Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Angew Chem Int Ed Engl ; 63(9): e202318181, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38179847

RESUMO

Heterostructures of two-dimensional materials realise novel and enhanced physical phenomena, making them attractive research targets. Compared to inorganic materials, coordination nanosheets have virtually infinite combinations, leading to tunability of physical properties and are promising candidates for heterostructure fabrication. Although stacking of coordination materials into vertical heterostructures is widely reported, reports of lateral coordination material heterostructures are few. Here we show the successful fabrication of a seamless lateral heterojunction showing diode behaviour, by sequential and spatially limited immersion of a new metalladithiolene coordination nanosheet, Zn3 BHT, into aqueous Cu(II) and Fe(II) solutions. Upon immersion, the Zn centres in insulating Zn3 BHT are replaced by Cu or Fe ions, resulting in conductivity. The transmetallation is spatially confined, occurring only within the immersed area. We anticipate that our results will be a starting point towards exploring transmetallation of various two-dimensional materials to produce lateral heterojunctions, by providing a new and facile synthetic route.

2.
J Am Chem Soc ; 145(29): 15788-15795, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37437895

RESUMO

Electron transport through noncovalent interaction is of fundamental and practical importance in nanomaterials and nanodevices. Recent single-molecule studies employing single-molecule junctions have revealed unique electron transport properties through noncovalent interactions, especially those through a π-π interaction. However, the relationship between the junction structure and electron transport remains elusive due to the insufficient knowledge of geometric structures. In this article, we employ surface-enhanced Raman scattering (SERS) synchronized with current-voltage (I-V) measurements to characterize the junction structure, together with the transport properties, of a single dimer and monomer junction of naphthalenethiol, the former of which was formed by the intermolecular π-π interaction. The correlation analysis of the vibrational energy and electrical conductance enables identifying the intermolecular and molecule-electrode interactions in these molecular junctions and, consequently, addressing the transport properties exclusively associated with the π-π interaction. In addition, the analysis achieved discrimination of the interaction between the NT molecule and the Au electrode of the junction, i.e., Au-π interactions through-π coupling and though-space coupling. The power density spectra support the noncovalent character at the interfaces in the molecular junctions. These results demonstrate that the simultaneous SERS and I-V technique provides a unique means for the structural and electrical investigation of noncovalent interactions.

3.
Small ; 17(28): e2008109, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34089231

RESUMO

Water splitting is an essential process for converting light energy into easily storable energy in the form of hydrogen. As environmentally preferable catalysts, Cu-based materials have attracted attention as water-splitting catalysts. To enhance the efficiency of water splitting, a reaction process should be developed. Single-molecule junctions (SMJs) are attractive structures for developing these reactions because the molecule electronic state is significantly modulated, and characteristic electromagnetic effects can be expected. Here, water splitting is induced at Cu-based SMJ and the produced hydrogen is characterized at a single-molecule scale by employing electron transport measurements. After visible light irradiation, the conductance states originate from Cu/hydrogen molecule/Cu junctions, while before irradiation, only Cu/water molecule/Cu junctions were observed. The vibration spectra obtained from inelastic electron tunneling spectroscopy combined with the first-principles calculations reveal that the water molecule trapped between the Cu electrodes is decomposed and that hydrogen is produced. Time-dependent and wavelength-dependent measurements show that localized-surface plasmon decomposes the water molecule in the vicinity of the junction. These findings indicate the potential ability of Cu-based materials for photocatalysis.

4.
Nanotechnology ; 28(10): 105707, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28169228

RESUMO

We have developed a simultaneous electronic and structural characterization method for studying the formation process for Au nanowires. The method is based on two-probe electronic transport measurement of free-standing Au nanowires and simultaneous structural characterization using scanning electron microscopy (SEM). We measured the electronic currents during the electromigration (EM)-induced narrowing process for the free-standing Au nanowires. A free-standing Au nanowire with a desired conductance value was fabricated by EM. Simultaneous SEM and conductance measurements revealed the EM-induced narrowing process for the Au wires, in which material transfer in the nanowires caused growth towards the positively biased electrode and contact failure at the negatively biased electrode. The narrowed free-standing Au nanowires were stable and could be maintained for more than 10 h without their conductance changing. These results indicate the high stability of the EM-processed Au nanowires compared to Au nanowires fabricated by mechanical elongation or the breaking of Au nanocontacts.

5.
Chem Soc Rev ; 45(1): 118-51, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26593874

RESUMO

Two-dimensional (2D) van der Waals semiconductors represent the thinnest, air stable semiconducting materials known. Their unique optical, electronic and mechanical properties hold great potential for harnessing them as key components in novel applications for electronics and optoelectronics. However, the charge transport behavior in 2D semiconductors is more susceptible to external surroundings (e.g. gaseous adsorbates from air and trapped charges in substrates) and their electronic performance is generally lower than corresponding bulk materials due to the fact that the surface and bulk coincide. In this article, we review recent progress on the charge transport properties and carrier mobility engineering of 2D transition metal chalcogenides, with a particular focus on the markedly high dependence of carrier mobility on thickness. We unveil the origin of this unique thickness dependence and elaborate the devised strategies to master it for carrier mobility optimization. Specifically, physical and chemical methods towards the optimization of the major factors influencing the extrinsic transport such as electrode/semiconductor contacts, interfacial Coulomb impurities and atomic defects are discussed. In particular, the use of ad hoc molecules makes it possible to engineer the interface with the dielectric and heal the vacancies in such materials. By casting fresh light on the theoretical and experimental studies, we provide a guide for improving the electronic performance of 2D semiconductors, with the ultimate goal of achieving technologically viable atomically thin (opto)electronics.

6.
Nano Lett ; 16(4): 2720-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26963588

RESUMO

Transition metal oxides show much promise as effective p-type contacts and dopants in electronics based on transition metal dichalcogenides. Here we report that atomically thin films of under-stoichiometric tungsten oxides (WOx with x < 3) grown on tungsten diselenide (WSe2) can be used as both controlled charge transfer dopants and low-barrier contacts for p-type WSe2 transistors. Exposure of atomically thin WSe2 transistors to ozone (O3) at 100 °C results in self-limiting oxidation of the WSe2 surfaces to conducting WOx films. WOx-covered WSe2 is highly hole-doped due to surface electron transfer from the underlying WSe2 to the high electron affinity WOx. The dopant concentration can be reduced by suppressing the electron affinity of WOx by air exposure, but exposure to O3 at room temperature leads to the recovery of the electron affinity. Hence, surface transfer doping with WOx is virtually controllable. Transistors based on WSe2 covered with WOx show only p-type conductions with orders of magnitude better on-current, on/off current ratio, and carrier mobility than without WOx, suggesting that the surface WOx serves as a p-type contact with a low hole Schottky barrier. Our findings point to a simple and effective strategy for creating p-type devices based on two-dimensional transition metal dichalcogenides with controlled dopant concentrations.

7.
J Am Chem Soc ; 138(4): 1294-300, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26728229

RESUMO

Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.

8.
Nanotechnology ; 27(29): 295203, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27291763

RESUMO

A highly stable experimental setup was developed for the measurement of shot noise in atomic contacts and molecular junctions to determine the number of atoms or molecules present. The use of a nano-fabricated mechanically controllable break junction (MCBJ) electrode improved the overall stability of the experimental setup. The improved stability of the system and optimization of measurement system enabled us to comprehensively investigate the shot noise as well as charge transport properties in Au atomic contacts and molecular junctions. We present a solid proof that the number of atoms (cross sectional atom) in the Au atomic contacts was exactly one. In the atomic contacts, contribution from the additional channels was under the detection limit. Furthermore, the effect of molecular adsorption on the charge transport in the Au atomic contact was investigated. Additional transport channels were opened by exposing pyrazine molecules to the Au contacts, which gave rise to an increase in the Fano factor in the shot noise.

9.
Nano Lett ; 15(3): 2067-73, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25646637

RESUMO

Growth of a uniform oxide film with a tunable thickness on two-dimensional transition metal dichalcogenides is of great importance for electronic and optoelectronic applications. Here we demonstrate homogeneous surface oxidation of atomically thin WSe2 with a self-limiting thickness from single- to trilayers. Exposure to ozone (O3) below 100 °C leads to the lateral growth of tungsten oxide selectively along selenium zigzag-edge orientations on WSe2. With further O3 exposure, the oxide regions coalesce and oxidation terminates leaving a uniform thickness oxide film on top of unoxidized WSe2. At higher temperatures, oxidation evolves in the layer-by-layer regime up to trilayers. The oxide films formed on WSe2 are nearly atomically flat. Using photoluminescence and Raman spectroscopy, we find that the underlying single-layer WSe2 is decoupled from the top oxide but hole-doped. Our findings offer a new strategy for creating atomically thin heterostructures of semiconductors and insulating oxides with potential for applications in electronic devices.

10.
Phys Chem Chem Phys ; 16(29): 15662-6, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24958316

RESUMO

The stability of Au atomic contacts under ambient conditions is investigated by measuring the electrical conductance during the self-breaking process. Free standing Au atomic contacts can be kept for more than 100 s after immersion in a 1,4-benzenedithiol (BDT) solution. The average lifetime, that is the amount of time in which the junction remains stable before breaking, is increased from 1.5 s to 12 s due to the metal chemical modification with BDT. By comparing the lifetime of the Au atomic contact covered with BDT and with benzenethiol, we found that the stabilization of the metal atomic contacts stems from the charge transfer from the gold to the molecule. The present results have important implications on the preparation of stable metal atomic contacts and open new directions to fabricate stable nanojunctions at room temperature.

11.
Sci Technol Adv Mater ; 15(2): 024203, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877656

RESUMO

Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recentdevelopment in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed.

12.
Nano Lett ; 13(8): 3546-52, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862641

RESUMO

Two-dimensional semiconductors are structurally ideal channel materials for the ultimate atomic electronics after silicon era. A long-standing puzzle is the low carrier mobility (µ) in them as compared with corresponding bulk structures, which constitutes the main hurdle for realizing high-performance devices. To address this issue, we perform a combined experimental and theoretical study on atomically thin MoS2 field effect transistors with varying the number of MoS2 layers (NLs). Experimentally, an intimate µ-NL relation is observed with a 10-fold degradation in µ for extremely thinned monolayer channels. To accurately describe the carrier scattering process and shed light on the origin of the thinning-induced mobility degradation, a generalized Coulomb scattering model is developed with strictly considering device configurative conditions, that is, asymmetric dielectric environments and lopsided carrier distribution. We reveal that the carrier scattering from interfacial Coulomb impurities (e.g., chemical residues, gaseous adsorbates, and surface dangling bonds) is greatly intensified in extremely thinned channels, resulting from shortened interaction distance between impurities and carriers. Such a pronounced factor may surpass lattice phonons and serve as dominant scatterers. This understanding offers new insight into the thickness induced scattering intensity, highlights the critical role of surface quality in electrical transport, and would lead to rational performance improvement strategies for future atomic electronics.

13.
Phys Chem Chem Phys ; 15(21): 7917-33, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23546448

RESUMO

Self-assembly of interfaces is of great interest in physical and chemical domains. One of the most challenging targets is to obtain an optimal interface structure showing good electronic properties by solution-processing. Interfaces of semiconductor/semiconductor, semiconductor/insulator and insulator/insulator have been successfully manipulated to obtain high-performance devices. In this review we discuss a special class of interface, semiconductor/insulator interface, formed by vertical phase separation during spin-coating and focus on the versatile applications in organic field-effect transistors (OFETs). The formation of such an interface can be finished within tens of seconds and its mechanism is related to the materials, surfaces and dynamics. Fascinatingly, such self-assembly could be used to simplify the fabrication procedure, improve film spreading, change interfacial properties, modify semiconductor morphology, and encapsulate thin films. These merits lead to OFETs with high performance and good reliability. Also, the method is very suitable for combining with other solution-processed techniques such as patterning and post-annealing, which leads to facile paper electronics, in situ purification and single crystal formation. Research on this topic not only provides an in-depth understanding of self-assembly in solution processing, but also opens new paths towards flexible organic electronics.

14.
Sci Rep ; 13(1): 2583, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788343

RESUMO

Desired electrode patterning on two-dimensional (2D) materials is a foremost step for realizing the full potentials of 2D materials in electronic devices. Here, we introduce an approach for damage-free, on-demand manufacturing of 2D material devices using light-emitting diode (LED) lithography. The advantage of this method lies in mild photolithography by simply combining an ordinary optical microscope with a commercially available LED projector; the low-energy red component is utilized for optical characterization and alignment of devices, whereas the high-energy blue component is utilized for photoresist exposure and development of personal computer designed electrode patterns. This method offers maskless, damage-free photolithography, which is particularly suitable for 2D materials that are sensitive to conventional lithography. We applied this LED lithography to device fabrication of selected nanosheets (MoS2, graphene oxides and RuO2), and achieved damage-free lithography of various patterned electrodes with feature sizes as small as 1-2 µm. The LED lithography offers a useful approach for cost-effective mild lithography without any costly instruments, high vacuum, or complex operation.

15.
ACS Nano ; 17(13): 12305-12315, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366239

RESUMO

Monolayer ruthenate nanosheets obtained by exfoliating layered ruthenium oxide exhibit excellent electrical conductivity, redox activity, and catalytic activity, which render them suitable for advanced electronic and energy devices. However, to fully exploit the benefits, we require further structural insights into a complex polymorphic nature and diversity in relevant electronic states of two-dimensional (2D) ruthenate systems. In this study, the 2D structures, stability, and electronic states of 2D ruthenate are investigated on the basis of thermal and chemical phase engineering approaches. We reveal that contrary to a previous report, exfoliation of an oblique 1T phase precursor leads to nanosheets having an identical phase without exfoliation-induced phase transition to a 1H phase. The oblique 1T phase in the nanosheets is found to be metastable and, thus, transforms successively to a rectangular 1T phase upon heating. A phase-controllable synthesis via Co doping affords nanosheets with metastable rectangular and thermally stable hexagonal 1T phases at a Co content of 5-10 and 20 at%, respectively. The 1T phases show metallic electronic states, where the d-d optical transitions between the Ru 4d (t2g) orbital depend on the symmetry of the Ru framework. The Co doping in ruthenate nanosheets unexpectedly suppresses the redox and catalytic activities under acidic conditions. In contrast, the Co2+/3+ redox pair is activated and produces conductive nanosheets with high electrochemical capacitance in an alkaline condition.

16.
Nanomaterials (Basel) ; 13(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686977

RESUMO

Organic cocrystals, which are assembled by noncovalent intermolecular interactions, have garnered intense interest due to their remarkable chemicophysical properties and practical applications. One notable feature, namely, the charge transfer (CT) interactions within the cocrystals, not only facilitates the formation of an ordered supramolecular network but also endows them with desirable semiconductor characteristics. Here, we present the intriguing ambipolar CT properties exhibited by nanosheets composed of single cocrystals of C70/ferrocene (C70/Fc). When heated to 150 °C, the initially ambipolar monoclinic C70/Fc nanosheet-based field-effect transistors (FETs) were transformed into n-type face-centered cubic (fcc) C70 nanosheet-based FETs owing to the elimination of Fc. This thermally induced alteration in the crystal structure was accompanied by an irreversible switching of the semiconducting behavior of the device; thus, the device transitions from ambipolar to unipolar. Importantly, the C70/Fc nanosheet-based FETs were also found to be much more thermally stable than the previously reported C60/Fc nanosheet-based FETs. Furthermore, we conducted visible/near-infrared diffuse reflectance and photoemission yield spectroscopies to investigate the crucial role played by Fc in modulating the CT characteristics. This study provides valuable insights into the overall functionality of these nanosheet structures.

17.
Sci Adv ; 9(49): eadk1597, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064557

RESUMO

Silicon CMOS-based computing-in-memory encounters design and power challenges, especially in logic-in-memory scenarios requiring nonvolatility and reconfigurability. Here, we report a universal design for nonvolatile reconfigurable devices featuring a 2D/3D heterointegrated configuration. By leveraging the photo-controlled charge trapping/detrapping process and the partially top-gated energy band landscape, the van der Waals heterostacking achieves polarity storage and logic reconfigurable characteristics, respectively. Precise polarity tunability, logic nonvolatility, robustness against high temperature (at 85°C), and near-ideal subthreshold swing (80 mV dec-1) can be done. A comprehensive investigation of dynamic charge fluctuations provides a holistic understanding of the origins of nonvolatile reconfigurability (a trap level of 1013 cm-2 eV-1). Furthermore, we cascade such nonvolatile reconfigurable units into a monolithic circuit layer to demonstrate logic-in-memory computing possibilities, such as high-gain (65 at Vdd = 0.5 V) logic gates. This work provides an innovative 3D heterointegration prototype for future computing-in-memory hardware.

18.
Proc Natl Acad Sci U S A ; 106(50): 21051-6, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19940243

RESUMO

Despite a large steric bulk of C(60), a molecular graphene with a covalently linked C(60) pendant [hexabenzocoronene (HBC)-C(60); 1] self-assembles into a coaxial nanotube whose wall consists of a graphite-like pi-stacked HBC array, whereas the nanotube surface is fully covered by a molecular layer of clustering C(60). Because of this explicit coaxial configuration, the nanotube exhibits an ambipolar character in the field-effect transistor output [hole mobility (micro(h)) = 9.7 x 10(-7) cm(2) V(-1) s(-1); electron mobility (micro(e)) = 1.1 x 10(-5) cm(2) V(-1) s(-1)] and displays a photovoltaic response upon light illumination. Successful coassembly of 1 and an HBC derivative without C(60) (2) allows for tailoring the p/n heterojunction in the nanotube, so that its ambipolar carrier transport property can be optimized for enhancing the open-circuit voltage in the photovoltaic output. As evaluated by an electrodeless method called flash-photolysis time-resolved microwave conductivity technique, the intratubular hole mobility (2.0 cm(2) V(-1) s(-1)) of a coassembled nanotube containing 10 mol % of HBC-C(60) (1) is as large as the intersheet mobility in graphite. The homotropic nanotube of 2 blended with a soluble C(60) derivative [(6,6)-phenyl C(61) butyric acid methyl ester] displayed a photovoltaic response with a much different composition dependency, where the largest open-circuit voltage attained was obviously lower than that realized by the coassembly of 1 and 2.

19.
ACS Omega ; 7(6): 5578-5583, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187372

RESUMO

The characterization of single-molecule structures could provide significant insights into the operation mechanisms of functional devices. Structural transformation via isomerization has been extensively employed to implement device functionalities. Although single-molecule identification has recently been achieved using near-field spectroscopy, discrimination between isomeric forms remains challenging. Further, the structure-function relationship at the single-molecule scale remains unclear. Herein, we report the observation of the isomerization of spiropyran in a single-molecule junction (SMJ) using simultaneous surface-enhanced Raman scattering (SERS) and conductance measurements. SERS spectra were used to discriminate between isomers based on characteristic peaks. Moreover, conductance measurements, in conjunction with the principal component analysis of the SERS spectra, clearly showed the isomeric effect on the conductance of the SMJ.

20.
RSC Adv ; 12(30): 19548-19553, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865602

RESUMO

In recent years, supramolecular cocrystals containing organic donors and acceptors have been explored as active components in organic field-effect transistors (FETs). Herein, we report the synthesis of novel single-cocrystal nanoribbons with ambipolar charge transport characteristics from C70 and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin (3,5-TPP) in a 3 : 2 ratio. The C70/3,5-TPP nanoribbons exhibited a new strong absorption band in the near-infrared region, indicating the presence of charge-transfer interactions between C70 and 3,5-TPP in the cocrystals. We elucidated the mechanism of the charge-transport properties of the nanoribbons using photoemission yield spectroscopy in air and theoretical calculations. A strong interaction between porphyrins in the one-dimensional porphyrin chains formed in C70/3,5-TPP nanoribbons, which was confirmed by single-crystal X-ray diffraction, plays a crucial role in their hole transport properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA