in order to mimic the cytoprotective lymph node microenvironment (P = 0.01). Given that NF-κB plays a role in both bortezomib and ibrutinib resistance mechanisms, these data provide a strong rationale for the use of DC-1-192 in the treatment of NF-κB-driven cancers, particularly in the context of relapsed/refractory disease.


Assuntos
Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Animais , Apoptose , Benzodiazepinas/farmacologia , Bortezomib/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B , Piperidinas , Pirróis , Microambiente Tumoral
2.
Drug Discov Today Technol ; 30: 71-83, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30553523

RESUMO

Antibody-drug conjugates (ADCs) consist of monoclonal antibodies (mAbs) or antibody fragments conjugated to biologically active molecules (usually highly cytotoxic small molecules) through chemical linkers. Although no ADCs containing covalent-binding DNA-interactive payloads have yet been approved (although two containing the DNA-cleaving payload calicheamicin have), of those in clinical trials systemic toxicities are beginning to emerge. This article discusses the observed toxicities in relation to the structures and mechanisms of action of payload type.


Assuntos
Antineoplásicos/química , Benzodiazepinas/química , DNA/química , Imunoconjugados/química , Pirróis/química , Humanos , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 27(1): 102-108, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889454

RESUMO

The pyrrolobenzodiazepine (PBD) and duocarmycin families are DNA-interactive agents that covalently bond to guanine (G) and adenine (A) bases, respectively, and that have been joined together to create synthetic dimers capable of cross-linking G-G, A-A, and G-A bases. Three G-A alkylating dimers have been reported in publications to date, with defined DNA-binding sites proposed for two of them. In this study we have used molecular dynamics simulations to elucidate preferred DNA-binding sites for the three published molecular types. For the PBD-CPI dimer UTA-6026 (1), our simulations correctly predicted its favoured binding site (i.e., 5'-C(G)AATTA-3') as identified by DNA cleavage studies. However, for the PBD-CI molecule ('Compound 11', 3), we were unable to reconcile the results of our simulations with the reported preferred cross-linking sequence (5'-ATTTTCC(G)-3'). We found that the molecule is too short to span the five base pairs between the A and G bases as claimed, but should target instead a sequence such as 5'-ATTTC(G)-3' with two less base pairs between the reacting G and A residues. Our simulation results for this hybrid dimer are also in accord with the very low interstrand cross-linking and in vitro cytotoxicity activities reported for it. Although a preferred cross-linking sequence was not reported for the third hybrid dimer ('27eS', 2), our simulations predict that it should span two base pairs between covalently reacting G and A bases (e.g., 5'-GTAT(A)-3').


Assuntos
Benzodiazepinas/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , Indóis/farmacologia , Pirróis/farmacologia , Sequência de Bases , Benzodiazepinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , DNA/efeitos dos fármacos , Dimerização , Relação Dose-Resposta a Droga , Duocarmicinas , Humanos , Indóis/química , Ligantes , Simulação de Dinâmica Molecular , Estrutura Molecular , Pirróis/química , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Relação Estrutura-Atividade
4.
Angew Chem Int Ed Engl ; 56(2): 462-488, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27862776

RESUMO

The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a family of sequence-selective DNA minor-groove binding agents that form a covalent aminal bond between their C11-position and the C2-NH2 groups of guanine bases. The first example of a PBD monomer, the natural product anthramycin, was discovered in the 1960s, and the best known PBD dimer, SJG-136 (also known as SG2000, NSC 694501 or BN2629), was synthesized in the 1990s and has recently completed Phase II clinical trials in patients with leukaemia and ovarian cancer. More recently, PBD dimer analogues are being attached to tumor-targeting antibodies to create antibody-drug conjugates (ADCs), a number of which are now in clinical trials, with many others in pre-clinical development. This Review maps the development from anthramycin to the first PBD dimers, and then to PBD-containing ADCs, and explores both structure-activity relationships (SARs) and the biology of PBDs, and the strategies for their use as payloads for ADCs.


Assuntos
Antramicina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Anticorpos/farmacologia , Benzodiazepinas/farmacologia , Leucemia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Pirróis/farmacologia , Antramicina/síntese química , Antramicina/química , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Anticorpos/química , Benzodiazepinas/síntese química , Benzodiazepinas/química , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Leucemia/patologia , Estrutura Molecular , Neoplasias Ovarianas/patologia , Pirróis/síntese química , Pirróis/química
5.
Org Biomol Chem ; 13(13): 4031-40, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25733051

RESUMO

The pyrrolobenzodiazepines (PBDs) are a family of covalent-binding DNA-interactive minor-groove binding agents with a thermodynamic preference for binding to 5'-Pu-G-Pu-3' sequences (Pu = Purine) but a kinetic preference for 5'-Py-G-Py-3' (Py = Pyrimidine). Using HPLC/MS methodology and a range of designed hairpin-forming oligonucleotides, the kinetics of reaction of a C8-bis-pyrrole pyrrolobenzodiazepine (PBD) conjugate (GWL-78, 2) with sixteen isomeric oligonucleotides has been evaluated, each containing a single PBD binding site in one of two locations. The PBD-binding base-pair triplets were designed to include every possible combination of A and T bases adjacent to the covalently-reacting guanine, with the set of hairpins consisting of isomeric pairs containing the same sequence in the hairpin stem but with either hexaethylene glycol (HEG) or TTT loops. The PBD 2 reacted most rapidly with TGT and TGA sequences, with the possibility that adducts might form in both the 3'- and 5'-directions with some sequences according to modelling studies. A faster reaction rate was observed for all hairpins containing the HEG loop except one (Seq 10) when the PBD binding triplets were located either near the loop or adjacent to the 5'-end. Modelling studies have suggested that this difference in reactivity could be due to the structural flexibility of the HEG loop allowing both A-ring-3' and A-ring-5' adducts to form, while a TTT loop should favour only A-ring-5' adducts due to steric considerations. These findings contrast with the results reported by Nguyen and Wilson for the interaction of non-covalent DNA-binding molecules with DNA hairpins, where the loop structure was found to have little effect on interaction in the main stem of the hairpin.


Assuntos
Antineoplásicos/metabolismo , Benzodiazepinas/metabolismo , Adutos de DNA/química , Adutos de DNA/genética , Dipeptídeos/metabolismo , Sequências Repetidas Invertidas , Pareamento de Bases , Sequência de Bases , Adutos de DNA/metabolismo , Modelos Moleculares
6.
BMC Vet Res ; 11: 215, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26282406

RESUMO

BACKGROUND: Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies. RESULTS: In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by immunohistochemistry showed good correspondence, but less sensitivity, than measurement of foci. CONCLUSIONS: SG2000 displayed potent activity in vitro against canine cancer cell lines as a result of the formation and persistence of DNA ICLs. SG2000 also had significant in vivo antitumour activity against canine melanoma xenografts, and the comet and γ-H2AX foci methods were relevant pharmacodynamic assays. The clinical testing of SG2000 against spontaneous canine cancer is warranted.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Doenças do Cão/tratamento farmacológico , Pirróis/farmacologia , Animais , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , DNA , Cães , Relação Dose-Resposta a Droga , Esquema de Medicação , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Citometria de Fluxo , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Rev Cancer ; 5(4): 285-96, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15803155

RESUMO

The chemical sciences are essential for the process of anticancer-drug discovery, and a range of chemical research techniques is needed to develop clinically effective drugs. Improved understanding of the cellular, molecular and genetic basis of cancer has increased the number of drug targets available. What chemical approaches are used to develop agents that target specific features of cancer cells and make these therapeutics more effective? We outline the roles that chemical synthesis and understanding of drug uptake have had in drug discovery over the past 100 years, as well as the chemical insights derived from knowledge of the three-dimensional structure of targets.


Assuntos
Antineoplásicos/química , Química/métodos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Química Clínica , Cristalografia , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/metabolismo , Tecnologia Farmacêutica
8.
Clin Cancer Res ; 30(15): 3298-3315, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772416

RESUMO

PURPOSE: Anti-EGFR antibodies show limited response in breast cancer, partly due to activation of compensatory pathways. Furthermore, despite the clinical success of cyclin-dependent kinase (CDK) 4/6 inhibitors in hormone receptor-positive tumors, aggressive triple-negative breast cancers (TNBC) are largely resistant due to CDK2/cyclin E expression, whereas free CDK2 inhibitors display normal tissue toxicity, limiting their therapeutic application. A cetuximab-based antibody drug conjugate (ADC) carrying a CDK inhibitor selected based on oncogene dysregulation, alongside patient subgroup stratification, may provide EGFR-targeted delivery. EXPERIMENTAL DESIGN: Expressions of G1/S-phase cell cycle regulators were evaluated alongside EGFR in breast cancer. We conjugated cetuximab with CDK inhibitor SNS-032, for specific delivery to EGFR-expressing cells. We assessed ADC internalization and its antitumor functions in vitro and in orthotopically grown basal-like/TNBC xenografts. RESULTS: Transcriptomic (6,173 primary, 27 baseline, and matched post-chemotherapy residual tumors), single-cell RNA sequencing (150,290 cells, 27 treatment-naïve tumors), and spatial transcriptomic (43 tumor sections, 22 TNBCs) analyses confirmed expression of CDK2 and its cyclin partners in basal-like/TNBCs, associated with EGFR. Spatiotemporal live-cell imaging and super-resolution confocal microscopy demonstrated ADC colocalization with late lysosomal clusters. The ADC inhibited cell cycle progression, induced cytotoxicity against high EGFR-expressing tumor cells, and bystander killing of neighboring EGFR-low tumor cells, but minimal effects on immune cells. Despite carrying a small molar fraction (1.65%) of the SNS-032 inhibitor, the ADC restricted EGFR-expressing spheroid and cell line/patient-derived xenograft tumor growth. CONCLUSIONS: Exploiting EGFR overexpression, and dysregulated cell cycle in aggressive and treatment-refractory tumors, a cetuximab-CDK inhibitor ADC may provide selective and efficacious delivery of cell cycle-targeted agents to basal-like/TNBCs, including chemotherapy-resistant residual disease.


Assuntos
Cetuximab , Receptores ErbB , Imunoconjugados , Inibidores de Proteínas Quinases , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Imunoconjugados/farmacologia , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Camundongos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores
9.
Bioconjug Chem ; 24(7): 1256-63, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23808985

RESUMO

A highly cytotoxic DNA cross-linking pyrrolobenzodiazepine (PBD) dimer with a valine-alanine dipeptide linker was conjugated to the anti-CD70 h1F6 mAb either through endogenous interchain cysteines or, site-specifically, through engineered cysteines at position 239 of the heavy chains. The h1F6239C-PBD conjugation strategy proved to be superior to interchain cysteine conjugation, affording an antibody-drug conjugate (ADC) with high uniformity in drug-loading and low levels of aggregation. In vitro cytotoxicity experiments demonstrated that the h1F6239C-PBD was potent and immunologically specific on CD70-positive renal cell carcinoma (RCC) and non-Hodgkin lymphoma (NHL) cell lines. The conjugate was resistant to drug loss in plasma and in circulation, and had a pharmacokinetic profile closely matching that of the parental h1F6239C antibody capped with N-ethylmaleimide (NEM). Evaluation in CD70-positive RCC and NHL mouse xenograft models showed pronounced antitumor activities at single or weekly doses as low as 0.1 mg/kg of ADC. The ADC was tolerated at 2.5 mg/kg. These results demonstrate that PBDs can be effectively used for antibody-targeted therapy.


Assuntos
Benzodiazepinas/química , Ligante CD27/química , Imunoconjugados/farmacologia , Animais , Dimerização , Desenho de Fármacos , Feminino , Meia-Vida , Imunoconjugados/química , Camundongos , Camundongos Endogâmicos BALB C
10.
Bioorg Med Chem Lett ; 23(16): 4719-22, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23810499

RESUMO

STAT3 (Signal Transducer and Activator of Transcription factor 3) is constitutively active in a wide range of human tumours. Stattic is one of the first non-peptidic small molecules reported to inhibit formation of the STAT3:STAT3 protein dimer complex. A mass spectrometry method has been developed to investigate the binding of Stattic to the un-phosphorylated STAT3ßtc (U-STAT3) protein. Alkylation of four cysteine residues has been observed with possible reaction at a fifth which could account for the mechanism of action.


Assuntos
Óxidos S-Cíclicos/química , Espectrometria de Massas , Alquilantes/química , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas/química , Fator de Transcrição STAT3/antagonistas & inibidores
11.
Nucleic Acids Res ; 39(13): 5800-12, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21427082

RESUMO

Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH(2) functionalities. The PBD dimer SJG-136, which has a C8-O-(CH(2))(3)-O-C8'' central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8-O-(CH(2))(5)-O-C8'), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8'-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA-interaction behaviour of a PBD dimer of particular C8-C8' linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences.


Assuntos
Benzodiazepinas/química , Reagentes de Ligações Cruzadas/química , DNA/química , Pirróis/química , Sequência de Bases , Benzodiazepinonas/química , Cromatografia Líquida de Alta Pressão , Dimerização , Espectrometria de Massas , Modelos Moleculares , Oligonucleotídeos/química
12.
Cancers (Basel) ; 15(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36980732

RESUMO

Antibody drug conjugates (ADCs) are powerful anti-cancer therapies comprising an antibody joined to a cytotoxic payload through a chemical linker. ADCs exploit the specificity of antibodies for their target antigens, combined with the potency of cytotoxic drugs, to selectively kill target antigen-expressing tumour cells. The recent rapid advancement of the ADC field has so far yielded twelve and eight ADCs approved by the US and EU regulatory bodies, respectively. These serve as effective targeted treatments for several haematological and solid tumour types. In the development of an ADC, the judicious choice of an antibody target antigen with high expression on malignant cells but restricted expression on normal tissues and immune cells is considered crucial to achieve selectivity and potency while minimising on-target off-tumour toxicities. Aside from this paradigm, the selection of an antigen for an ADC requires consideration of several factors relating to the expression pattern and biological features of the target antigen. In this review, we discuss the attributes of antigens selected as targets for antibodies used in clinically approved ADCs for the treatment of haematological and solid malignancies. We discuss target expression, functions, and cellular kinetics, and we consider how these factors might contribute to ADC efficacy.

13.
J Antimicrob Chemother ; 67(7): 1683-96, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547662

RESUMO

OBJECTIVES: Pyrrolobenzodiazepine (PBD) dimers, tethered through inert propyldioxy or pentyldioxy linkers, possess potent bactericidal activity against a range of Gram-positive bacteria by virtue of their capacity to cross-link duplex DNA in sequence-selective fashion. Here we attempt to improve the antibacterial activity and cytotoxicity profile of PBD-containing conjugates by extension of dimer linkers and replacement of one PBD unit with phenyl-substituted or benzo-fused heterocycles that facilitate non-covalent interactions with duplex DNA. METHODS: DNase I footprinting was used to identify high-affinity DNA binding sites. A staphylococcal gene microarray was used to assess epidemic methicillin-resistant Staphylococcus aureus 16 phenotypes induced by PBD conjugates. Molecular dynamics simulations were employed to investigate the accommodation of compounds within the DNA helix. RESULTS: Increasing the length of the linker in PBD dimers led to a progressive reduction in antibacterial activity, but not in their cytotoxic capacity. Complex patterns of DNA binding were noted for extended PBD dimers. Modelling of DNA strand cross-linking by PBD dimers indicated distortion of the helix. A majority (26 of 43) of PBD-biaryl conjugates possessed potent antibacterial activity with little or no helical distortion and a more favourable cytotoxicity profile. Bactericidal activity of PBD-biaryl conjugates was determined by inability to excise covalently bound drug molecules from bacterial duplex DNA. CONCLUSIONS: PBD-biaryl conjugates have a superior antibacterial profile compared with PBD dimers such as ELB-21. We have identified six PBD-biaryl conjugates as potential drug development candidates.


Assuntos
Antibacterianos/farmacologia , Benzodiazepinas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pirróis/farmacologia , Antibacterianos/metabolismo , Benzodiazepinas/metabolismo , Sítios de Ligação , Pegada de DNA , DNA Bacteriano/metabolismo , Perfilação da Expressão Gênica , Análise em Microsséries , Viabilidade Microbiana/efeitos dos fármacos , Simulação de Dinâmica Molecular , Pirróis/metabolismo
14.
Invest New Drugs ; 30(3): 950-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21384134

RESUMO

The pyrrolobenzodiazepines (PBDs) are naturally occurring antitumor antibiotics and a PBD dimer (SJG-136, SG2000) is in Phase II trials. SG2000 is a propyldioxy linked PBD dimer which binds sequence selectively in the minor groove of DNA forming DNA interstrand and intrastrand cross-linked adducts, and also mono-adducts depending on sequence. SG2057 is the corresponding dimer containing a pentyldioxy linkage. SG2057 has multilog differential in vitro cytotoxicity against a panel of human tumour cell lines with a mean GI(50) of 212 pM. The agent is highly efficient at producing DNA interstrand cross-links in cells which form rapidly and persist over a 48 h period. Significant antitumor activity was demonstrated in several human tumor xenograft models. Cures were obtained in a LOX-IMVI melanoma model following a single administration and dose-dependent activity, including regression responses, observed in SKOV-3 ovarian and HL-60 promyelocytic leukemia models following repeat dose schedules. In the advanced stage LS174T model, SG2057 administered either as a single dose, or in two repeat dose schedules, was superior to irinotecan. SG2057 is therefore a highly active antitumor agent, with more potent in vitro activity and superior in vivo activity to SG2000, warranting further development.


Assuntos
Antineoplásicos/uso terapêutico , Benzodiazepinonas/uso terapêutico , Reagentes de Ligações Cruzadas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , DNA/efeitos dos fármacos , DNA/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Bioorg Med Chem Lett ; 22(8): 3006-10, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22421021

RESUMO

Thirteen compounds with diverse chemical structures have been identified as selective telomeric G-quadruplex-binding ligands through screening the NCI Diversity Set II, the NCI Natural Products Set II and the NCI Mechanistic Diversity Set libraries containing a total of 2307 members against a human telomeric G-quadruplex using a FRET-based DNA melting assay. These compounds show significant selectivity towards a telomeric G-quadruplex compared to duplex DNA, fall within a molecular weight range of 327-533, and are generally consistent with the Lipinski Rule of Five for drug-likeness. Thus they provide new chemical scaffolds for the development of novel classes of G-quadruplex-targeting agents.


Assuntos
Quadruplex G , National Cancer Institute (U.S.) , Bibliotecas de Moléculas Pequenas/química , Humanos , Estrutura Molecular , Estados Unidos
16.
J Chem Inf Model ; 52(5): 1179-92, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22500887

RESUMO

Signal Transducers and Activators of Transcription (STAT) proteins are a group of latent cytoplasmic transcription factors involved in cytokine signaling. STAT3 is a member of the STAT family and is expressed at elevated levels in a large number of diverse human cancers and is now a validated target for anticancer drug discovery.. Understanding the dynamics of the STAT3 dimer interface, accounting for both protein-DNA and protein-protein interactions, with respect to the dynamics of the latent unphosphorylated STAT3 monomer, is important for designing potential small-molecule inhibitors of the activated dimer. Molecular dynamics (MD) simulations have been used to study the activated STAT3 homodimer:DNA complex and the latent unphosphorylated STAT3 monomer in an explicit water environment. Analysis of the data obtained from MD simulations over a 50 ns time frame has suggested how the transcription factor interacts with DNA, the nature of the conformational changes, and ways in which function may be affected. Examination of the dimer interface, focusing on the protein-DNA interactions, including involvement of water molecules, has revealed the key residues contributing to the recognition events involved in STAT3 protein-DNA interactions. This has shown that the majority of mutations in the DNA-binding domain are found at the protein-DNA interface. These mutations have been mapped in detail and related to specific protein-DNA contacts. Their structural stability is described, together with an analysis of the model as a starting-point for the discovery of novel small-molecule STAT3 inhibitors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Simulação de Dinâmica Molecular , Fator de Transcrição STAT3/metabolismo , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Humanos , Modelos Moleculares , Mutação , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Água/química
17.
Commun Biol ; 5(1): 741, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906376

RESUMO

Antibody-Drug Conjugates (ADCs) are growing in importance for the treatment of both solid and haematological malignancies. There is a demand for new payloads with novel mechanisms of action that may offer enhanced therapeutic efficacy, especially in patients who develop resistance. We report here a class of Cyclopropabenzindole-Pyridinobenzodiazepine (CBI-PDD) DNA cross-linking payloads that simultaneously alkylate guanine (G) and adenine (A) bases in the DNA minor groove with a defined sequence selectivity. The lead payload, FGX8-46 (6), produces sequence-selective G-A cross-links and affords cytotoxicity in the low picomolar region across a panel of 11 human tumour cell lines. When conjugated to the antibody cetuximab at an average Drug-Antibody Ratio (DAR) of 2, an ADC is produced with significant antitumour activity at 1 mg/kg in a target-relevant human tumour xenograft mouse model with an unexpectedly high tolerability (i.e., no weight loss observed at doses as high as 45 mg/kg i.v., single dose).


Assuntos
Neoplasias Hematológicas , Imunoconjugados , Animais , Anticorpos , Sequência de Bases , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos
18.
J Am Chem Soc ; 133(48): 19376-85, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21928841

RESUMO

Pyrrolobenzodiazepine (PBD) antitumor agents have, to date, only been observed to bind to duplex DNA, apparently requiring a minor groove environment for covalent bond formation between their C11-position and the C2-NH(2) functionality of a guanine base. Using an HPLC/MS assay we have now observed and isolated for the first time PBD adducts with single-stranded DNA fragments. Surprisingly, these adducts could only be formed through dissociation of duplex DNA adducts and not by direct interaction of PBDs with single-stranded DNA. They were sufficiently stable for characterization by MALDI-TOF-MS and remained intact after storing at -20 °C for at least 20 days, although the PBD became detached from the DNA within 7 days if stored at room temperature. Furthermore, addition of a complementary strand allowed the duplex adduct to reform. The relative stability of single-stranded PBD/DNA adducts despite a complete loss of minor groove structure was further confirmed by CD spectroscopic analysis. The CD signal induced by the presence of a PBD molecule in the single-stranded adducts remained prominent despite heating for 2 h at 50-60 °C, thus indicating their relatively robust nature.


Assuntos
Antineoplásicos/análise , Benzodiazepinas/análise , Adutos de DNA/análise , DNA de Cadeia Simples/metabolismo , Pirróis/análise , Antineoplásicos/farmacologia , Sequência de Bases , Benzodiazepinas/farmacologia , Adutos de DNA/metabolismo , DNA de Cadeia Simples/química , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Pirróis/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
J Antimicrob Chemother ; 66(5): 985-96, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21393142

RESUMO

OBJECTIVES: The antistaphylococcal pyrrolobenzodiazepine dimer ELB-21 forms multiple adducts with duplex DNA through covalent interactions with appropriately spaced guanine residues; it is now known to form interstrand and intrastrand adducts with oligonucleotide sequences of variable length. We determined the DNA sequence preferences of ELB-21 in relation to its capacity to exert a bactericidal effect by damaging DNA. METHODS: Formation of adducts by ELB-21 and 12- to 14-mer DNA duplexes was investigated using ion-pair reversed phase liquid chromatography and mass spectrometry. Drug-induced changes in gene expression were measured in prophage-free Staphylococcus aureus RN4220 by microarray analysis. RESULTS: ELB-21 preferentially formed intrastrand adducts with guanines separated by three nucleotide base pairs. Interstrand and intrastrand adducts were formed with duplexes both longer and shorter than the preferred target sequences. ELB-21 elicited rapid bactericidal effects against prophage-carrying and prophage-free S. aureus strains; cell lysis occurred following activation and release of resident prophages. Killing appeared to be due to irreparable damage to bacterial DNA and susceptibility to ELB-21 was governed by the capacity of staphylococci to repair DNA lesions through induction of the SOS DNA damage response mediated by the RecA-LexA pathway. CONCLUSIONS: The data support the contention that ELB-21 arrests DNA replication, eliciting formation of ssDNA-RecA filaments that inactivate LexA, the SOS repressor, and phage repressors such as Cl, resulting in activation of the DNA damage response and de-repression of resident prophages. Above the MIC threshold, DNA repair is ineffective.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacologia , DNA/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Pirróis/metabolismo , Pirróis/farmacologia , Sítios de Ligação , Adutos de DNA/metabolismo , Adutos de DNA/farmacologia , Reparo do DNA/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Análise em Microsséries , Ligação Proteica
20.
Bioorg Med Chem Lett ; 21(12): 3780-3, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21570842

RESUMO

A series of novel DNA-interactive C8-linked pyrrolobenzodiazepine (PBD)-heterocycle polyamide conjugates has been synthesised to explore structure/sequence-selectivity relationships. One conjugate (2d) has a greater selectivity and DNA binding affinity for inverted CCAAT sequences within the Topoisomerase IIα promoter than the known C8-bis-pyrrole PBD conjugate GWL-78 (1b).


Assuntos
Amidas/química , Benzodiazepinas/química , Regiões Promotoras Genéticas , Pirróis/química , Amidas/síntese química , Amidas/metabolismo , Antígenos de Neoplasias/genética , Sequência de Bases , Benzodiazepinas/síntese química , Benzodiazepinas/metabolismo , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Regiões Promotoras Genéticas/genética , Ligação Proteica , Pirróis/síntese química , Pirróis/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA