Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37827155

RESUMO

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Assuntos
Proteína de Replicação A , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Camundongos , DNA/genética , Reparo de Erro de Pareamento de DNA , Doença de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Proteína de Replicação A/metabolismo
2.
Cell ; 137(2): 235-46, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19379691

RESUMO

X-linked myopathy with excessive autophagy (XMEA) is a childhood-onset disease characterized by progressive vacuolation and atrophy of skeletal muscle. We show that XMEA is caused by hypomorphic alleles of the VMA21 gene, that VMA21 is the diverged human ortholog of the yeast Vma21p protein, and that like Vma21p it is an essential assembly chaperone of the V-ATPase, the principal mammalian proton pump complex. Decreased VMA21 raises lysosomal pH, which reduces lysosomal degradative ability and blocks autophagy. This reduces cellular free amino acids, which upregulates the mTOR pathway and mTOR-dependent macroautophagy, resulting in proliferation of large and ineffective autolysosomes that engulf sections of cytoplasm, merge together, and vacuolate the cell. Our results uncover macroautophagic overcompensation leading to cell vacuolation and tissue atrophy as a mechanism of disease.


Assuntos
Genes Ligados ao Cromossomo X , Doenças Musculares/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Autofagia , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
3.
Brain ; 145(7): 2361-2377, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35084461

RESUMO

Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Lafora , Ubiquitina-Proteína Ligases , Animais , Regulação para Baixo , Glucanos/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Epilepsias Mioclônicas Progressivas , Doenças do Sistema Nervoso , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
PLoS Genet ; 16(5): e1008763, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32384077

RESUMO

The ACK family tyrosine kinase SID-3 is involved in the endocytic uptake of double-stranded RNA. Here we identified SID-3 as a previously unappreciated recycling regulator in the Caenorhabditis elegans intestine. The RAB-10 effector EHBP-1 is required for the endosomal localization of SID-3. Accordingly, animals with loss of SID-3 phenocopied the recycling defects observed in ehbp-1 and rab-10 single mutants. Moreover, we detected sequential protein interactions between EHBP-1, SID-3, NCK-1, and DYN-1. In the absence of SID-3, DYN-1 failed to localize at tubular recycling endosomes, and membrane tubules breaking away from endosomes were mostly absent, suggesting that SID-3 acts synergistically with the downstream DYN-1 to promote endosomal tubule fission. In agreement with these observations, overexpression of DYN-1 significantly increased recycling transport in SID-3-deficient cells. Finally, we noticed that loss of RAB-10 or EHBP-1 compromised feeding RNAi efficiency in multiple tissues, implicating basolateral recycling in the transport of RNA silencing signals. Taken together, our study demonstrated that in C. elegans intestinal epithelia, SID-3 acts downstream of EHBP-1 to direct fission of recycling endosomal tubules in concert with NCK-1 and DYN-1.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Citocinese/genética , Dinaminas/fisiologia , Endocitose/fisiologia , Endossomos/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Biológico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Endocitose/genética , Estudo de Associação Genômica Ampla , Transdução de Sinais/genética , Proteínas rab de Ligação ao GTP/metabolismo
5.
J Biol Chem ; 296: 100150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33277363

RESUMO

Malstructured glycogen accumulates over time in Lafora disease (LD) and precipitates into Lafora bodies (LBs), leading to neurodegeneration and intractable fatal epilepsy. Constitutive reduction of glycogen synthase-1 (GYS1) activity prevents murine LD, but the effect of GYS1 reduction later in disease course is unknown. Our goal was to knock out Gys1 in laforin (Epm2a)-deficient LD mice after disease onset to determine whether LD can be halted in midcourse, or even reversed. We generated Epm2a-deficient LD mice with tamoxifen-inducible Cre-mediated Gys1 knockout. Tamoxifen was administered at 4 months and disease progression assessed at 12 months. We verified successful knockout at mRNA and protein levels using droplet digital PCR and Western blots. Glycogen determination and periodic acid-Schiff-diastase staining were used to analyze glycogen and LB accumulation. Immunohistochemistry using astrocytic (glial fibrillary acidic protein) and microglial (ionized calcium-binding adapter molecule 1) markers was performed to investigate neuroinflammation. In the disease-relevant organ, the brain, Gys1 mRNA levels were reduced by 85% and GYS1 protein depleted. Glycogen accumulation was halted at the 4-month level, while LB formation and neuroinflammation were significantly, though incompletely, prevented. Skeletal muscle analysis confirmed that Gys1 knockout inhibits glycogen and LB accumulation. However, tamoxifen-independent Cre recombination precluded determination of disease halting or reversal in this tissue. Our study shows that Gys1 knockdown is a powerful means to prevent LD progression, but this approach did not reduce brain glycogen or LBs to levels below those at the time of intervention. These data suggest that endogenous mechanisms to clear brain LBs are absent or, possibly, compromised in laforin-deficient murine LD.


Assuntos
Gliose/prevenção & controle , Glicogênio Sintase/fisiologia , Inflamação/prevenção & controle , Doença de Lafora/patologia , Músculo Esquelético/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Animais , Feminino , Gliose/metabolismo , Gliose/patologia , Inflamação/metabolismo , Inflamação/patologia , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Doença de Lafora/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tamoxifeno/administração & dosagem
6.
Brain ; 144(10): 2985-2993, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33993268

RESUMO

Lafora disease is a fatal progressive myoclonus epilepsy. At root, it is due to constant acquisition of branches that are too long in a subgroup of glycogen molecules, leading them to precipitate and accumulate into Lafora bodies, which drive a neuroinflammatory response and neurodegeneration. As a potential therapy, we aimed to downregulate glycogen synthase, the enzyme responsible for glycogen branch elongation, in mouse models of the disease. We synthesized an antisense oligonucleotide (Gys1-ASO) that targets the mRNA of the brain-expressed glycogen synthase 1 gene (Gys1). We administered Gys1-ASO by intracerebroventricular injection and analysed the pathological hallmarks of Lafora disease, namely glycogen accumulation, Lafora body formation, and neuroinflammation. Gys1-ASO prevented Lafora body formation in young mice that had not yet formed them. In older mice that already exhibited Lafora bodies, Gys1-ASO inhibited further accumulation, markedly preventing large Lafora bodies characteristic of advanced disease. Inhibition of Lafora body formation was associated with prevention of astrogliosis and strong trends towards correction of dysregulated expression of disease immune and neuroinflammatory markers. Lafora disease manifests gradually in previously healthy teenagers. Our work provides proof of principle that an antisense oligonucleotide targeting the GYS1 mRNA could prevent, and halt progression of, this catastrophic epilepsy.


Assuntos
Glicogênio Sintase/administração & dosagem , Doença de Lafora/tratamento farmacológico , Doença de Lafora/patologia , Oligorribonucleotídeos Antissenso/administração & dosagem , Animais , Feminino , Injeções Intraventriculares , Doença de Lafora/genética , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética
7.
J Neurochem ; 157(6): 1897-1910, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32892347

RESUMO

Mammalian glycogen chain lengths are subject to complex regulation, including by seven proteins (protein phosphatase-1 regulatory subunit 3, PPP1R3A through PPP1R3G) that target protein phosphatase-1 (PP1) to glycogen to activate the glycogen chain-elongating enzyme glycogen synthase and inactivate the chain-shortening glycogen phosphorylase. Lafora disease is a fatal neurodegenerative epilepsy caused by aggregates of long-chained, and as a result insoluble, glycogen, termed Lafora bodies (LBs). We previously eliminated PPP1R3C from a Lafora disease mouse model and studied the effect on LB formation. In the present work, we eliminate and study the effect of absent PPP1R3D. In the interim, brain cell type levels of all PPP1R3 genes have been published, and brain cell type localization of LBs clarified. Integrating these data we find that PPP1R3C is the major isoform in most tissues including brain. In the brain, PPP1R3C is expressed at 15-fold higher levels than PPP1R3D in astrocytes, the cell type where most LBs form. PPP1R3C deficiency eliminates ~90% of brain LBs. PPP1R3D is quantitatively a minor isoform, but possesses unique MAPK, CaMK2 and 14-3-3 binding domains and appears to have an important functional niche in murine neurons and cardiomyocytes. In neurons, it is expressed equally to PPP1R3C, and its deficiency eliminates ~50% of neuronal LBs. In heart, it is expressed at 25% of PPP1R3C where its deficiency eliminates ~90% of LBs. This work studies the role of a second (PPP1R3D) of seven PP1 subunits that regulate the structure of glycogen, toward better understanding of brain glycogen metabolism generally, and in Lafora disease.


Assuntos
Modelos Animais de Doenças , Doença de Lafora/metabolismo , Miocárdio/metabolismo , Neurônios/metabolismo , Proteína Fosfatase 1/deficiência , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Glicogênio/metabolismo , Humanos , Doença de Lafora/genética , Doença de Lafora/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Neurônios/patologia , Proteína Fosfatase 1/genética
8.
Biochem Biophys Res Commun ; 521(2): 408-413, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31668922

RESUMO

Increasing evidence indicates some G protein-coupled receptors function as a heterodimer, which provide a novel target for therapeutics investigation. However, study on the receptor-receptor interaction interface, a potent target on interfering dimer formation, are still limited. Here, using bioluminescence resonance energy transfer (BRET) combined with co-immunoprecipitation (Co-IP), we found a new constitutive GPCR heterodimer, apelin receptor (APJ)-orexin receptor type 1 (OX1R). Both APJ and OX1R co-internalized when constantly subjected to cognate agonist (apelin-13 or orexin-A) specific to either protomer. Combined with BRET and immunostaining, the in vitro synthesized transmembrane peptides (TMs) interfering experiments suggests that TM4 and 5 of APJ act as the interaction interface of the APJ-OX1R heterodimer, and co-internalization could be disrupted by these peptides as well. Our study not only provide new evidence on GPCR heterodimerization, but address a novel heterodimerization interface, which can be severed as a potential pharmacological target.


Assuntos
Receptores de Apelina/química , Receptores de Orexina/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores de Apelina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
9.
PLoS Genet ; 12(6): e1006093, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27272733

RESUMO

EHBP-1 (Ehbp1) is a conserved regulator of endocytic recycling, acting as an effector of small GTPases including RAB-10 (Rab10). Here we present evidence that EHBP-1 associates with tubular endosomal phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] enriched membranes through an N-terminal C2-like (NT-C2) domain, and define residues within the NT-C2 domain that mediate membrane interaction. Furthermore, our results indicate that the EHBP-1 central calponin homology (CH) domain binds to actin microfilaments in a reaction that is stimulated by RAB-10(GTP). Loss of any aspect of this RAB-10/EHBP-1 system in the C. elegans intestinal epithelium leads to retention of basolateral recycling cargo in endosomes that have lost their normal tubular endosomal network (TEN) organization. We propose a mechanism whereby RAB-10 promotes the ability of endosome-bound EHBP-1 to also bind to the actin cytoskeleton, thereby promoting endosomal tubulation.


Assuntos
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Endossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Transporte Biológico/fisiologia , Caenorhabditis elegans/metabolismo , Endocitose/fisiologia , Mucosa Intestinal/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
10.
Biochem J ; 474(20): 3403-3420, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28827282

RESUMO

Glycogen storage disorders (GSDs) are caused by excessive accumulation of glycogen. Some GSDs [adult polyglucosan (PG) body disease (APBD), and Tarui and Lafora diseases] are caused by intracellular accumulation of insoluble inclusions, called PG bodies (PBs), which are chiefly composed of malconstructed glycogen. We developed an APBD patient skin fibroblast cell-based assay for PB identification, where the bodies are identified as amylase-resistant periodic acid-Schiff's-stained structures, and quantified. We screened the DIVERSet CL 10 084 compound library using this assay in high-throughput format and discovered 11 dose-dependent and 8 non-dose-dependent PB-reducing hits. Approximately 70% of the hits appear to act through reducing glycogen synthase (GS) activity, which can elongate glycogen chains and presumably promote PB generation. Some of these GS inhibiting hits were also computationally predicted to be similar to drugs interacting with the GS activator protein phosphatase 1. Our work paves the way to discovering medications for the treatment of PB-involving GSD, which are extremely severe or fatal disorders.


Assuntos
Fibroblastos/enzimologia , Doença de Depósito de Glicogênio , Glicogênio Sintase/metabolismo , Doenças do Sistema Nervoso , Adulto , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/tratamento farmacológico , Doença de Depósito de Glicogênio/enzimologia , Humanos , Masculino , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia
11.
Small ; 13(47)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29106073

RESUMO

2D halide semiconductors, a new family of 2D materials in addition to transition metal dichalcogenides, present ultralow dark current and high light conversion yield, which hold great potential in photoconductive detectors. Herein, a facile aqueous solution method is developed for the preparation of large-scale 2D lead dihalide nanosheets (PbF2-x Ix ). High-performance UV photodetectors are successfully implemented based on 2D PbF2-x Ix nanosheets. By modulating the components of halogens, the bandgap of PbF2-x Ix nanosheets can be tuned to meet varied detection spectra. The photoresponse dependence on incident power density, wavelength, detection environment, and temperature are systematically studied to investigate their detection mechanism. For PbI2 photodetectors, they are dominantly driven by a photoconduction mechanism and show a fast response speed and a low noise current density. A high normalized detectivity of 1.5 × 1012 Jones and an ION /IOFF ratio up to 103 are reached. On the other hand, PbFI photodetectors demonstrate a photogating mechanism mediated by trap states showing high responsivity. The novel 2D halide materials with wide bandgaps, superior detection performance, and facile synthesis process can enrich the Van der Waals solids family and hold great potential for a wide variety of applications in advanced optoelectronics.

12.
Hum Mutat ; 37(9): 926-32, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27233232

RESUMO

Arginine-glycine amidinotransferase (GATM) deficiency is an autosomal-recessive disorder caused by pathogenic variants in GATM. Clinical features include intellectual disability, hypotonia, and myopathy. Due to normal neurodevelopment in asymptomatic individuals on creatine monotherapy, GATM deficiency is a good candidate for newborn screening. To determine the carrier frequency of GATM deficiency, we performed functional characterization of rare missense variants in GATM reported as heterozygous in the Exome Variant Server database. To assess phenotype and genotype correlation, we developed a clinical severity scoring system. Two patients with mild phenotype had a nonsense missense variant. Severe phenotype was present in patients with missense as well as truncating variants. There seems to be no phenotype and genotype correlation. We cloned a novel GATM transcript. We found seven missense variants retaining 0% of wild-type GATM activity indicating putative pathogenicity. Based on our study results, high Genomic Evolutionary Rate Profiling conservation score, conserved amino acid substitution in species, and low allele frequency in exome databases would be the most sensitive in silico analysis tools to predict pathogenicity of missense variants. We present first study of the functional characterization of missense variants in GATM as well as clinical severity score of patients with GATM deficiency.


Assuntos
Amidinotransferases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Distúrbios da Fala/genética , Adolescente , Adulto , Amidinotransferases/genética , Amidinotransferases/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Criança , Pré-Escolar , Clonagem Molecular , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Feminino , Células HeLa , Humanos , Lactente , Deficiência Intelectual/metabolismo , Masculino , Distúrbios da Fala/metabolismo , Adulto Jovem
13.
Drug Dev Ind Pharm ; 42(3): 353-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26161937

RESUMO

OBJECTIVE: To preliminarily develop a surfactant-free, polymeric solid dispersion (PSD) of paclitaxel suitable for oral administration. METHODS: A co-solvent quench method was applied to screen the proper polymer matrix of the PSD which were prepared in a liquid system using a quasi-emulsion solvent diffusion method (QESDM). Three dissolution experiments and two in vivo tests in rats were used to explain the differences among the formulations. RESULTS: The theoretical solubility ratio of amorphous/crystalline PTX was 92.6 (37 °C). Hydroxypropyl methylcellulose acetate succinate (HPMCAS) was chosen as the polymer carrier of the PSD and a porous silicon dioxide [called white carbon black (WCB)] was selectable to be used to further adjust the dissolution rate. The absolute oral bioavailability (AOB, 20 mg/kg) of the three formulas [HPMCAS/paclitaxel/WCB = 4/1/0 (F1), 8/1/0 (F2) and 4/1/4 (F3), w/w/w] were 11.8, 13.6 and 25.6%, respectively. The AOB of F3 is nearly seven times higher than that (3.8%) of paclitaxel material (a control). The advantage of higher HPMCAS/paclitaxel ratio of F2 in a dissolution test was not reflected in the first in vivo test due to the relatively higher dose of polymer which could not be effectively dissolved under the limitation of intestinal environment. This was deduced from the dissolution tests and was finally validated when the oral dose of PTX (and thus polymer) was reduced. The relevant AOBs (10 mg/kg) were 10.4, 20.8 and 19.6%, respectively. CONCLUSION: The PSD is a promising formulation strategy and the QESDM is a practical preparation method to implement such formulation design.


Assuntos
Química Farmacêutica/métodos , Emulsões/síntese química , Paclitaxel/síntese química , Polímeros/síntese química , Solventes/síntese química , Administração Oral , Animais , Disponibilidade Biológica , Difusão , Emulsões/administração & dosagem , Emulsões/farmacocinética , Masculino , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Polímeros/administração & dosagem , Polímeros/farmacocinética , Ratos , Ratos Sprague-Dawley , Solventes/administração & dosagem , Solventes/farmacocinética
14.
Mol Genet Genomics ; 290(6): 2163-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26003046

RESUMO

Guanidinoacetate methyltransferase (GAMT) deficiency is a neurodegenerative disease. Although no symptomatic patients on treatment achieved normal neurodevelopment, three asymptomatic newborns were reported with normal neurodevelopmental outcome on neonatal treatment. GAMT deficiency is therefore a candidate for newborn screening programs, but there are no studies for the carrier frequency of this disease in the general population. To determine carrier frequency of GAMT deficiency, we studied the variants in the GAMT gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We used previously cloned GAMT transcript variant 1 (7 missense variants) and cloned a novel GAMT transcript variant 2 (5 missense variants). The latter was used in Exome Variant Server database according to recommendations of the Human Genome Variation Society. There were 4 missense variants (1 previously reported and 3 novel) with low GAMT enzyme activity indicating pathogenicity. Additionally, there was one novel frameshift and one novel nonsense variant likely pathogenic. There was no measurable GAMT enzyme activity in the wild type of GAMT transcript variant 2. We concluded that GAMT transcript variant 2 is not involved in GAMT protein synthesis. For this reason, Human Genome Variation Society should use mutation nomenclature according to the coding region of the GAMT transcript variant 1. The carrier frequency of GAMT deficiency was 0.123 % in the general population. As early diagnosis results in normal neurodevelopmental outcome, GAMT deficiency should be included in newborn screening programs to diagnose individuals at the asymptomatic stage of the disease to prevent permanent neurodevelopmental disability.


Assuntos
Triagem de Portadores Genéticos , Guanidinoacetato N-Metiltransferase/deficiência , Guanidinoacetato N-Metiltransferase/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos dos Movimentos/congênito , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Guanidinoacetato N-Metiltransferase/química , Células HeLa , Humanos , Recém-Nascido , Dados de Sequência Molecular , Transtornos dos Movimentos/genética , Triagem Neonatal , Homologia de Sequência de Aminoácidos
15.
Ann Neurol ; 75(3): 442-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24419970

RESUMO

Ubiquitin ligases regulate quantities and activities of target proteins, often pleiotropically. The malin ubiquitin E3 ligase is reported to regulate autophagy, the misfolded protein response, microRNA silencing, Wnt signaling, neuronatin-mediated endoplasmic reticulum stress, and the laforin glycogen phosphatase. Malin deficiency causes Lafora disease, pathologically characterized by neurodegeneration and accumulations of malformed glycogen (Lafora bodies). We show that reducing glycogen production in malin-deficient mice by genetically removing PTG, a glycogen synthesis activator protein, nearly completely eliminates Lafora bodies and rescues the neurodegeneration, myoclonus, seizure susceptibility, and behavioral abnormality. Glycogen synthesis downregulation is a potential therapy for the fatal adolescence onset epilepsy Lafora disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Doença de Lafora/enzimologia , Doença de Lafora/terapia , Ubiquitina-Proteína Ligases/deficiência , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Condicionamento Psicológico , Regulação para Baixo , Medo/psicologia , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Lafora/psicologia , Camundongos , Camundongos Knockout , Mioclonia/enzimologia , Mioclonia/genética , Mioclonia/terapia , Fármacos Neuroprotetores/metabolismo , Placa Amiloide , Convulsões/enzimologia , Convulsões/genética , Convulsões/terapia
17.
J Biol Chem ; 288(48): 34627-37, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24142699

RESUMO

Glycogen synthesis is a major component of the insulin response, and defective glycogen synthesis is a major portion of insulin resistance. Insulin regulates glycogen synthase (GS) through incompletely defined pathways that activate the enzyme through dephosphorylation and, more potently, allosteric activation. We identify Epm2aip1 as a GS-associated protein. We show that the absence of Epm2aip1 in mice impairs allosteric activation of GS by glucose 6-phosphate, decreases hepatic glycogen synthesis, increases liver fat, causes hepatic insulin resistance, and protects against age-related obesity. Our work identifies a novel GS-associated GS activity-modulating component of insulin resistance.


Assuntos
Fosfatases de Especificidade Dupla/genética , Glicogênio Sintase/metabolismo , Glicogênio/biossíntese , Resistência à Insulina/genética , Obesidade/patologia , Envelhecimento/genética , Animais , Fosfatases de Especificidade Dupla/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio/genética , Glicogênio Sintase/genética , Humanos , Insulina/genética , Insulina/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Obesidade/etiologia , Obesidade/genética , Fosforilação , Proteínas Tirosina Fosfatases não Receptoras
18.
PLoS Genet ; 7(4): e1002037, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21552327

RESUMO

Lafora disease is the most common teenage-onset neurodegenerative disease, the main teenage-onset form of progressive myoclonus epilepsy (PME), and one of the severest epilepsies. Pathologically, a starch-like compound, polyglucosan, accumulates in neuronal cell bodies and overtakes neuronal small processes, mainly dendrites. Polyglucosan formation is catalyzed by glycogen synthase, which is activated through dephosphorylation by glycogen-associated protein phosphatase-1 (PP1). Here we remove PTG, one of the proteins that target PP1 to glycogen, from mice with Lafora disease. This results in near-complete disappearance of polyglucosans and in resolution of neurodegeneration and myoclonic epilepsy. This work discloses an entryway to treating this fatal epilepsy and potentially other glycogen storage diseases.


Assuntos
Glucanos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Lafora/fisiopatologia , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Glucanos/análise , Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Lafora/genética , Camundongos , Camundongos Knockout
19.
ACS Appl Mater Interfaces ; 16(19): 25343-25352, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711173

RESUMO

Smart windows with synergetic light modulation have heightened demands for applications in smart cars and novel buildings. However, improving the on-demand energy-saving efficiency is quite challenging due to the difficulty of modulating sunlight with a broad bandwidth in an energy-saving way. Herein, a smart window with switchable near-infrared light transmittance and passive radiative cooling is prepared via a monomer design strategy and photoinduced polymerization. The effects of hydrogen bonds and fluorine groups in acrylate monomers on the electro-optical properties as well as microstructures of polymer-dispersed liquid crystal films have been systematically studied. Some films show a high contrast ratio of 90.4 or a low threshold voltage (Vth) of 2.0 V, which can be roll-to-roll processed in a large area. Besides, the film has a superior indoor temperature regulation ability due to its passive radiative cooling and controllable near-infrared light transmittance properties. Its radiative cooling efficiency is calculated to be 142.69 W/m2 and NIR transmittance could be switched to below 10%. The introduction of a carboxylic monomer and fluorinated monomer into the system endows the film with a highly efficient temperature management capability. The film has great potential for applications in fields such as flexible smart windows, camouflage materials, and so on.

20.
J Biol Chem ; 287(30): 25650-9, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22669944

RESUMO

The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Glicogênio/metabolismo , Doença de Lafora/enzimologia , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Animais , Células Cultivadas , Fosfatases de Especificidade Dupla/genética , Feminino , Glicogênio/genética , Humanos , Doença de Lafora/genética , Doença de Lafora/patologia , Masculino , Camundongos , Camundongos Knockout , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/genética , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA