Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 115: 104337, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567639

RESUMO

Leuconostoc spp. is often regarded as the flavor producer, responsible for the production of acetoin and diacetyl in dairy cheese. In this study, we investigate seven plant-derived Leuconostoc strains, covering four species, in their potential as a lyophilized starter culture for flavor production in fermented soy-based cheese alternatives. We show that the process of lyophilization of Leuconostoc can be feasible using a soy-based lyoprotectant, with survivability up to 63% during long term storage. Furthermore, the storage in this media improves the subsequent growth in a soy-based substrate in a strain specific manner. The utilization of individual raffinose family oligosaccharides was strain dependent, with Leuconostoc pseudomesenteroides NFICC99 being the best consumer. Furthermore, we show that all investigated strains were able to produce a range of volatile flavor compounds found in dairy cheese products, as well as remove certain dairy off-flavors from the soy-based substrate like hexanal and 2-pentylfuran. Also here, NFICC99 was strain producing most cheese-related volatile flavor compounds, followed by Leuconostoc mesenteroides NFICC319. These findings provide initial insights into the development of Leuconostoc as a potential starter culture for plant-based dairy alternatives, as well as a promising approach for generation of stable, lyophilized cultures.


Assuntos
Laticínios , Leuconostoc , Fermentação , Leuconostoc/metabolismo , Concentração de Íons de Hidrogênio , Açúcares/metabolismo
2.
Food Microbiol ; 112: 104243, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906309

RESUMO

Fermentation of plant-based milk alternatives (PBMAs), including nut-based products, has the potential to generate new foods with improved sensorial properties. In this study, we screened 593 lactic acid bacteria (LAB) isolates from herbs, fruits and vegetables for their ability to acidify an almond-based milk alternative. The majority of the strongest acidifying plant-based isolates were identified as Lactococcus lactis, which were found to lower the pH of almond milk faster than dairy yoghurt cultures. Whole genome sequencing (WGS) of 18 plant-based Lc. lactis isolates revealed the presence of sucrose utilisation genes (sacR, sacA, sacB and sacK) in the strongly acidifying strains (n = 17), which were absent in one non-acidifying strain. To confirm the importance of Lc. lactis sucrose metabolism in efficient acidification of nut-based milk alternatives, we obtained spontaneous mutants defective in sucrose utilisation and confirmed their mutations by WGS. One mutant containing a sucrose-6-phosphate hydrolase gene (sacA) frameshift mutation was unable to efficiently acidify almond, cashew and macadamia nut milk alternatives. Plant-based Lc. lactis isolates were heterogeneous in their possession of the nisin gene operon near the sucrose gene cluster. The results of this work show that sucrose-utilising plant-based Lc. lactis have potential as starter cultures for nut-based milk alternatives.


Assuntos
Lactobacillales , Lactococcus lactis , Fermentação , Verduras , Frutas , Nozes , Lactococcus lactis/metabolismo , Sacarose/metabolismo
3.
Eur Heart J ; 43(48): 5020-5032, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36124729

RESUMO

AIMS: Post-infarction ventricular septal defect (PIVSD) is a mechanical complication of acute myocardial infarction (AMI) with a poor prognosis. Surgical repair is the mainstay of treatment, although percutaneous closure is increasingly undertaken. METHODS AND RESUTS: Patients treated with surgical or percutaneous repair of PIVSD (2010-2021) were identified at 16 UK centres. Case note review was undertaken. The primary outcome was long-term mortality. Patient groups were allocated based upon initial management (percutaneous or surgical). Three-hundred sixty-two patients received 416 procedures (131 percutaneous, 231 surgery). 16.1% of percutaneous patients subsequently had surgery. 7.8% of surgical patients subsequently had percutaneous treatment. Times from AMI to treatment were similar [percutaneous 9 (6-14) vs. surgical 9 (4-22) days, P = 0.18]. Surgical patients were more likely to have cardiogenic shock (62.8% vs. 51.9%, P = 0.044). Percutaneous patients were substantially older [72 (64-77) vs. 67 (61-73) years, P < 0.001] and more likely to be discussed in a heart team setting. There was no difference in long-term mortality between patients (61.1% vs. 53.7%, P = 0.17). In-hospital mortality was lower in the surgical group (55.0% vs. 44.2%, P = 0.048) with no difference in mortality after hospital discharge (P = 0.65). Cardiogenic shock [adjusted hazard ratio (aHR) 1.97 (95% confidence interval 1.37-2.84), P < 0.001), percutaneous approach [aHR 1.44 (1.01-2.05), P = 0.042], and number of vessels with coronary artery disease [aHR 1.22 (1.01-1.47), P = 0.043] were independently associated with long-term mortality. CONCLUSION: Surgical and percutaneous repair are viable options for management of PIVSD. There was no difference in post-discharge long-term mortality between patients, although in-hospital mortality was lower for surgery.


Assuntos
Infarto Miocárdico de Parede Anterior , Comunicação Interventricular , Infarto do Miocárdio , Humanos , Choque Cardiogênico/etiologia , Assistência ao Convalescente , Resultado do Tratamento , Alta do Paciente , Comunicação Interventricular/cirurgia , Sistema de Registros , Reino Unido/epidemiologia , Estudos Retrospectivos
4.
Food Microbiol ; 97: 103754, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653527

RESUMO

The microbial composition of the food production environment plays an important role in food safety and quality. This study employed both 16 S rRNA gene sequencing technology and culture-based techniques to investigate the bacterial microbiota of an egg production facility comprising of both free-range and conventional cage housing systems. The study also aimed to detect the presence of Salmonella enterica and determine whether its presence was positively or negatively associated with other taxa. Our findings revealed that microbiota profiles of free-range and cage houses differ considerably in relation to the relative abundance and diversity with a number of taxa unique to each system and to individual sampling sites within sheds. Core to each housing system were known inhabitants of the poultry gastrointestinal tracts, Romboutsia and Turicibacter, as well as common spoilage bacteria. Generally, free-range samples contained fewer taxa and were dominated by Staphylococcus equorum, differentiating them from the cage samples. Salmonella enterica was significantly associated with the presence of a taxa belonging to the Carnobacteriaceae family. The results of this study demonstrate that the diversity and composition of the microbiota is highly variable across egg layer housing systems, which could have implications for productivity, food safety and spoilage.


Assuntos
Criação de Animais Domésticos/métodos , Bactérias/isolamento & purificação , Galinhas/microbiologia , Ovos/análise , Microbiota , Salmonella enterica/isolamento & purificação , Animais , Bactérias/classificação , Bactérias/genética , Galinhas/fisiologia , Feminino , Masculino , Oviposição , Salmonella enterica/classificação , Salmonella enterica/genética
5.
PLoS Genet ; 14(8): e1007574, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30074984

RESUMO

The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K+) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growth of bacteria under high osmotic conditions. To better understand how bacteria can adjust in response to excessive c-di-AMP levels and to identify signals that feed into the c-di-AMP network, we characterised genes identified in a screen for osmoresistant suppressor mutants of the high c-di-AMP Lactococcus ΔgdpP strain. Mutations were identified which increased the uptake of osmoprotectants, including gain-of-function mutations in a Kup family K+ importer (KupB) and inactivation of the glycine betaine transporter transcriptional repressor BusR. The KupB mutations increased the intracellular K+ level while BusR inactivation increased the glycine betaine level. In addition, BusR was found to directly bind c-di-AMP and repress expression of the glycine betaine transporter in response to elevated c-di-AMP. Interestingly, overactive KupB activity or loss of BusR triggered c-di-AMP accumulation, suggesting turgor pressure changes act as a signal for this second messenger. In another group of suppressors, overexpression of an operon encoding an EmrB family multidrug resistance protein allowed cells to lower their intracellular level of c-di-AMP through active export. Lastly evidence is provided that c-di-AMP levels in several bacteria are rapidly responsive to environmental osmolarity changes. Taken together, this work provides evidence for a model in which high c-di-AMP containing cells are dehydrated due to lower K+ and compatible solute levels and that this osmoregulation system is able to sense and respond to cellular water stress.


Assuntos
Proteínas de Bactérias/fisiologia , Betaína/metabolismo , AMP Cíclico/metabolismo , Lactococcus lactis/fisiologia , Osmorregulação , Potássio/metabolismo , Monofosfato de Adenosina , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/genética , Mutação , Óperon , Concentração Osmolar , Sistemas do Segundo Mensageiro
6.
J Dairy Sci ; 104(8): 8363-8379, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33934857

RESUMO

The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.


Assuntos
Probióticos , Animais , Bile , Ácidos e Sais Biliares , Meios de Cultura , Trato Gastrointestinal , Concentração de Íons de Hidrogênio
7.
Biotechnol Bioeng ; 117(1): 167-183, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556457

RESUMO

Native to propionibacteria, the Wood-Werkman cycle enables propionate production via succinate decarboxylation. Current limitations in engineering propionibacteria strains have redirected attention toward the heterologous production in model organisms. Here, we report the functional expression of the Wood-Werkman cycle in Escherichia coli to enable propionate and 1-propanol production. The initial proof-of-concept attempt showed that the cycle can be used for production. However, production levels were low (0.17 mM). In silico optimization of the expression system by operon rearrangement and ribosomal-binding site tuning improved performance by fivefold. Adaptive laboratory evolution further improved performance redirecting almost 30% of total carbon through the Wood-Werkman cycle, achieving propionate and propanol titers of 9 and 5 mM, respectively. Rational engineering to reduce the generation of byproducts showed that lactate (∆ldhA) and formate (∆pflB) knockout strains exhibit an improved propionate and 1-propanol production, while the ethanol (∆adhE) knockout strain only showed improved propionate production.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Propionatos/metabolismo , Simulação por Computador , Redes e Vias Metabólicas/genética , Ácido Succínico/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(35): E7226-E7235, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808024

RESUMO

Cyclic di-3',5'-adenosine monophosphate (c-di-AMP) is a broadly conserved bacterial second messenger that has been implicated in a wide range of cellular processes. Our earlier studies showed that c-di-AMP regulates central metabolism in Listeria monocytogenes by inhibiting its pyruvate carboxylase (LmPC), a biotin-dependent enzyme with biotin carboxylase (BC) and carboxyltransferase (CT) activities. We report here structural, biochemical, and functional studies on the inhibition of Lactococcus lactis PC (LlPC) by c-di-AMP. The compound is bound at the dimer interface of the CT domain, at a site equivalent to that in LmPC, although it has a distinct binding mode in the LlPC complex. This binding site is not well conserved among PCs, and only a subset of these bacterial enzymes are sensitive to c-di-AMP. Conformational changes in the CT dimer induced by c-di-AMP binding may be the molecular mechanism for its inhibitory activity. Mutations of residues in the binding site can abolish c-di-AMP inhibition. In L. lactis, LlPC is required for efficient milk acidification through its essential role in aspartate biosynthesis. The aspartate pool in L. lactis is negatively regulated by c-di-AMP, and high aspartate levels can be restored by expression of a c-di-AMP-insensitive LlPC. LlPC has high intrinsic catalytic activity and is not sensitive to acetyl-CoA activation, in contrast to other PC enzymes.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Piruvato Carboxilase/metabolismo , Piruvato Carboxilase/fisiologia , Monofosfato de Adenosina/metabolismo , Ácido Aspártico/biossíntese , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X/métodos , AMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos/fisiologia , Lactobacillales/metabolismo , Lactococcus lactis/metabolismo , Conformação Proteica , Sistemas do Segundo Mensageiro/fisiologia , Relação Estrutura-Atividade
9.
Compr Rev Food Sci Food Saf ; 19(3): 1110-1124, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-33331686

RESUMO

Probiotics are defined as live microorganisms that improve the health of the host when administered in adequate quantities. Nonetheless, probiotics encounter extreme environmental conditions during food processing or along the gastrointestinal tract. This review discusses different environmental stresses that affect probiotics during food preparation, storage, and along the alimentary canal, including high temperature, low temperature, low and alkaline pH, oxidative stress, high hydrostatic pressure, osmotic pressure, and starvation. The understanding of how probiotics deal with environmental stress and thrive provides useful information to guide the selection of the strains with enhanced performance in specific situations, in food processing or during gastrointestinal transit. In most cases, multiple biological functions are affected upon exposure of the cell to environmental stress. Sensing of sublethal environmental stress can allow for adaptation processes to occur, which can include alterations in the expression of specific proteins.


Assuntos
Lactobacillales/fisiologia , Probióticos , Proteoma/análise , Manipulação de Alimentos , Microbiologia de Alimentos , Trato Gastrointestinal , Lactobacillales/metabolismo , Estresse Fisiológico
10.
J Bacteriol ; 201(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858295

RESUMO

Cyclic di-AMP (c-di-AMP) is a second messenger which plays a major role in osmotic homeostasis in bacteria. In work by Quintana et al. (I. M. Quintana, J. Gibhardt, A. Turdiev, E. Hammer, et al., J Bacteriol 201:e00028-19, 2019, https://doi.org/10.1128/jb.00028-19), two Kup homologs from Lactococcus lactis were identified as high-affinity K+ importers whose activities are inhibited by direct binding of c-di-AMP. The results broaden the scope of K+ level regulation by c-di-AMP, with Kup homologs found in a number of pathogenic, commensal, and industrial bacteria.


Assuntos
Lactococcus lactis , Monofosfato de Adenosina , Proteínas de Bactérias , AMP Cíclico , Proteína Receptora de AMP Cíclico , Fosfatos de Dinucleosídeos , Potássio
11.
Microb Cell Fact ; 18(1): 188, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690323

RESUMO

BACKGROUND: Probiotic bacteria can provide health benefits when delivered in functional foods. This study involved isolation of lactic acid bacteria (LAB) from traditionally dried and salted anchovy fish and characterization of their survival in simulated gastrointestinal digestion. Promising strains were used to prepare fermented fish sausages which were then evaluated for cytotoxicity activity against two cancer cell-lines, antidiabetic activity as determined by α-amylase and α-glucosidase inhibition, and antioxidant and proteolytic activities in vitro, as compared to non-fermented control sausages. RESULTS: Out of 85 LAB obtained, 13 isolates with high tolerance to simulated gastrointestinal digestion were obtained, which were identified as Enterococcus spp. Four E. faecium strains, one E. faecalis, and one E. durans were used separately to make fermented fish sausages. The α-amylase and α-glucosidase inhibition from fish sausages fermented by Enterococcus spp. ranged from 29.2 to 68.7% and 23.9 to 41.4%, respectively, during 21 days of storage. The cytotoxicity activities against Caco2 and MCF-7 cells of fish sausages fermented with Enterococcus spp. ranged from 18.0 to 24% and 13.9 to 27.9%, respectively. Cytotoxicity activities correlated positively with proteolysis and antioxidant activities, α-amylase and α-glucosidase inhibition activities, but negatively with the pH in fermented fish sausages. Strains also exhibited antimicrobial activity against foodborne pathogens and presented no significant concerns with regards to antibiotic resistance or virulence gene content. CONCLUSIONS: Fish sausages fermented by potential probiotic isolates of Enterococcus spp. from dried fish had valuable health-promoting benefits compared with non-fermented control sausages.


Assuntos
Enterococcus faecalis , Enterococcus faecium , Enterococcus , Produtos Pesqueiros/microbiologia , Microbiologia de Alimentos , Probióticos , Linhagem Celular Tumoral , Diabetes Mellitus/terapia , Enterococcus/isolamento & purificação , Enterococcus/metabolismo , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/metabolismo , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/metabolismo , Humanos , Probióticos/isolamento & purificação , Probióticos/metabolismo
12.
Mol Microbiol ; 99(6): 1015-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26585449

RESUMO

The second messenger cyclic-di-adenosine monophosphate (c-di-AMP) plays important roles in growth, virulence, cell wall homeostasis, potassium transport and affects resistance to antibiotics, heat and osmotic stress. Most Firmicutes contain only one c-di-AMP synthesizing diadenylate cyclase (CdaA); however, little is known about signals and effectors controlling CdaA activity and c-di-AMP levels. In this study, a genetic screen was employed to identify components which affect the c-di-AMP level in Lactococcus. We characterized suppressor mutations that restored osmoresistance to spontaneous c-di-AMP phosphodiesterase gdpP mutants, which contain high c-di-AMP levels. Loss-of-function and gain-of-function mutations were identified in the cdaA and gdpP genes, respectively, which led to lower c-di-AMP levels. A mutation was also identified in the phosphoglucosamine mutase gene glmM, which is commonly located within the cdaA operon in bacteria. The glmM I154F mutation resulted in a lowering of the c-di-AMP level and a reduction in the key peptidoglycan precursor UDP-N-acetylglucosamine in L. lactis. C-di-AMP synthesis by CdaA was shown to be inhibited by GlmM(I154F) more than GlmM and GlmM(I154F) was found to bind more strongly to CdaA than GlmM. These findings identify GlmM as a c-di-AMP level modulating protein and provide a direct connection between c-di-AMP synthesis and peptidoglycan biosynthesis.


Assuntos
Adenilil Ciclases/metabolismo , Fosfatos de Dinucleosídeos/biossíntese , Lactococcus lactis/metabolismo , Fosfoglucomutase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , AMP Cíclico/metabolismo , Lactococcus lactis/enzimologia , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro
13.
Curr Genet ; 62(4): 731-738, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27074767

RESUMO

Bacteria can sense environmental cues and alter their physiology accordingly through the use of signal transduction pathways involving second messenger nucleotides. One broadly conserved second messenger is cyclic-di-AMP (c-di-AMP) which regulates a range of processes including cell wall homeostasis, potassium uptake, DNA repair, fatty acid synthesis, biofilm formation and central metabolism in bacteria. The intracellular pool of c-di-AMP is maintained by the activities of diadenylate cyclase (DAC) and phosphodiesterase (PDE) enzymes, as well as possibly via c-di-AMP export. Whilst extracellular stimuli regulating c-di-AMP levels in bacteria are poorly understood, recent work has identified effector proteins which directly interact and alter the activity of DACs. These include the membrane bound CdaR and the phosphoglucosamine mutase GlmM which both bind directly to the membrane bound CdaA DAC and the recombination protein RadA which binds directly to the DNA binding DisA DAC. The genes encoding these multiprotein complexes are co-localised in many bacteria providing further support for their functional connection. The roles of GlmM in peptidoglycan synthesis and RadA in Holliday junction intermediate processing suggest that c-di-AMP synthesis by DACs will be responsive to these cellular activities. In addition to these modulatory interactions, permanent dysregulation of DAC activity due to suppressor mutations can occur during selection to overcome growth defects, rapid cell lysis and osmosensitivity. DACs have also been investigated as targets for the development of new antibiotics and several small compound inhibitors have recently been identified. This review aims to provide an overview of how c-di-AMP synthesis by DACs can be regulated.


Assuntos
Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mutação , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
14.
J Biol Chem ; 288(17): 11949-59, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23504327

RESUMO

The Bacillus subtilis protein YybT (or GdpP) and its homologs were recently established as stress signaling proteins that exert their biological effect by degrading the bacterial messenger cyclic di-AMP. YybT homologs contain a small Per-ARNT-Sim (PAS) domain (~80 amino acids) that can bind b-type heme with 1:1 stoichiometry despite the small size of the domain and the lack of a conserved heme iron-coordinating residue. We determined the solution structure of the PAS domain of GtYybT from Geobacillus thermodenitrificans by NMR spectroscopy to further probe its function. The solution structure confirms that PASGtYybT adopts the characteristic PAS fold composed of a five-stranded antiparallel ß sheet and a few short α-helices. One α-helix and three central ß-strands of PASGtYybT are noticeably shorter than those of the typical PAS domains. Despite the small size of the protein domain, a hydrophobic pocket is formed by the side chains of nonpolar residues stemming from the ß-strands and α-helices. A set of residues in the vicinity of the pocket and in the C-terminal region at the dimeric interface exhibits perturbed NMR parameters in the presence of heme or zinc protoporphyrin. Together, the results unveil a compact PAS domain with a potential ligand-binding pocket and reinforce the view that the PASYybT domains function as regulatory domains in the modulation of cellular cyclic di-AMP concentration.


Assuntos
Proteínas de Bactérias/química , Geobacillus/química , Dobramento de Proteína , Multimerização Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/genética , Fosfatos de Dinucleosídeos/metabolismo , Geobacillus/genética , Geobacillus/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
Appl Environ Microbiol ; 80(11): 3453-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657871

RESUMO

The spore-forming bacterium Bacillus licheniformis is a common contaminant of milk and milk products. Strains of this species isolated from dairy products can be differentiated into three major groups, namely, G, F1, and F2, using random amplification of polymorphic DNA (RAPD) analysis; however, little is known about the genomic differences between these groups and the identity of the fragments that make up their RAPD profiles. In this work we obtained high-quality draft genomes of representative strains from each of the three RAPD groups (designated strain G-1, strain F1-1, and strain F2-1) and compared them to each other and to B. licheniformis ATCC 14580 and Bacillus subtilis 168. Whole-genome comparison and multilocus sequence typing revealed that strain G-1 contains significant sequence variability and belongs to a lineage distinct from the group F strains. Strain G-1 was found to contain genes coding for a type I restriction modification system, urease production, and bacitracin synthesis, as well as the 8-kbp plasmid pFL7, and these genes were not present in strains F1-1 and F2-1. In agreement with this, all isolates of group G, but no group F isolates, were found to possess urease activity and antimicrobial activity against Micrococcus. Identification of RAPD band sequences revealed that differences in the RAPD profiles were due to differences in gene lengths, 3' ends of predicted primer binding sites, or gene presence or absence. This work provides a greater understanding of the phylogenetic and phenotypic differences observed within the B. licheniformis species.


Assuntos
Bacillus/genética , DNA Bacteriano/genética , Laticínios/microbiologia , Genoma Bacteriano , Antibiose , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/fisiologia , DNA Bacteriano/química , Genótipo , Micrococcus/crescimento & desenvolvimento , Dados de Sequência Molecular , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA
16.
Eur J Appl Physiol ; 114(5): 1013-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24504653

RESUMO

PURPOSE: Increased oxygen uptake and utilisation during exercise depend on adequate adaptations of systemic and pulmonary vasculature. Recent advances in magnetic resonance imaging techniques allow for direct quantification of aortic and pulmonary blood flow using phase-contrast magnetic resonance angiography (PCMRA). This pilot study tested quantification of aortic and pulmonary haemodynamic adaptations to moderate aerobic supine leg exercise using PCMRA. METHODS: Nine adult healthy volunteers underwent pulse gated free breathing PCMRA while performing heart rate targeted aerobic lower limb exercise. Flow was assessed in mid ascending and mid descending thoracic aorta (AO) and main pulmonary artery (MPA) during exercise at 180 % of individual resting heart rate. Flow sequence analysis was performed by experienced operators using commercial offline software (Argus, Siemens Medical Systems). RESULTS: Exercise related increase in HR (rest: 69 ± 10 b min(-1), exercise: 120 ± 13 b min(-1)) resulted in cardiac output increase (from 6.5 ± 1.4 to 12.5 ± 1.8 L min(-1)). At exercise, ascending aorta systolic peak velocity increased from 89 ± 14 to 122 ± 34 cm s(-1) (p = 0.016), descending thoracic aorta systolic peak velocity increased from 104 ± 14 to 144 ± 33 cm s(-1) (p = 0.004), MPA systolic peak velocity from 86 ± 18 to 140 ± 48 cm s(-1) (p = 0.007), ascending aorta systolic peak flow rate from 415 ± 83 to 550 ± 135 mL s(-1) (p = 0.002), descending thoracic aorta systolic peak flow rate from 264 ± 70 to 351 ± 82 mL s(-1) (p = 0.004) and MPA systolic peak flow rate from 410 ± 80 to 577 ± 180 mL s(-1) (p = 0.006). CONCLUSION: Quantitative blood flow and velocity analysis during exercise using PCMRA is feasible and detected a steep exercise flow and velocity increase in the aorta and MPA. Exercise PCMRA can serve as a research and clinical tool to help quantify exercise blood flow adaptations in health and disease and investigate patho-physiological mechanisms in cardio-pulmonary disease.


Assuntos
Adaptação Fisiológica , Aorta Torácica/fisiologia , Exercício Físico , Hemodinâmica , Artéria Pulmonar/fisiologia , Adulto , Aortografia/instrumentação , Aortografia/métodos , Feminino , Humanos , Perna (Membro)/fisiologia , Angiografia por Ressonância Magnética/instrumentação , Angiografia por Ressonância Magnética/métodos , Masculino , Artéria Pulmonar/diagnóstico por imagem , Decúbito Dorsal
17.
Food Microbiol ; 34(2): 344-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23541201

RESUMO

In dairy foods, the sporeformer Bacillus licheniformis can be the cause of spoilage or specification compliance issues. Currently used methods for genotyping B. licheniformis have limited discrimination with only 2 or 3 different subgroups being identified. Here, we have developed a multi-locus variable number tandem repeat analysis (MLVA) method and combined it with high resolution melt analysis (MLV-HRMA) for genotyping B. licheniformis. Five repetitive loci were identified and used as markers for genotyping 52 isolates from two milk powder processing plants and retail samples. Nineteen genotypes could be identified using both MLVA and MLV-HRMA leading to Hunter-Gaston discrimination indices (D-value) of 0.93 each. It was found that all 5 MLVA loci were stable following 10 days of sub-culturing of 8 representative isolates. All isolates were also genotyped using previously used methods including randomly amplified polymorphic DNA-PCR (RAPD) and partial rpoB sequencing. Five different RAPD profiles and 5 different partial rpoB sequence types were identified resulting in corresponding D-values of 0.6 and 0.46, respectively. Analysis of the genotypes from dairy samples revealed that dairy B. licheniformis isolates are more heterogeneous than previously thought and that this new method can potentially allow for more discriminatory tracking and monitoring of specific genotypes.


Assuntos
Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Leite/microbiologia , Repetições Minissatélites , Tipagem de Sequências Multilocus/métodos , Animais , Bacillus/classificação , Bacillus/genética , Proteínas de Bactérias/genética , Bovinos , Contaminação de Alimentos , Genótipo , Filogenia
18.
Foodborne Pathog Dis ; 10(6): 506-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536985

RESUMO

The role of capsular polysaccharides and lipooligosaccharides in cell surface hydrophobicity, surface charge, autoagglutination (AAG), and attachment to abiotic surfaces of three strains of Campylobacter jejuni and one strain of C. coli were investigated. This was achieved by removal of capsular polysaccharides and truncation of lipooligosaccharides core oligosaccharides by inactivation of the kpsE and waaF genes, respectively. The mutants and the wild-type strains were compared after growth under planktonic (broth) and sessile (agar) conditions. Cells grown as planktonic cultures showed a significantly (p<0.05) higher degree of hydrophobicity and AAG activity but differed from their sessile counterparts with respect to surface charge and attachment counts, depending on the strain. These results suggest that prior mode of growth affects the surface properties and attachment of Campylobacter in a strain-dependent manner. There were no significant (p>0.05) differences between the three C. jejuni strains and their ΔkpsE and ΔwaaF mutants with respect to all traits tested. Inactivation of the kpsE gene significantly (p<0.05) reduced the surface charge of the C. coli strain from ∼-10 to ∼-6 mV and increased its AAG activity, while disruption of the waaF gene significantly (p<0.05) increased its surface hydrophobicity by >8° and decreased the numbers of cells attaching to stainless steel and glass by ∼0.5 log/cm². These results suggest that surface polysaccharides may influence the surface properties and attachment to abiotic surfaces of C. coli but not C. jejuni. This suggestion, however, requires further investigation using a larger number of strains of both species.


Assuntos
Cápsulas Bacterianas/metabolismo , Campylobacter coli/metabolismo , Campylobacter jejuni/metabolismo , Utensílios de Alimentação e Culinária , Lipopolissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Aglutinação , Aderência Bacteriana , Carga Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter coli/química , Campylobacter coli/crescimento & desenvolvimento , Campylobacter jejuni/química , Campylobacter jejuni/crescimento & desenvolvimento , Vidro/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Especificidade da Espécie , Aço Inoxidável/química , Propriedades de Superfície , Fatores de Tempo
19.
FEMS Microbiol Rev ; 47(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37222477

RESUMO

Cyclic dimeric adenosine monophosphate (cyclic-di-AMP) is a nucleotide second messenger present in Gram-positive bacteria, Gram-negative bacteria and some Archaea. The intracellular concentration of cyclic-di-AMP is adjusted in response to environmental and cellular cues, primarily through the activities of synthesis and degradation enzymes. It performs its role by binding to protein and riboswitch receptors, many of which contribute to osmoregulation. Imbalances in cyclic-di-AMP can lead to pleiotropic phenotypes, affecting aspects such as growth, biofilm formation, virulence, and resistance to osmotic, acid, and antibiotic stressors. This review focuses on cyclic-di-AMP signalling in lactic acid bacteria (LAB) incorporating recent experimental discoveries and presenting a genomic analysis of signalling components from a variety of LAB, including those found in food, and commensal, probiotic, and pathogenic species. All LAB possess enzymes for the synthesis and degradation of cyclic-di-AMP, but are highly variable with regards to the receptors they possess. Studies in Lactococcus and Streptococcus have revealed a conserved function for cyclic-di-AMP in inhibiting the transport of potassium and glycine betaine, either through direct binding to transporters or to a transcriptional regulator. Structural analysis of several cyclic-di-AMP receptors from LAB has also provided insights into how this nucleotide exerts its influence.


Assuntos
AMP Cíclico , Lactobacillales , AMP Cíclico/metabolismo , Lactobacillales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Monofosfato de Adenosina
20.
Int J Food Microbiol ; 406: 110400, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37742345

RESUMO

Brewers' spent grain (BSG) is a major side-stream from the beer industry, with an annual estimated production of 39 million tons worldwide. Due to its high nutritional value, high abundance and low price, it has been proposed as an ingredient in human food. Here we investigated the ability of different lactic acid bacteria to produce the flavor molecule acetoin in liquid BSG extract, in order to broaden the possibilities of utilization of BSG in human food. All the investigated lactic acid bacteria (LAB) covering the Leuconostoc, Lactobacillus and Lactoccocus species were able to convert the fermentable sugars in liquid BSG into acetoin. Production levels varied significantly between the different LAB species, with Leuconostoc pseudomesenteroides species reaching the highest titers of acetoin with only acetate as the main byproduct, while also being the fastest consumer of the fermentable sugars present in liquid BSG. Surprisingly, the currently best investigated LAB for acetoin production, L. lactis, was unable to consume the maltose fraction of liquid BSG and was therefore deemed unfit for full conversion of the sugars in BSG into acetoin. The production of acetoin in Leu. pseudomesenteroides was pH dependent as previously observed in other LAB, and the conversion of BSG into acetoin was scalable from shake flasks to 1 L bioreactors. While all investigated LAB species produced acetoin under aerobic conditions, Leu. pseudomesenteroides was found to be an efficient and scalable organism for bioconversion of liquid BSG into a safe acetoin rich food additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA