Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Angew Chem Int Ed Engl ; 63(3): e202314411, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37897193

RESUMO

In the emerging aqueous zinc ion batteries (AZIBs), proton (H+ ) with the smallest molar mass and fast (de)coordination kinetics is considered as the most ideal charge carrier compared with Zn2+ counterpart, however, searching for new hosting materials for H+ storage is still at its infancy. Herein, redox-active hydrogen-bonded organic frameworks (HOFs) assembled from diaminotriazine moiety decorated hexaazatrinnphthalene (HOF-HATN) are for the first time developed as the stable cathode hosting material for boosting H+ storage in AZIBs. The unique integration of hydrogen-bonding networks and strong π-π stacking endow it rapid Grotthuss proton conduction, stable supramolecular structure and inclined H+ storage. As a consequence, HOF-HATN displays a high capacity (320 mAh g-1 at 0.05 A g-1 ) and robust cyclability of (>10000 cycles at 5 A g-1 ) based on three-step cation coordination storage. These findings get insight into the proton transport and storage behavior in HOFs and provide the molecular engineering strategy for constructing well-defined cathode hosting materials for rechargeable aqueous batteries.

2.
Angew Chem Int Ed Engl ; 63(25): e202401559, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38616720

RESUMO

Air self-charging aqueous batteries promise to integrate energy harvesting technology and battery systems, potentially overcoming a heavy reliance on energy and the spatiotemporal environment. However, the exploitation of multifunctional air self-charging battery systems using promising cathode materials and suitable charge carriers remains challenging. Herein, for the first time, we developed low-temperature self-charging aqueous Zn-K hybrid ion batteries (AZKHBs) using a fully conjugated hexaazanonaphthalene (HATN)-based porous aromatic framework as the cathode material, exhibiting redox chemistry using K+ as charge carriers, and regulating Zn-ion solvation chemistry to guide uniform Zn plating/stripping. The unique AZKHBs exhibit the exceptional electrochemical properties in all-climate conditions. Most importantly, the large potential difference causes the AZKHBs discharged cathode to be oxidized using oxygen, thereby initiating a self-charging process in the absence of an external power source. Impressively, the air self-charging AZKHBs can achieve a maximum voltage of 1.15 V, an impressive discharge capacity (466.3 mAh g-1), and exceptional self-charging performance even at -40 °C. Therefore, the development of self-charging AZKHBs offers a solution to the limitations imposed by the absence of a power grid in harsh environments or remote areas.

3.
Angew Chem Int Ed Engl ; 63(25): e202405239, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634305

RESUMO

The evolution of two-dimensional conjugated metal-organic frameworks (2D c-MOFs) provides a significant prospect for researching the next generation of green and advanced energy storage systems (ESSs). Especially, conjugation and topology engineering serve as an irreplaceable character in adjusting the electrochemical properties of ESSs. Herein, we proposed a novel strategy using conjugation and topology engineering to demonstrate the application of 2D c-MOFs in robust potassium-ion batteries (PIBs) for the first time. By comparing 2D c-MOFs with the rhombus/kagome structure as well as three/four-arm core, the rhombus structure (sql-Cu-TBA-MOF) cathode for PIBs can display the impressive electrochemical performance, including a high specific discharge capacity of 178.4 mAh g-1 (at 0.2 A g-1) and a well long-term cycle stability of more than 9,000 (at 10.0 A g-1). Moreover, full PIBs (FPIBs) are constructed by pairing sql-Cu-TBA-MOF cathode with dipotassium terephthalate (KTP) anode, which delivers a high reversible discharge specific capacity of 146.6 mAh g-1 (at 0.1 A g-1) and great practical application prospect. These findings provide reasonable implications for the design of 2D c-MOFs from the perspective of conjugation and topology engineering for advanced energy storage systems.

4.
Angew Chem Int Ed Engl ; 63(29): e202405168, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668683

RESUMO

2D conjugated metal-organic frameworks (2D c-MOFs) with large pore sizes and high surface areas are advantageous for adsorbing iodine species to enhance the electrochemical performance of aqueous dual-ion batteries (ADIBs). However, most of the reported 2D c-MOFs feature microporous structures, with few examples exhibiting mesoporous characteristics. Herein, we developed two mesoporous 2D c-MOFs, namely PA-TAPA-Cu-MOF and PA-PyTTA-Cu-MOF, using newly designed arylimide based multitopic catechol ligands (6OH-PA-TAPA and 8OH-PA-PyTTA). Notably, PA-TAPA-Cu-MOF exhibits the largest pore sizes (3.9 nm) among all reported 2D c-MOFs. Furthermore, we demonstrated that these 2D c-MOFs can serve as promising cathode host materials for polyiodides in ADIBs for the first time. The incorporation of triphenylamine moieties in PA-TAPA-Cu-MOF resulted in a higher specific capacity (423.4 mAh g-1 after 100 cycles at 1.0 A g-1) and superior cycling performance, retaining 96 % capacity over 1000 cycles at 10 A g-1 compared to PA-PyTTA-Cu-MOF. Our comparative analysis revealed that the increased number of N anchoring sites and larger pore size in PA-TAPA-Cu-MOF facilitate efficient anchoring and conversion of I3 -, as supported by spectroscopic electrochemistry and density functional theory calculations.

5.
Small ; 19(46): e2303593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37467289

RESUMO

Aqueous zinc ion batteries (ZIBs), especially those with self-charging properties, have been promisingly developed in recent years. Yet, most inorganic materials feature high redox potential, which limit their development in the self-charging field. To achieve this target, by pre-embedding potassium ions into δ-MnO2 to reduce the energy barrier in oxygen adsorption, the first application of MnO2 in self-charging ZIBs is realized. The design features a facile two-electrode configuration with no excessively complex component to allow for energy storage and conversion. Due to the voltage difference between the oxygen in the air and the discharge products, a redox reaction can be carried out spontaneously to realize the self-charging process. After the chemical self-charging process, the Zn-K0.37 MnO2 ·0.54H2 O/C cell achieves an open circuit voltage of around 1.42 V and a discharge capacity of 201 mAh g-1 , reflecting the promising self-charging capability. Besides, the chemically self-charging ZIBs operate well in multiple modes of constant current charge/discharge/chemical charging. And decent cycling capability can also be achieved at extreme temperatures and high mass loading. This work promotes the development of ZIBs and further broadens the application of inorganic metal oxides in the self-charging systems.

6.
Small ; 19(35): e2301578, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37105762

RESUMO

The development of coordination polymers with π-d conjugation (CCPs) provides ide prospects for exploring the next generation of environmental-friendliness energy storage systems. Herein, the synthesis, experimental characterizations, and Na-ion storage mechanism of π-d CCPs with multiple-active sites are reported, which use quinone-fused aza-phenazine (AP) and aza-phenazin (AP) as the organic ligands coordinated with the metal center (Ni2+ ). Among them, NiQAP as the cathode material exhibits impressive electrochemical properties applied in sodium-ion batteries (SIBs), including the high initial/stable discharge specific capacities (180.0/225.6 mAh g-1 ) at 0.05 A g-1 , a long-term cycle stability up to 10,000 cycles at 1.0 A g-1 with a high reversible capacity of 100.1 mAh g-1 , and good rate capability of 99.6 mAh g-1 even at 5.0 A g-1 . Moreover, the Na-ion storage mechanism of NiQAP is also performed by the density functional theory (DFT) calculation, showing multiple-active sites of C≐O and C≐N (in the quinone and phenazine structure) and NiO4 (in the coordination unit) for Na-ion storage. These results highlight the importance of organic electrode material with the coordination units and provide a foundation for further studying the CCPs with multiple active sites for energy storage systems.

7.
Angew Chem Int Ed Engl ; 58(30): 10204-10208, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31127675

RESUMO

Bipolar redox organics have attracted interest as electrode materials for energy storage owing to their flexibility, sustainability and environmental friendliness. However, an understanding of their application in all-organic batteries, let alone dual-ion batteries (DIBs), is in its infancy. Herein, we propose a strategy to screen a variety of phthalocyanine-based bipolar organics. The self-polymerizable bipolar Cu tetraaminephthalocyanine (CuTAPc) shows multifunctional applications in various energy storage systems, including lithium-based DIBs using CuTAPc as the cathode material, graphite-based DIBs using CuTAPc as the anode material and symmetric DIBs using CuTAPc as both the cathode and anode materials. Notably, in lithium-based DIBs, the use of CuTAPc as the cathode material results in a high discharge capacity of 236 mAh g-1 at 50 mA g-1 and a high reversible capacity of 74.3 mAh g-1 after 4000 cycles at 4 A g-1 . Most importantly, a high energy density of 239 Wh kg-1 and power density of 11.5 kW kg-1 can be obtained in all-organic symmetric DIBs.

8.
Chemistry ; 24(69): 18235-18245, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007002

RESUMO

Sodium-organic batteries, which use organic materials as the electrodes in sodium-ion batteries, are an attractive alternative to conventional lithium-ion batteries for next-generation sustainable and versatile energy storage devices owing to the abundant sodium resources and environmental friendly features. However, organics used in sodium-ion batteries also encounter some issues such as low redox potential, high solubility in the electrolyte, and low conductivity. In response, altering the aromatic system/attaching electron-withdrawing groups, constructing polymers, and incorporating a conductive matrix are effective strategies. This review summarizes and briefly discusses recent organic carbonyl compounds for sodium-organic batteries from the viewpoint of function-oriented design, including function evolution from small-molecule compounds to polymers, then composites, and finally flexible electrodes. In particular, as a timely overview, carbonyl-based organic flexible electrodes for sodium-organic batteries are also highlighted for the first time.

9.
Angew Chem Int Ed Engl ; 55(36): 10662-6, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27485314

RESUMO

Polydopamine (PDA), which is biodegradable and is derived from naturally occurring products, can be employed as an electrode material, wherein controllable partial oxidization plays a key role in balancing the proportion of redox-active carbonyl groups and the structural stability and conductivity. Unexpectedly, the optimized PDA derivative endows lithium-ion batteries (LIBs) or sodium-ion batteries (SIBs) with superior electrochemical performances, including high capacities (1818 mAh g(-1) for LIBs and 500 mAh g(-1) for SIBs) and good stable cyclabilities (93 % capacity retention after 580 cycles for LIBs; 100 % capacity retention after 1024 cycles for SIBs), which are much better than those of their counterparts with conventional binders.


Assuntos
Fontes de Energia Elétrica , Indóis/química , Lítio/química , Polímeros/química , Sódio/química , Condutividade Elétrica , Eletrodos , Desenho de Equipamento , Íons/química , Modelos Moleculares , Oxirredução
10.
Adv Mater ; 36(6): e2305605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37566706

RESUMO

Potassium-ion batteries (PIBs) are gradually gaining attention owing to their natural abundance, excellent security, and high energy density. However, developing excellent organic cathode materials for PIBs to overcome the poor cycling stability and slow kinetics caused by the large radii of K+ ions is challenging. This study demonstrates for the first time the application of a hexaazanonaphthalene (HATN)-based 2D π-d conjugated metal-organic framework (2D c-MOF) with dual-active centers (Cu-HATNH) and integrates Cu-HATNH with carbon nanotubes (Cu-HATNH@CNT) as the cathode material for PIBs. Owing to this systematic module integration and more exposed active sites with high utilization, Cu-HATNH@CNT exhibits a high initial capacity (317.5 mA h g-1 at 0.1 A g-1 ), excellent long-term cycling stability (capacity retention of 96.8% at 5 A g-1 after 2200 cycles), and outstanding rate capacity (147.1 mA h g-1 at 10 A g-1 ). The reaction mechanism and performance are determined by combining experimental characterization and density functional theory calculations. This contribution provides new opportunities for designing high-performance 2D c-MOF cathodes with multiple active sites for PIBs.

11.
Chem Sci ; 15(29): 11564-11571, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39054997

RESUMO

There is growing interest in 2D conjugated metal-organic frameworks (2D c-MOFs) for batteries due to their reversible redox chemistry. Nevertheless, currently reported 2D c-MOFs based on n-type ligands are mostly focused on the storage of cations for batteries. Herein, we successfully synthesize nitrogen-rich and electron-deficient p-type ligand-based Ni3(HATQ)2 assembled from 2,3,7,8,12,13-hexaaminotricycloquinazoline (HATQ), and the ion co-storage feature of cations and anions in sodium ion batteries (SIBs) is demonstrated for 2D c-MOFs for the first time. The redox chemistry from the p-type ligand and π-d hybridization center endows the Ni3(HATQ)2 cathode with high capacity and good rate performance, especially excellent capacity retention of 95% after 1000 cycles. These findings provide a promising avenue for the exploration of other p-type multidentate chelating ligands toward new 2D c-MOFs and expand the application of 2D c-MOFs in energy storage systems.

12.
Chem Sci ; 15(29): 11480-11487, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39055014

RESUMO

In recent years, solid-state lithium metal batteries (SSLMBs) have become a new development trend, and it has become a top priority to design solid-state electrolytes (SSEs) that can rapidly and stably transport lithium ions in a variety of climatic environments. In this work, an integrated "rigid-flexible" dual-functional strategy is proposed to develop a cationic covalent organic framework (EO-BIm-iCOF) with well-defined flexible oligo(ethylene oxide) (EO) chains as an SSE for SSLMBs. As expected, the synergistic effects of the rigid cationic framework and flexible EO chains not only promote the dissociation of LiTFSI salts, but also greatly improve the transport of lithium ions, which endows LITFSI@EO-BIm-iCOF SSEs with a high Li+ conductivity of 1.08 × 10-4 S cm-1 and ionic transference number of 0.69 at room temperature. Besides, the molecular dynamics (MD) simulations have also elucidated the diffusion and transport mechanism of lithium ions in LITFSI@EO-BIm-iCOF SSEs. Interestingly, the assembled SSLMBs wherein LiFePO4 is paired with LITFSI@EO-BIm-iCOF SSEs display decent electrochemical properties at higher and lower temperatures. This work provides a great development prospect for the application of cationic COFs in solid-state batteries.

13.
J Colloid Interface Sci ; 663: 656-664, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430835

RESUMO

Ion concentration and mobility are tightly associated with the ionic conductance of polymer electrolytes in solid-state lithium batteries. However, the anions involved in the movement are irrelevant to energy generation and cause uncontrolled dendritic growth and concentration polarization. In the current study, we proposed the strategy of using a bipolar organic molecule as the anion/cation-hosting cathode to expand the active charge carriers of polymer electrolytes. As a proof-of-concept demonstration of the novel strategy, a bipolar phthalocyanine derivative (2,3,9,10,16,17,23,24-octamethoxyphthalocyaninato) Ni(II) (NiPc-(OH)8) that could successively store anions and cations was used as the cathode hosting material in quasi-solid-state dual-ion batteries (QSSDIBs). Interestingly, peripheral polyhydroxyl substituents could build a compatible interface with poly(vinylidene fluoride-hexafluoro propylene-based gel polymer electrolytes (PVDF-HFP). As expected, NiPc-(OH)8 displays a high specific capacity of 248.2 mAh/g (at 50 mA g-1) and improved cyclic stability compared with that in liquid electrolyte. This study provides a solution to the issue of anion migration and could open another way to build high-performance QSSDIBs.

14.
J Colloid Interface Sci ; 660: 1039-1047, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199891

RESUMO

Covalent triazine frameworks (CTFs) with tunable structure, fine molecular design and low cost have been regarded as a class of ideal electrode materials for lithium-ion batteries (LIBs). However, the tightly layered structure possessed by the CTFs leads to partial hiding of the redox active site, resulting in their unsatisfactory electrochemical performance. Herein, two CTFs (BDMI-CTF and TCNQ-CTF) with higher degree of structural distortion, more active sites exposed, and large lattice pores were prepared by dynamic trimerization reaction of cyano. As a result, BDMI-CTF as a cathode material for LIBs exhibits high initial capacity of 186.5 mAh/g at 50 mA g-1 and superior cycling stability without capacity loss after 2000 cycles at 1000 mA g-1 compared with TCNQ-CTF counterparts. Furthermore, based on their bipolar functionality, BDMI-CTF can be used as both cathode and anode materials for symmetric all-organic batteries (SAOBs), and this work will open a new window for the rational design of high performance CTF-based LIBs.

15.
Adv Mater ; 36(26): e2401878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602717

RESUMO

2D conjugated metal-organic frameworks (2D c-MOFs) have garnered significant attention as promising electroactive materials for energy storage. However, their further applications are hindered by low capacity, limited cycling life, and underutilization of the active sites. Herein, Cu-TBA (TBA = octahydroxyltetrabenzoanthracene) with large conjugation units (narrow energy gap) and a unique rhombus topology is introduced as the cathode material for sodium-ion batteries (SIBs). Notably, Cu-TBA with a rhombus topology exhibits a high specific surface area (613 m2 g-1) and metallic band structure. Additionally, Cu-TBA outperforms its hexagonal counterpart, Cu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxyltriphenylene), demonstrating superior reversible capacity (153.6 mAh g-1 at 50 mA g-1) and outstanding cyclability with minimal capacity decay even after 3000 cycles at 1 A g-1. This work elucidates a new strategy to enhance the electrochemical performance of 2D c-MOFs cathode materials by narrowing the energy gap of organic linkers, effectively expanding the utilization of 2D c-MOFs for SIBs.

16.
J Colloid Interface Sci ; 649: 159-165, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37348335

RESUMO

High-performance organic small-molecule electrode materials are troubled with their high solubility in liquid electrolytes. The construction of quasi-solid-state lithium organic batteries (LOBs) using gel polymer electrolytes with high mechanical properties, compromised ionic conductivity, high safety, and eco-friendly is an effective way to inhibit the dissolution of active materials. Herein, two hexaazatriphenylene (HATN)-based organic cathode materials (HATNA-6OCH3 and HATNA-6OH) are synthesized and then matched with polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)-based gel polymer electrolytes to construct quasi-solid-state LOBs. Thanks to the enhanced interfacial compatibility between organic cathode material and gel polymer electrolyte, HATNA-6OH with compatible hydroxyl group shows the enhanced electrochemical properties compared with HATNA-6OCH3. Further, the electrochemical performance is improved when HATNA-6OH is combined with a gel polymer electrolyte modified with a succinonitrile (SN) plasticizer (GPE-0.4SN), including a high specific capacity of 153.3 mAh g-1 at 50 mA g-1 and a good reversible capacity of 88 mAh g-1 after 100 cycles at 200 mA g-1. In addition, the good electrochemical properties and lithium-ion storage mechanism of HATNA-6OH have been elucidated using density functional theory (DFT) and spectral characterizations.

17.
Chemistry ; 18(29): 8987-93, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22689094

RESUMO

Porous V(2)O(5) nanotubes, hierarchical V(2)O(5) nanofibers, and single-crystalline V(2)O(5) nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium-ion batteries (LIBs), the as-formed V(2)O(5) nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V(2)O(5) nanotubes provided short distances for Li(+)-ion diffusion and large electrode-electrolyte contact areas for high Li(+)-ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2 kW kg(-1) whilst the energy density remained as high as 201 W h kg(-1), which, as one of the highest values measured on V(2)O(5)-based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single-crystalline V(2)O(5) nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition-metal-oxide-based electrode materials could be realized by the design of 1D nanostructures with unique morphologies.

18.
J Colloid Interface Sci ; 606(Pt 2): 1024-1030, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487925

RESUMO

Currently, there is considerable interest in developing new electrode materials to construct the new-generation dual-ion batteries (DIBs) with the potential advantages of higher working voltage, good safety, low cost, and environmental friendliness. Herein, a well-known charge-transfer metal-organic compound, copper-tetracyanoquinodimethane (CuTCNQ), is synthesized and then used as an anode material, which can reversibly store Li+/Na+ ions under the lower working voltage. Consequently, the lithium/sodium-based DIBs (LDIBs/SDIBs) are constructed by coupling CuTCNQ anode with graphite cathode and their working mechanisms are also understood in detail. As expected, LDIBs exhibit a high average potential of 4.26 V, a high initial discharge capacity of 195.4 mAh g-1 at 0.1 A g-1, long cycling performance after 200 cycles with good capacity retention and excellent rate capability of 106.2 mAh g-1 at 5 A g-1. Especially, high average potential of 4.23 V and good rate capability of 34.5 mAh g-1 at 5 A g-1 could be maintained in SDIBs. These results may open a new avenue for using metal-organic compound in the field of high-performance energy-storage devices.

19.
Chem Asian J ; 17(15): e202200390, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35582772

RESUMO

Nitrogen doped carbon materials containing transition metal nanoparticles have attracted much attention as bifunctional oxygen electrocatalysts. In this paper, the template etching method is used to obtain the nitrogen-doped graphene with abundant macropores embedded with cobalt nanoparticles (Co@N-C). The prepared Co@NC-800 catalyst has a half-wave potential (E1/2= 0.835 V) close to Pt/C and good stability in excess of Pt/C for oxygen reduction reaction (ORR). At the same time, the catalyst has good oxygen evolution reaction (OER) performance. In addition, zinc-air batteries (ZABs) based on the Co@NC-800 catalyst show good cycle stability of up to 200000 s and high power density of 73.5 mW cm-2 . The synergistic effect of the integrated component between nitrogen-doped graphene and cobalt nanoparticles as well as the macroporous structure endow Co@NC-800 with abundant exposed active sites and mass/electron transfer capacity, thus leading to the high electrocatalytic activity. This work shows potential for practical applications in electrochemistry.

20.
Chem Asian J ; 16(14): 1973-1978, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34057815

RESUMO

Organic carbonyl electrode materials are widely employed for alkali metal-ion secondary batteries in terms of their sustainability, structure designability and abundant resources. As a typical redox-active organic electrode materials, pyrene-4, 5, 9, 10-tetraone (PT) shows high theoretical capacity due to the rich carbonyl active sites. But its electrochemical behavior in secondary batteries still needs further exploration. Herein, PT-based linear polymers (PPTS) is synthesized with thioether bond as bridging group and then employed as an anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). As expected, PPTS shows improved conductivity and insolubility in the non-aqueous electrolyte. When used as an anode material for LIBs, PPTS delivers a high reversible specific capacity of 697.1 mAh g-1 at 0.1 A g-1 and good rate performance (335.4 mAh g-1 at 1 A g-1 ). Moreover, a reversible specific capacity of 205.2 mAh g-1 at 0.05 A g-1 could be obtained as an anode material for SIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA