Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(10): 1616-1627, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37667052

RESUMO

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a 'reservoir'. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.


Assuntos
COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , RNA Viral/genética , SARS-CoV-2 , Antivirais , Progressão da Doença
3.
J Pharmacol Exp Ther ; 388(2): 333-346, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37770203

RESUMO

Synthesis of the acetylcholinesterase inhibitor paraoxon (POX) as a carbon-11 positron emission tomography tracer ([11C]POX) and profiling in live rats is reported. Naïve rats intravenously injected with [11C]POX showed a rapid decrease in parent tracer to ∼1%, with an increase in radiolabeled serum proteins to 87% and red blood cells (RBCs) to 9%. Protein and RBC leveled over 60 minutes, reflecting covalent modification of proteins by [11C]POX. Ex vivo biodistribution and imaging profiles in naïve rats had the highest radioactivity levels in lung followed by heart and kidney, and brain and liver the lowest. Brain radioactivity levels were low but observed immediately after injection and persisted over the 60-minute experiment. This showed for the first time that even low POX exposures (∼200 ng tracer) can rapidly enter brain. Rats given an LD50 dose of nonradioactive paraoxon at the LD50 20 or 60 minutes prior to [11C]POX tracer revealed that protein pools were blocked. Blood radioactivity at 20 minutes was markedly lower than naïve levels due to rapid protein modification by nonradioactive POX; however, by 60 minutes the blood radioactivity returned to near naïve levels. Live rat tissue imaging-derived radioactivity values were 10%-37% of naïve levels in nonradioactive POX pretreated rats at 20 minutes, but by 60 minutes the area under the curve (AUC) values had recovered to 25%-80% of naïve. The live rat imaging supported blockade by nonradioactive POX pretreatment at 20 minutes and recovery of proteins by 60 minutes. SIGNIFICANCE STATEMENT: Paraoxon (POX) is an organophosphorus (OP) compound and a powerful prototype and substitute for OP chemical warfare agents (CWAs) such as sarin, VX, etc. To study the distribution and penetration of POX into the central nervous system (CNS) and other tissues, a positron emission tomography (PET) tracer analog, carbon-11-labeled paraoxon ([11C]POX), was prepared. Blood and tissue radioactivity levels in live rats demonstrated immediate penetration into the CNS and persistent radioactivity levels in tissues indicative of covalent target modification.


Assuntos
Acetilcolinesterase , Radioisótopos de Carbono , Paraoxon , Ratos , Animais , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Compostos Organofosforados
4.
Mol Imaging ; 2022: 3667417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072652

RESUMO

Purpose: [18F]F-AraG is a radiolabeled nucleoside analog that shows relative specificity for activated T cells. The aim of this study was to investigate the biodistribution of [18F]F-AraG in healthy volunteers and assess the preliminary safety and radiation dosimetry. Methods: Six healthy subjects (three female and three male) between the ages of 24 and 60 participated in the study. Each subject received a bolus venous injection of [18F]F-AraG (dose range: 244.2-329.3 MBq) prior to four consecutive PET/MR whole-body scans. Blood samples were collected at regular intervals and vital signs monitored before and after tracer administration. Regions of interest were delineated for multiple organs, and the area under the time-activity curves was calculated for each organ and used to derive time-integrated activity coefficient (TIAC). TIACs were input for absorbed dose and effective dose calculations using OLINDA. Results: PET/MR examination was well tolerated, and no adverse effects to the administration of [18F]F-AraG were noted by the study participants. The biodistribution was generally reflective of the expression and activity profiles of the enzymes involved in [18F]F-AraG's cellular accumulation, mitochondrial kinase dGK, and SAMHD1. The highest uptake was observed in the kidneys and liver, while the brain, lung, bone marrow, and muscle showed low tracer uptake. The estimated effective dose for [18F]F-AraG was 0.0162 mSv/MBq (0.0167 mSv/MBq for females and 0.0157 mSv/MBq for males). Conclusion: Biodistribution of [18F]F-AraG in healthy volunteers was consistent with its association with mitochondrial metabolism. PET/MR [18F]F-AraG imaging was well tolerated, with a radiation dosimetry profile similar to other commonly used [18F]-labeled tracers. [18F]F-AraG's connection with mitochondrial biogenesis and favorable biodistribution characteristics make it an attractive tracer with a variety of potential applications.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Radiometria/métodos , Distribuição Tecidual , Adulto Jovem
5.
J Vasc Interv Radiol ; 33(6): 687-694, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301127

RESUMO

PURPOSE: To evaluate radiolabeled doxorubicin (Dox) analogs as tracers of baseline Dox biodistribution in vivo during hepatic intra-arterial chemotherapy and to assess the efficacy of ChemoFilter devices to bind Dox in vitro. MATERIALS AND METHODS: In an in vitro static experiment, [fluorine-18]N-succinimidyl 4-fluorobenzoate ([18F]SFB) and [fluorine-18]fluorobenzoyl-doxorubicin ([18F]FB-Dox) were added to a beaker containing a filter material (Dowex cation exchange resin, single-stranded DNA (ssDNA) resin, or sulfonated polymer coated mesh). In an in vitro flow model, [18F]FB-Dox was added into a Dox solution in phosphate-buffered saline, and the solution flowed via a syringe column containing the filter materials. In an in vitro flow experiment, using micro-positron emission tomography (PET), images were taken as [18F]SFB and [18F]FB-Dox moved through a phantom. For in vivo biodistribution testing, a catheter was placed into the common hepatic artery of a swine, and [18F]FB-Dox was infused over 30 seconds. A 10-minute dynamic image and three 20-minute static images were acquired using 3T PET/MR imaging. RESULTS: In the in vitro static experiment, [18F]FB-Dox demonstrated 76.7%, 88.0%, and 52.4% binding to the Dowex resin, ssDNA resin, and coated mesh, respectively. In the in vitro flow model, the first-pass binding of [18F]FB-Dox to the Dowex resin, ssDNA resin, and coated mesh was 76.7%, 74.2%, and 76.2%, respectively, and the total bound fraction was 80.9%, 84.6%, and 79.9%, respectively. In the in vitro flow experiment using micro-PET, the phantom demonstrated a greater amount of [18F]FB-Dox bound to both filter cartridges than of the control [18F]SFB. In in vivo biodistribution testing, the first 10 minutes depicted [18F]FB-Dox moving through the right upper quadrant of the abdomen. A region-of-interest analysis showed that the relative amount increased by 2.97 times in the gallbladder and 1.08 times in the kidney. The amount decreased by 0.74 times in the brain and 0.57 times in the heart. CONCLUSIONS: [18F]FB-Dox can be used to assess Dox binding to ChemoFilters as well as in vivo biodistribution. This sets the stage for the evaluation of ChemoFilter effectiveness in reducing systemic toxicity from intra-arterial chemotherapy.


Assuntos
Doxorrubicina , Tomografia por Emissão de Pósitrons , Animais , Artéria Hepática , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Suínos , Distribuição Tecidual
6.
Chem Res Toxicol ; 34(1): 63-69, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33373198

RESUMO

Organophosphorus esters (OPs) were originally developed as pesticides but were repurposed as easily manufactured, inexpensive, and highly toxic chemical warfare agents. Acute OP toxicity is primarily due to inhibition of acetylcholinesterase (AChE), an enzyme in the central and peripheral nervous system. OP inhibition of AChE can be reversed using oxime reactivators but many show poor CNS penetration, indicating a need for new clinically viable reactivators. However, challenges exist on how to best measure restored AChE activity in vivo and assess the reactivating agent efficacy. This work reports the development of molecular imaging tools using radiolabeled OP analog tracers that are less toxic to handle in the laboratory, yet inhibit AChE in a similar fashion to the actual OPs. Carbon-11 and fluorine-18 radiolabeled analog tracers of VX and sarin OP agents were prepared. Following intravenous injection in normal Sprague-Dawley rats (n = 3-4/tracer), the tracers were evaluated and compared using noninvasive microPET/CT imaging, biodistribution assay, and arterial blood analyses. All showed rapid uptake and stable retention in brain, heart, liver, and kidney tissues determined by imaging and biodistribution. Lung uptake of the sarin analog tracers was elevated, 2-fold and 4-fold higher uptake at 5 and 30 min, respectively, compared to that for the VX analog tracers. All tracers rapidly bound to red blood cells (RBC) and blood proteins as measured in the biodistribution and arterial blood samples. Analysis of the plasma soluble activity (nonprotein/cell bound activity) showed only 1-6% parent tracer and 88-95% of the activity in the combined solid fractions (RBC and protein bound) as early as 0.5 min post injection. Multivariate analysis of tracer production yield, molar activity, brain uptake, brain area under the curve over 0-15 min, and the amount of parent tracer in the plasma at 5 min revealed the [18F]VX analog tracer had the most favorable values for each metric. This tracer was considered the more optimal tracer relative to the other tracers studied and suitable for future in vivo OP exposure and reactivation studies.


Assuntos
Substâncias para a Guerra Química/farmacologia , Inibidores da Colinesterase/farmacologia , Compostos Organotiofosforados/farmacologia , Sarina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Radioisótopos de Carbono , Substâncias para a Guerra Química/química , Inibidores da Colinesterase/química , Radioisótopos de Flúor , Masculino , Estrutura Molecular , Compostos Organotiofosforados/química , Ratos , Ratos Sprague-Dawley , Sarina/química , Distribuição Tecidual
7.
Neurobiol Dis ; 133: 104455, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31022458

RESUMO

There is a unique in vivo interplay involving the mechanism of inactivation of acetylcholinesterase (AChE) by toxic organophosphorus (OP) compounds and the restoration of AChE activity by oxime antidotes. OP compounds form covalent adducts to this critical enzyme target and oximes are introduced to directly displace the OP from AChE. For the most part, the in vivo inactivation of AChE leading to neurotoxicity and antidote-based therapeutic reversal of this mechanism are well understood, however, these molecular-level events have not been evaluated by dynamic imaging in living systems at millimeter resolution. A deeper understanding of these critically, time-dependent mechanisms is needed to develop new countermeasures. To address this void and to help accelerate the development of new countermeasures, positron-emission tomography (PET) has been investigated as a unique opportunity to create platform technologies to directly examine the interdependent toxicokinetic/pharmacokinetic and toxicodynamic/pharmacodynamic features of OPs and oximes in real time within live animals. This review will cover two first-in-class PET tracers representing an OP and an oxime antidote, including their preparation, requisite pharmacologic investigations, mechanistic interpretations, biodistribution and imaging.


Assuntos
Reativadores da Colinesterase/farmacocinética , Agentes Neurotóxicos , Compostos Organofosforados , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais , Antídotos/farmacocinética , Humanos , Agentes Neurotóxicos/farmacocinética , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/farmacocinética , Compostos Organofosforados/toxicidade , Oximas/farmacocinética
8.
J Labelled Comp Radiopharm ; 63(5): 231-239, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32222086

RESUMO

PURPOSE: Detection of bacteria-specific metabolism via positron emission tomography (PET) is an emerging strategy to image human pathogens, with dramatic implications for clinical practice. In silico and in vitro screening tools have recently been applied to this problem, with several monosaccharides including l-arabinose showing rapid accumulation in Escherichia coli and other organisms. Our goal for this study was to evaluate several synthetically viable arabinofuranose-derived 18 F analogs for their incorporation into pathogenic bacteria. PROCEDURES: We synthesized four radiolabeled arabinofuranose-derived sugars: 2-deoxy-2-[18 F]fluoro-arabinofuranoses (d-2-18 F-AF and l-2-18 F-AF) and 5-deoxy-5-[18 F]fluoro-arabinofuranoses (d-5-18 F-AF and l-5-18 F-AF). The arabinofuranoses were synthesized from 18 F- via triflated, peracetylated precursors analogous to the most common radiosynthesis of 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG). These radiotracers were screened for their uptake into E. coli and Staphylococcus aureus. Subsequently, the sensitivity of d-2-18 F-AF and l-2-18 F-AF to key human pathogens was investigated in vitro. RESULTS: All 18 F radiotracer targets were synthesized in high radiochemical purity. In the screening study, d-2-18 F-AF and l-2-18 F-AF showed greater accumulation in E. coli than in S. aureus. When evaluated in a panel of pathologic microorganisms, both d-2-18 F-AF and l-2-18 F-AF demonstrated sensitivity to most gram-positive and gram-negative bacteria. CONCLUSIONS: Arabinofuranose-derived 18 F PET radiotracers can be synthesized with high radiochemical purity. Our study showed absence of bacterial accumulation for 5-substitued analogs, a finding that may have mechanistic implications for related tracers. Both d-2-18 F-AF and l-2-18 F-AF showed sensitivity to most gram-negative and gram-positive organisms. Future in vivo studies will evaluate the diagnostic accuracy of these radiotracers in animal models of infection.


Assuntos
Arabinose/análogos & derivados , Bactérias/isolamento & purificação , Tomografia por Emissão de Pósitrons/métodos , Arabinose/química , Humanos , Traçadores Radioativos , Radioquímica
9.
Mol Pharm ; 16(9): 3831-3841, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31381351

RESUMO

Boron neutron capture therapy (BNCT) is a therapeutic modality which has been used for the treatment of cancers, including brain and head and neck tumors. For effective treatment via BNCT, efficient and selective delivery of a high boron dose to cancer cells is needed. Prostate-specific membrane antigen (PSMA) is a target for prostate cancer imaging and drug delivery. In this study, we conjugated boronic acid or carborane functional groups to a well-established PSMA inhibitor scaffold to deliver boron to prostate cancer cells and prostate tumor xenograft models. Eight boron-containing PSMA inhibitors were synthesized. All of these compounds showed a strong binding affinity to PSMA in a competition radioligand binding assay (IC50 from 555.7 to 20.3 nM). Three selected compounds 1a, 1d, and 1f were administered to mice, and their in vivo blocking of 68Ga-PSMA-11 uptake was demonstrated through a positron emission tomography (PET) imaging and biodistribution experiment. Biodistribution analysis demonstrated boron uptake of 4-7 µg/g in 22Rv1 prostate xenograft tumors and similar tumor/muscle ratios compared to the ratio for the most commonly used BNCT compound, 4-borono-l-phenylalanine (BPA). Taken together, these data suggest a potential role for PSMA targeted BNCT agents in prostate cancer therapy following suitable optimization.


Assuntos
Antígenos de Superfície/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Ácidos Borônicos/química , Ácidos Borônicos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/radioterapia , Animais , Compostos de Boro/química , Compostos de Boro/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Edético/análogos & derivados , Ácido Edético/farmacocinética , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Concentração Inibidora 50 , Ligantes , Masculino , Camundongos , Camundongos Nus , Oligopeptídeos/farmacocinética , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/patologia , Radiossensibilizantes/química , Radiossensibilizantes/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Labelled Comp Radiopharm ; 61(14): 1089-1094, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30347484

RESUMO

O-(1-Fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate is a reactive organophosphate ester (OP) developed as a surrogate of the chemical warfare agent sarin that forms a similar covalent adduct at the active site serine of acetylcholinesterase. The radiolabeled O-(1-[18 F]fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate ([18 F] fluorosarin surrogate) has not been previously prepared. In this paper, we report the first radiosynthesis of this tracer from the reaction of bis-(4-nitrophenyl) methylphosphonate with 1-[18 F]fluoro-2-propanol in the presence of DBU. The 1-[18 F]fluoro-2-propanol was prepared by reaction of propylene sulfite with Kryptofix 2.2.2 and [18 F] fluoride ion. The desired tracer O-(1-[18 F]fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate was obtained in a >98% radiochemical purity with a 2.4% ± 0.6% yield (n = 5, 65 minutes from start of synthesis) based on starting [18 F] fluoride ion and a molar activity of 49.9 GBq/µmol (1.349 ± 0.329 Ci/µmol, n = 3). This new facile radiosynthesis routinely affords sufficient quantities of [18 F] fluorosarin surrogate in high radiochemical purity, which will further enable the tracer development as a novel radiolabeled OP acetylcholinesterase inhibitor for assessment of OP modes of action with PET imaging in vivo.


Assuntos
Nitrocompostos/química , Nitrocompostos/síntese química , Organofosfonatos/química , Organofosfonatos/síntese química , Tomografia por Emissão de Pósitrons , Sarina , Técnicas de Química Sintética , Traçadores Radioativos , Radioquímica
11.
Brain ; 139(Pt 7): 1994-2001, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27234268

RESUMO

SEE DREIER DOI 101093/AWW112 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: For many decades a breakdown of the blood-brain barrier has been postulated to occur in migraine. Hypothetically this would facilitate access of medications, such as dihydroergotamine or triptans, to the brain despite physical properties otherwise restricting their entry. We studied the permeability of the blood-brain barrier in six migraineurs and six control subjects at rest and during acute glyceryl trinitrate-induced migraine attacks using positron emission tomography with the novel radioligand (11)C-dihydroergotamine, which is chemically identical to pharmacologically active dihydroergotamine. The influx rate constant Ki, average dynamic image and time activity curve were assessed using arterial blood sampling and served as measures for receptor binding and thus blood-brain barrier penetration. At rest, there was binding of (11)C-dihydroergotamine in the choroid plexus, pituitary gland, and venous sinuses as expected from the pharmacology of dihydroergotamine. However, there was no binding to the brain parenchyma, including the hippocampus, the area with the highest density of the highest-affinity dihydroergotamine receptors, and the raphe nuclei, a postulated brainstem site of action during migraine, suggesting that dihydroergotamine is not able to cross the blood-brain barrier. This binding pattern was identical in migraineurs during glyceryl trinitrate-induced migraine attacks as well as in matched control subjects. We conclude that (11)C-dihydroergotamine is unable to cross the blood-brain barrier interictally or ictally demonstrating that the blood-brain barrier remains tight for dihydroergotamine during acute glyceryl trinitrate-induced migraine attacks.


Assuntos
Barreira Hematoencefálica , Di-Hidroergotamina/metabolismo , Transtornos de Enxaqueca , Nitroglicerina/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Vasoconstritores/metabolismo , Vasodilatadores/farmacologia , Adulto , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/metabolismo
12.
J Labelled Comp Radiopharm ; 60(7): 337-342, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28406525

RESUMO

O-(2-Fluoroethyl)-O-(p-nitrophenyl) methylphosphonate 1 is an organophosphate cholinesterase inhibitor that creates a phosphonyl-serine covalent adduct at the enzyme active site blocking cholinesterase activity in vivo. The corresponding radiolabeled O-(2-[18 F]fluoroethyl)-O-(p-nitrophenyl) methylphosphonate, [18 F]1, has been previously prepared and found to be an excellent positron emission tomography imaging tracer for assessment of cholinesterases in live brain, peripheral tissues, and blood. However, the previously reported [18 F]1 tracer synthesis was slow even with microwave acceleration, required high-performance liquid chromatography separation of the tracer from impurities, and gave less optimal radiochemical yields. In this paper, we report a new synthetic approach to circumvent these shortcomings that is reliant on the facile reactivity of bis-(O,O-p-nitrophenyl) methylphosphonate, 2, with 2-fluoroethanol in the presence of DBU. The cold synthesis was successfully translated to provide a more robust radiosynthesis. Using this new strategy, the desired tracer, [18 F]1, was obtained in a non-decay-corrected radiochemical yield of 8 ± 2% (n = 7) in >99% radiochemical and >95% chemical purity with a specific activity of 3174 ± 345 Ci/mmol (EOS). This new facile radiosynthesis routinely affords highly pure quantities of [18 F]1, which will further enable tracer development of OP cholinesterase inhibitors and their evaluation in vivo.


Assuntos
Técnicas de Química Sintética/métodos , Colinesterases/análise , Organofosfonatos/síntese química , Tomografia por Emissão de Pósitrons , Organofosfonatos/química , Traçadores Radioativos
13.
J Labelled Comp Radiopharm ; 60(8): 375-380, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28419528

RESUMO

[11 C]Carfentanil ([11 C]CFN) is a selective radiotracer for in vivo positron emission tomography imaging studies of the µ-opioid system that, in our laboratories, is synthesized by methylation of the corresponding carboxylate precursor with [11 C]MeOTf, and purified using a C2 solid-phase extraction cartridge. Changes in the commercial availability of common C2 cartridges have necessitated future proofing the synthesis of [11 C]CFN to maintain reliable delivery of the radiotracer for clinical imaging studies. An updated synthesis of [11 C]CFN is reported that replaces a now obsolete purification cartridge with a new commercially available version and also substitutes the organic solvents used in traditional production methods with ethanol.


Assuntos
Radioisótopos de Carbono , Fentanila/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Receptores Opioides mu/metabolismo , Técnicas de Química Sintética , Fentanila/síntese química , Fentanila/química , Radioquímica
14.
Bioconjug Chem ; 27(1): 170-8, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26649808

RESUMO

Solid tumors are hypoxic with altered metabolism, resulting in secretion of acids into the extracellular matrix and lower relative pH, a feature associated with local invasion and metastasis. Therapeutic and diagnostic agents responsive to this microenvironment may improve tumor-specific delivery. Therefore, we pursued a general strategy whereby caged small-molecule drugs or imaging agents liberate their parent compounds in regions of low interstitial pH. In this manuscript, we present a new acid-labile prodrug method based on the glycosylamine linkage, and its application to a class of positron emission tomography (PET) imaging tracers, termed [(18)F]FDG amines. [(18)F]FDG amines operate via a proposed two-step mechanism, in which an acid-labile precursor decomposes to form the common radiotracer 2-deoxy-2-[(18)F]fluoro-d-glucose, which is subsequently accumulated by glucose avid cells. The rate of decomposition of [(18)F]FDG amines is tunable in a systematic fashion, tracking the pKa of the parent amine. In vivo, a 4-phenylbenzylamine [(18)F]FDG amine congener showed greater relative accumulation in tumors over benign tissue, which could be attenuated upon tumor alkalinization using previously validated models, including sodium bicarbonate treatment, or overexpression of carbonic anhydrase. This new class of PET tracer represents a viable approach for imaging acidic interstitial pH with potential for clinical translation.


Assuntos
Fluordesoxiglucose F18/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Microambiente Tumoral , Aminas/química , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Oximas/química , Pró-Fármacos/química , Radioquímica/métodos , Compostos Radiofarmacêuticos/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biomed Microdevices ; 18(6): 109, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27830455

RESUMO

To computationally optimize the design of an endovascular magnetic filtration device that binds iron oxide nanoparticles and to validate simulations with experimental results of prototype devices in physiologic flow testing. Three-dimensional computational models of different endovascular magnetic filter devices assessed magnetic particle capture. We simulated a series of cylindrical neodymium N52 magnets and capture of 1500 iron oxide nanoparticles infused in a simulated 14 mm-diameter vessel. Device parameters varied included: magnetization orientation (across the diameter, "D", along the length, "L", of the filter), magnet outer diameter (3, 4, 5 mm), magnet length (5, 10 mm), and spacing between magnets (1, 3 mm). Top designs were tested in vitro using 89Zr-radiolabeled iron oxide nanoparticles and gamma counting both in continuous and multiple pass flow model. Computationally, "D" magnetized devices had greater capture than "L" magnetized devices. Increasing outer diameter of magnets increased particle capture as follows: "D" designs, 3 mm: 12.8-13.6 %, 4 mm: 16.6-17.6 %, 5 mm: 21.8-24.6 %; "L" designs, 3 mm: 5.6-10 %, 4 mm: 9.4-15.8 %, 5 mm: 14.8-21.2 %. In vitro, while there was significant capture by all device designs, with most capturing 87-93 % within the first two minutes, compared to control non-magnetic devices, there was no significant difference in particle capture with the parameters varied. The computational study predicts that endovascular magnetic filters demonstrate maximum particle capture with "D" magnetization. In vitro flow testing demonstrated no difference in capture with varied parameters. Clinically, "D" magnetized devices would be most practical, sized as large as possible without causing intravascular flow obstruction.


Assuntos
Vasos Sanguíneos/química , Compostos Férricos/química , Compostos Férricos/isolamento & purificação , Filtração/instrumentação , Campos Magnéticos , Nanopartículas/química
16.
Proc Natl Acad Sci U S A ; 110(1): 93-8, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248318

RESUMO

Proteases responsible for the increased peritumoral proteolysis associated with cancer represent functional biomarkers for monitoring tumorigenesis. One attractive extracellular biomarker is the transmembrane serine protease matriptase. Found on the surface of epithelial cells, the activity of matriptase is regulated by its cognate inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). Quantitative mass spectrometry allowed us to show that, in selected cancers, HAI-1 expression decreases, leading to active matriptase. A preclinical probe specific for the measurement of emergent active matriptase was developed. Using an active-site-specific, recombinant human antibody for matriptase, we found that the selective targeting of active matriptase can be used to visualize the tumorigenic epithelium. Live-cell fluorescence imaging validated the selectivity of the antibody in vitro by showing that the probe localized only to cancer cell lines with active matriptase on the surface. Immunofluorescence with the antibody documented significant levels of active matriptase in 68% of primary and metastatic colon cancer sections from tissue microarrays. Labeling of the active form of matriptase in vivo was measured in human colon cancer xenografts and in a patient-derived xenograft model using near-infrared and single-photon emission computed tomography imaging. Tumor uptake of the radiolabeled antibody, (111)In-A11, by active matriptase was high in xenografts (28% injected dose per gram) and was blocked in vivo by the addition of a matriptase-specific variant of ecotin. These findings suggest, through a HAI-1-dependent mechanism, that emergent active matriptase is a functional biomarker of the transformed epithelium and that its proteolytic activity can be exploited to noninvasively evaluate tumorigenesis in vivo.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/metabolismo , Células Epiteliais/metabolismo , Imagem Óptica/métodos , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Serina Endopeptidases/metabolismo , Anticorpos/imunologia , Humanos , Radioisótopos de Índio/metabolismo , Espectrometria de Massas , Serina Endopeptidases/imunologia
17.
Prostate ; 75(14): 1601-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26177608

RESUMO

BACKGROUND: Metabolic shifts in disease are of great interest for the development of novel therapeutics. In cancer treatment, these therapies exploit the metabolic phenotype associated with oncogenesis and cancer progression. One recent strategy involves the depletion of the cofactors needed to maintain the high rate of glycolysis seen with the Warburg effect. Specifically, blocking nicotinamide adenine dinucleotide (NAD) biosynthesis via nicotinamide phosphoribosyltransferase (NAMPT) inhibition depletes cancer cells of the NAD needed for glycolysis. To characterize this metabolic phenotype in vivo and describe changes in flux with treatment, non-invasive biomarkers are necessary. One such biomarker is hyperpolarized (HP) [1-(13) C] pyruvate, a clinically translatable probe that allows real-time assessment of metabolism. METHODS: We therefore developed a cell perfusion system compatible with HP magnetic resonance (MR) and positron emission tomography (PET) to develop translatable biomarkers of response to NAMPT inhibition in reduced volume cell cultures. RESULTS: Using this platform, we observed a reduction in pyruvate flux through lactate dehydrogenase with NAMPT inhibition in prostate cancer cells, and showed that both HP lactate and 2-[(18) F] fluoro-2-deoxy-D-glucose (FDG) can be used as biomarkers for treatment response of such targeted agents. Moreover, we observed dynamic flux changes whereby HP pyruvate was re-routed to alanine, providing both positive and negative indicators of treatment response. CONCLUSIONS: This study demonstrated the feasibility of a MR/PET compatible bioreactor approach to efficiently explore cell and tissue metabolism, the understanding of which is critical for developing clinically translatable biomarkers of disease states and responses to therapeutics.


Assuntos
Reatores Biológicos , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/metabolismo , Humanos , Masculino , Células Tumorais Cultivadas
18.
Theranostics ; 14(7): 2969-2992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773983

RESUMO

Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.


Assuntos
Actínio , Partículas alfa , Neoplasias da Próstata , Humanos , Masculino , Actínio/uso terapêutico , Actínio/química , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/terapia , Partículas alfa/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Animais
19.
Sci Rep ; 14(1): 14175, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898077

RESUMO

Central nervous system tumors have resisted effective chemotherapy because most therapeutics do not penetrate the blood-tumor-brain-barrier. Nanomedicines between ~ 10 and 100 nm accumulate in many solid tumors by the enhanced permeability and retention effect, but it is controversial whether the effect can be exploited for treatment of brain tumors. PLX038A is a long-acting prodrug of the topoisomerase 1 inhibitor SN-38. It is composed of a 15 nm 4-arm 40 kDa PEG tethered to four SN-38 moieties by linkers that slowly cleave to release the SN-38. The prodrug was remarkably effective at suppressing growth of intracranial breast cancer and glioblastoma (GBM), significantly increasing the life span of mice harboring them. We addressed the important issue of whether the prodrug releases SN-38 systemically and then penetrates the brain to exert anti-tumor effects, or whether it directly penetrates the blood-tumor-brain-barrier and releases the SN-38 cargo within the tumor. We argue that the amount of SN-38 formed systemically is insufficient to inhibit the tumors, and show by PET imaging that a close surrogate of the 40 kDa PEG carrier in PLX038A accumulates and is retained in the GBM. We conclude that the prodrug penetrates the blood-tumor-brain-barrier, accumulates in the tumor microenvironment and releases its SN-38 cargo from within. Based on our results, we pose the provocative question as to whether the 40 kDa nanomolecule PEG carrier might serve as a "Trojan horse" to carry other drugs past the blood-tumor-brain-barrier and release them into brain tumors.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Irinotecano , Pró-Fármacos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Irinotecano/farmacocinética , Barreira Hematoencefálica/metabolismo , Camundongos , Pró-Fármacos/farmacocinética , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Humanos , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Camptotecina/uso terapêutico
20.
Res Sq ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746162

RESUMO

Purpose: Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-ß-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. Procedure: To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. Results: The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. Conclusions: Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA