Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 22(1): 46-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331749

RESUMO

Porcine cells devoid of three major carbohydrate xenoantigens, αGal, Neu5GC, and SDa (TKO) exhibit markedly reduced binding of human natural antibodies. Therefore, it is anticipated that TKO pigs will be better donors for human xenotransplantation. However, previous studies on TKO pigs using old world monkeys (OWMs) have been disappointing because of higher anti-TKO pig antibodies in OWMs than humans. Here, we show that long-term survival of renal xenografts from TKO pigs that express additional human transgenes (hTGs) can be achieved in cynomolgus monkeys. Kidney xenografts from TKO-hTG pigs were transplanted into eight cynomolgus recipients without pre-screening for low anti-pig antibody titers. Two recipients of TKO-hTG xenografts with low expression of human complement regulatory proteins (CRPs) (TKO-A) survived for 2 and 61 days, whereas six recipients of TKO-hTG xenografts with high CRP expression (TKO-B) survived for 15, 20, 71, 135, 265, and 316 days. Prolonged CD4+ T cell depletion and low anti-pig antibody titers, which were previously reported important for long-term survival of αGal knock-out (GTKO) xenografts, were not always required for long-term survival of TKO-hTG renal xenografts. This study indicates that OWMs such as cynomolgus monkeys can be used as a relevant model for clinical application of xenotransplantation using TKO pigs.


Assuntos
Transplante de Rim , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto/genética , Humanos , Macaca fascicularis , Suínos , Transplante Heterólogo
2.
Xenotransplantation ; 29(6): e12780, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125388

RESUMO

The phenomenon of diminishing hematocrit after in vivo liver and lung xenotransplantation and during ex vivo liver xenoperfusion has largely been attributed to action by resident liver porcine macrophages, which bind and destroy human erythrocytes. Porcine sialoadhesin (siglec-1) was implicated previously in this interaction. This study examines the effect of porcine genetic modifications, including knockout of the CMAH gene responsible for expression of Neu5Gc sialic acid, on the adhesion of human red blood cells (RBCs) to porcine macrophages. Wild-type (WT) porcine macrophages and macrophages from several strains of genetically engineered pigs, including CMAH gene knockout and several human transgenes (TKO+hTg), were incubated with human RBCs and "rosettes" (≥3 erythrocytes bound to one macrophage) were quantified by microscopy. Our results show that TKO+hTg genetic modifications significantly reduced rosette formation. The monoclonal antibody 1F1, which blocks porcine sialoadhesin, significantly reduced rosette formation by WT and TKO+hTg macrophages compared with an isotype control antibody. Further, desialation of human RBCs with neuraminidase before addition to WT or TKO+hTg macrophages resulted in near-complete abrogation of rosette formation, to a level not significantly different from porcine RBC rosette formation on porcine macrophages. These observations are consistent with rosette formation being mediated by binding of sialic acid on human RBCs to sialoadhesin on porcine macrophages. In conclusion, the data predict that TKO+hTg genetic modifications, coupled with targeting of porcine sialoadhesin by the 1F1 mAb, will attenuate erythrocyte sequestration and anemia during ex vivo xenoperfusion and following in vivo liver, lung, and potentially other organ xenotransplantation.


Assuntos
Ácido N-Acetilneuramínico , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Suínos , Animais , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transplante Heterólogo/métodos , Ácido N-Acetilneuramínico/metabolismo , Macrófagos , Eritrócitos/metabolismo
3.
Bioorg Med Chem Lett ; 73: 128891, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842205

RESUMO

TYK2 is a member of the JAK family of kinases and a key mediator of IL-12, IL-23, and type I interferon signaling. These cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genetic association studies, TYK2 inhibition is an attractive therapeutic strategy for these diseases. Herein, we report the discovery of a series of highly selective catalytic site TYK2 inhibitors designed using FEP+ and structurally enabled design starting from a virtual screen hit. We highlight the structure-based optimization to identify a lead candidate 30, a potent cellular TYK2 inhibitor with excellent selectivity, pharmacokinetic properties, and in vivo efficacy in a mouse psoriasis model.


Assuntos
Psoríase , TYK2 Quinase , Animais , Humanos , Janus Quinases , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Psoríase/tratamento farmacológico , Roedores
4.
Br J Haematol ; 184(6): 925-936, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30537114

RESUMO

The L265P somatic mutation in the Myeloid Differentiation Primary Response 88 (MYD88) gene is a recurrent mutation in chronic lymphocytic leukaemia (CLL). This mutation has functional effects in various haematological malignancies but its role in CLL remains to be fully elucidated. Here, we report that MYD88 L265P mutations are associated with mutated immunoglobulin heavy-chain gene (IGHV-M) status and that among IGHV-M patients, the presence of MYD88 L265P is associated with younger age at diagnosis. Using microarray and RNA-Seq gene expression analysis, we further observe that the MYD88 L265P mutation is associated with a distinctive gene expression signature that predicts both failure-free survival and overall survival. This association was validated in an independent cohort of patients. To determine whether MYD88 L265P mutations can be therapeutically exploited in CLL, we treated primary cells with an inhibitor of interleukin 1 receptor-associated kinase 4 (IRAK4), a critical effector of the MYD88 pathway. IRAK4 inhibition decreased downstream nuclear factor-κB signalling and cell viability in CLL cells, indicating the potential of the MYD88 pathway as a therapeutic target in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Fator 88 de Diferenciação Mieloide/genética , Adulto , Idoso , Estudos de Coortes , Citocinas/biossíntese , Feminino , Genes de Cadeia Pesada de Imunoglobulina , Humanos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Mutação , Fator 88 de Diferenciação Mieloide/metabolismo , Prognóstico , Transdução de Sinais , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 113(13): E1796-805, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976583

RESUMO

Simultaneous inhibition of the acetyl-CoA carboxylase (ACC) isozymes ACC1 and ACC2 results in concomitant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation and may favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver disease. Using structure-based drug design, we have identified a series of potent allosteric protein-protein interaction inhibitors, exemplified by ND-630, that interact within the ACC phosphopeptide acceptor and dimerization site to prevent dimerization and inhibit the enzymatic activity of both ACC isozymes, reduce fatty acid synthesis and stimulate fatty acid oxidation in cultured cells and in animals, and exhibit favorable drug-like properties. When administered chronically to rats with diet-induced obesity, ND-630 reduces hepatic steatosis, improves insulin sensitivity, reduces weight gain without affecting food intake, and favorably affects dyslipidemia. When administered chronically to Zucker diabetic fatty rats, ND-630 reduces hepatic steatosis, improves glucose-stimulated insulin secretion, and reduces hemoglobin A1c (0.9% reduction). Together, these data suggest that ACC inhibition by representatives of this series may be useful in treating a variety of metabolic disorders, including metabolic syndrome, type 2 diabetes mellitus, and fatty liver disease.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Dislipidemias/tratamento farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fígado Gorduroso/tratamento farmacológico , Pirimidinonas/farmacologia , Tiofenos/farmacologia , Acetil-CoA Carboxilase/metabolismo , Animais , Inibidores Enzimáticos/farmacocinética , Feminino , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Humanos , Resistência à Insulina , Masculino , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Obesidade/etiologia , Multimerização Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos Zucker , Relação Estrutura-Atividade
6.
Hepatology ; 66(2): 324-334, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28470676

RESUMO

NDI-010976, an allosteric inhibitor of acetyl-coenzyme A carboxylases (ACC) ACC1 and ACC2, reduces hepatic de novo lipogenesis (DNL) and favorably affects steatosis, inflammation, and fibrosis in animal models of fatty liver disease. This study was a randomized, double-blind, placebo-controlled, crossover trial evaluating the pharmacodynamic effects of a single oral dose of NDI-010976 on hepatic DNL in overweight and/or obese but otherwise healthy adult male subjects. Subjects were randomized to receive either NDI-010976 (20, 50, or 200 mg) or matching placebo in period 1, followed by the alternate treatment in period 2; and hepatic lipogenesis was stimulated with oral fructose administration. Fractional DNL was quantified by infusing a stable isotope tracer, [1-13 C]acetate, and monitoring 13 C incorporation into palmitate of circulating very low-density lipoprotein triglyceride. Single-dose administration of NDI-010976 was well tolerated at doses up to and including 200 mg. Fructose administration over a 10-hour period stimulated hepatic fractional DNL an average of 30.9 ± 6.7% (mean ± standard deviation) above fasting DNL values in placebo-treated subjects. Subjects administered single doses of NDI-010976 at 20, 50, or 200 mg had significant inhibition of DNL compared to placebo (mean inhibition relative to placebo was 70%, 85%, and 104%, respectively). An inverse relationship between fractional DNL and NDI-010976 exposure was observed with >90% inhibition of fractional DNL associated with plasma concentrations of NDI-010976 >4 ng/mL. CONCLUSION: ACC inhibition with a single dose of NDI-010976 is well tolerated and results in a profound dose-dependent inhibition of hepatic DNL in overweight adult male subjects. Therefore, NDI-010976 could contribute considerable value to the treatment algorithm of metabolic disorders characterized by dysregulated fatty acid metabolism, including nonalcoholic steatohepatitis. (Hepatology 2017;66:324-334).


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Lipogênese/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sobrepeso/tratamento farmacológico , Acetil-CoA Carboxilase/administração & dosagem , Administração Oral , Adulto , Índice de Massa Corporal , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Medição de Risco , Resultado do Tratamento
7.
J Pharmacol Exp Ther ; 346(2): 219-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23709115

RESUMO

Targeted therapies that suppress B cell receptor (BCR) signaling have emerged as promising agents in autoimmune disease and B cell malignancies. Bruton's tyrosine kinase (Btk) plays a crucial role in B cell development and activation through the BCR signaling pathway and represents a new target for diseases characterized by inappropriate B cell activity. N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide (CC-292) is a highly selective, covalent Btk inhibitor and a sensitive and quantitative assay that measures CC-292-Btk engagement has been developed. This translational pharmacodynamic assay has accompanied CC-292 through each step of drug discovery and development. These studies demonstrate the quantity of Btk bound by CC-292 correlates with the efficacy of CC-292 in vitro and in the collagen-induced arthritis model of autoimmune disease. Recently, CC-292 has entered human clinical trials with a trial design that has provided rapid insight into safety, pharmacokinetics, and pharmacodynamics. This first-in-human healthy volunteer trial has demonstrated that a single oral dose of 2 mg/kg CC-292 consistently engaged all circulating Btk protein and provides the basis for rational dose selection in future clinical trials. This targeted covalent drug design approach has enabled the discovery and early clinical development of CC-292 and has provided support for Btk as a valuable drug target for B-cell mediated disorders.


Assuntos
Acrilamidas/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Acrilamidas/farmacocinética , Acrilamidas/uso terapêutico , Tirosina Quinase da Agamaglobulinemia , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Método Duplo-Cego , Humanos , Camundongos , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
8.
Drug Metab Dispos ; 41(4): 814-26, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23355637

RESUMO

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, [(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-yl] N-[(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only ∼10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ([(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.


Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacocinética , Compostos de Epóxi/farmacocinética , Metaloendopeptidases/antagonistas & inibidores , Valina/análogos & derivados , Aminopeptidases/sangue , Animais , Esquema de Medicação , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/análise , Compostos de Epóxi/farmacologia , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfoma não Hodgkin/sangue , Linfoma não Hodgkin/tratamento farmacológico , Metaloendopeptidases/sangue , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Ratos , Relação Estrutura-Atividade , Timo/efeitos dos fármacos , Timo/metabolismo , Valina/administração & dosagem , Valina/análise , Valina/farmacocinética , Valina/farmacologia
9.
Nat Chem Biol ; 7(1): 22-4, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21113170

RESUMO

Designing selective inhibitors of proteases has proven problematic, in part because pharmacophores that confer potency exploit the conserved catalytic apparatus. We developed a fundamentally different approach by designing irreversible inhibitors that target noncatalytic cysteines that are structurally unique to a target in a protein family. We have successfully applied this approach to the important therapeutic target HCV protease, which has broad implications for the design of other selective protease inhibitors.


Assuntos
Inibidores de Cisteína Proteinase/uso terapêutico , Cisteína/antagonistas & inibidores , Desenho de Fármacos , Oligopeptídeos/uso terapêutico , Biocatálise , Bioquímica/métodos , Cristalografia por Raios X , Cisteína/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepacivirus/crescimento & desenvolvimento , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Virologia/métodos
10.
Bioorg Med Chem Lett ; 23(2): 472-5, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23245510

RESUMO

In the quest to discover a potent and selective class of direct agonists to the sphingosine-1-phosphate receptor, we explored the carboxylate functional group as a replacement to previously reported lead phosphates. This has led to the discovery of potent and selective direct agonists with moderate to substantial in vivo lymphopenia. The previously reported selectivity enhancing moiety (SEM) and selectivity enhancing orientation (SEO) in the phenylamide and phenylimidazole scaffolds were crucial to obtaining selectivity for S1P receptor subtype 1 over 3.


Assuntos
Aminoácidos/química , Aminoácidos/farmacologia , Linfopenia , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/química , Administração Oral , Aminoácidos/administração & dosagem , Animais , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/metabolismo
11.
J Med Chem ; 66(15): 10473-10496, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427891

RESUMO

TYK2 is a key mediator of IL12, IL23, and type I interferon signaling, and these cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genome-wide association studies and clinical results, TYK2 inhibition through small molecules is an attractive therapeutic strategy to treat these diseases. Herein, we report the discovery of a series of highly selective pseudokinase (Janus homology 2, JH2) domain inhibitors of TYK2 enzymatic activity. A computationally enabled design strategy, including the use of FEP+, was instrumental in identifying a pyrazolo-pyrimidine core. We highlight the utility of computational physics-based predictions used to optimize this series of molecules to identify the development candidate 30, a potent, exquisitely selective cellular TYK2 inhibitor that is currently in Phase 2 clinical trials for the treatment of psoriasis and psoriatic arthritis.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Psoríase , Humanos , TYK2 Quinase , Estudo de Associação Genômica Ampla , Doenças Autoimunes/tratamento farmacológico , Psoríase/tratamento farmacológico
12.
Nat Biomed Eng ; 5(2): 134-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958897

RESUMO

The clinical applicability of porcine xenotransplantation-a long-investigated alternative to the scarce availability of human organs for patients with organ failure-is limited by molecular incompatibilities between the immune systems of pigs and humans as well as by the risk of transmitting porcine endogenous retroviruses (PERVs). We recently showed the production of pigs with genomically inactivated PERVs. Here, using a combination of CRISPR-Cas9 and transposon technologies, we show that pigs with all PERVs inactivated can also be genetically engineered to eliminate three xenoantigens and to express nine human transgenes that enhance the pigs' immunological compatibility and blood-coagulation compatibility with humans. The engineered pigs exhibit normal physiology, fertility and germline transmission of the 13 genes and 42 alleles edited. Using in vitro assays, we show that cells from the engineered pigs are resistant to human humoral rejection, cell-mediated damage and pathogenesis associated with dysregulated coagulation. The extensive genome engineering of pigs for greater compatibility with the human immune system may eventually enable safe and effective porcine xenotransplantation.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética/métodos , Células Germinativas/metabolismo , Sus scrofa/genética , Sus scrofa/virologia , Transplante Heterólogo , Animais , Proteína 9 Associada à CRISPR/genética , Células Cultivadas , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Oxigenases de Função Mista/genética , N-Acetilgalactosaminiltransferases/genética , Sus scrofa/imunologia
13.
Bioorg Med Chem Lett ; 20(8): 2520-4, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20304639

RESUMO

In pursuit of a potent and highly selective sphingosine-1-phosphate receptor agonists with an improved in vivo conversion of the precursor to the active phospho-drug, we have utilized previously reported phenylamide and phenylimidazole scaffolds to identify a selectivity enhancing moiety (SEM) and selectivity enhancing orientation (SEO) within both pharmacophores. SEM and SEO have allowed for over 100 to 500-fold improvement in selectivity for S1P receptor subtype 1 over subtype 3. Utility of SEM and SEO and further SAR study allowed for discovery of a potent and selective preclinical candidate PPI-4955 (21b) with an excellent in vivo potency and dose responsiveness and markedly improved overall in vivo pharmacodynamic properties upon oral administration.


Assuntos
Amino Álcoois/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Administração Oral , Amino Álcoois/administração & dosagem , Animais , Camundongos , Relação Estrutura-Atividade
14.
J Clin Invest ; 130(4): 1863-1878, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149730

RESUMO

Spondyloarthritis (SpA) represents a family of inflammatory diseases of the spine and peripheral joints. Ankylosing spondylitis (AS) is the prototypic form of SpA in which progressive disease can lead to fusion of the spine. Therapeutically, knowledge of type 3 immunity has translated into the development of IL-23- and IL-17A-blocking antibodies for the treatment of SpA. Despite being able to provide symptomatic control, the current biologics do not prevent the fusion of joints in AS patients. Thus, there is an unmet need for disease-modifying drugs. Genetic studies have linked the Janus kinase TYK2 to AS. TYK2 is a mediator of type 3 immunity through intracellular signaling of IL-23. Here, we describe and characterize a potentially novel small-molecule inhibitor of TYK2 that blocked IL-23 signaling in vitro and inhibited disease progression in animal models of SpA. The effect of the inhibitor appears to be TYK2 specific, using TYK2-inactive mice, which further revealed a duality in the induction of IL-17A and IL-22 by IL-23. Specifically, IL-22 production was TYK2/JAK2/STAT3 dependent, while IL-17A was mostly JAK2 dependent. Finally, we examined the effects of AS-associated TYK2 SNPs on TYK2 expression and function and correlated them with AS disease progression. This work provides evidence that TYK2 inhibitors have great potential as an orally delivered therapeutic for SpA.


Assuntos
Polimorfismo de Nucleotídeo Único , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Espondilartrite , TYK2 Quinase , Animais , Humanos , Interleucinas/genética , Interleucinas/imunologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Espondilartrite/tratamento farmacológico , Espondilartrite/genética , Espondilartrite/imunologia , Espondilartrite/patologia , TYK2 Quinase/antagonistas & inibidores , TYK2 Quinase/genética , TYK2 Quinase/imunologia
15.
Bioorg Med Chem Lett ; 19(2): 369-72, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19081720

RESUMO

In the design of potent and selective sphingosine-1-phosphate receptor agonists, we were able to identify two series of molecules based on phenylamide and phenylimidazole analogs of FTY-720. Several designed molecules in these scaffolds have demonstrated selectivity for S1P receptor subtype 1 versus 3 and excellent in vivo activity in mouse. Two molecules PPI-4621 (4b) and PPI-4691 (10a), demonstrated dose responsive lymphopenia, when administered orally.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Imidazóis/síntese química , Imidazóis/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Amidas/química , Animais , Relação Dose-Resposta a Droga , Humanos , Imidazóis/química , Camundongos , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 19(8): 2315-9, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19282175

RESUMO

In pursuit of potent and selective sphingosine-1-phosphate receptor agonists, we have utilized previously reported phenylamide and phenylimidazole scaffolds to explore extensive side-chain modifications to generate new molecular entities. A number of designed molecules demonstrate good selectivity and excellent in vitro and in vivo potency in both mouse and rat models. Oral administration of the lead molecule 11c (PPI-4667) demonstrated potent and dose-responsive lymphopenia.


Assuntos
Amidas/síntese química , Imidazóis/síntese química , Receptores de Lisoesfingolipídeo/agonistas , Amidas/farmacologia , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Cloridrato de Fingolimode , Imidazóis/farmacologia , Camundongos , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Subunidades Proteicas/agonistas , Subunidades Proteicas/fisiologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacologia
17.
Cell Metab ; 29(1): 174-182.e5, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30244972

RESUMO

The incidence of hepatocellular carcinoma (HCC) is rapidly increasing due to the prevalence of obesity and non-alcoholic fatty liver disease, but the molecular triggers that initiate disease development are not fully understood. We demonstrate that mice with targeted loss-of-function point mutations within the AMP-activated protein kinase (AMPK) phosphorylation sites on acetyl-CoA carboxylase 1 (ACC1 Ser79Ala) and ACC2 (ACC2 Ser212Ala) have increased liver de novo lipogenesis (DNL) and liver lesions. The same mutation in ACC1 also increases DNL and proliferation in human liver cancer cells. Consistent with these findings, a novel, liver-specific ACC inhibitor (ND-654) that mimics the effects of ACC phosphorylation inhibits hepatic DNL and the development of HCC, improving survival of tumor-bearing rats when used alone and in combination with the multi-kinase inhibitor sorafenib. These studies highlight the importance of DNL and dysregulation of AMPK-mediated ACC phosphorylation in accelerating HCC and the potential of ACC inhibitors for treatment.


Assuntos
Acetil-CoA Carboxilase , Carcinoma Hepatocelular/metabolismo , Lipogênese , Neoplasias Hepáticas/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/fisiologia , Animais , Células Hep G2 , Humanos , Masculino , Camundongos , Fosforilação , Ratos , Ratos Wistar
18.
Clin Cancer Res ; 12(8): 2583-90, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16638869

RESUMO

PURPOSE: Fumagillin and related compounds have potent antiproliferative activity through inhibition of methionine aminopeptidase-2 (MetAP-2). It has recently been reported that MetAP-2 is highly expressed in germinal center B cells and germinal center-derived non-Hodgkin's lymphomas (NHL), suggesting an important role for MetAP-2 in proliferating B cells. Therefore, we determined the importance of MetAP-2 in normal and transformed germinal center B cells by evaluating the effects of MetAP-2 inhibition on the form and function of germinal centers and germinal center-derived NHL cells. EXPERIMENTAL DESIGN: To examine the activity of PPI-2458 on germinal center morphology, spleen sections from cynomolgus monkeys treated with oral PPI-2458 were analyzed. Antiproliferative activity of PPI-2458 was assessed on germinal center-derived NHL lines in culture. A MetAP-2 pharmacodynamic assay was used to determine cellular MetAP-2 inhibition following PPI-2458 treatment. Finally, inhibition of MetAP-2 and proliferation by PPI-2458 was examined in the human SR NHL line in culture and in implanted xenografts. RESULTS: Oral PPI-2458 caused a reduction in germinal center size and number in lymphoid tissues from treated animals. PPI-2458 potently inhibited growth (GI(50) = 0.2-1.9 nmol/L) of several NHL lines in a manner that correlated with MetAP-2 inhibition. Moreover, orally administered PPI-2458 significantly inhibited SR tumor growth, which correlated with inhibition of tumor MetAP-2 (>85% at 100 mg/kg) in mice. CONCLUSIONS: These results show the potent antiproliferative activity of PPI-2458 on NHL lines in vitro and oral antitumor activity in vivo and suggest the therapeutic potential of PPI-2458 as a novel agent for treatment of NHL should be evaluated in the clinical setting.


Assuntos
Aminopeptidases/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Metaloendopeptidases/antagonistas & inibidores , Valina/análogos & derivados , Aminopeptidases/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Western Blotting , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Compostos de Epóxi/uso terapêutico , Feminino , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/patologia , Humanos , Contagem de Linfócitos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Macaca fascicularis , Metaloendopeptidases/metabolismo , Camundongos , Camundongos SCID , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo , Valina/farmacologia , Valina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Int J Oncol ; 28(4): 955-63, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16525646

RESUMO

Over the past few decades, melanoma has shown the fastest growing incidence rate of all cancers. This malignancy is clinically defined by its potential to rapidly metastasize, and advanced metastatic melanomas are highly resistant to existing therapeutic regimens. Here, we report that PPI-2458, a novel, orally active agent of the fumagillin class of irreversible methionine aminopeptidase-2 (MetAP-2) inhibitors, potently inhibited the proliferation of B16F10 melanoma cells in vitro, with a growth inhibitory concentration 50% (GI50) of 0.2 nM. B16F10 growth inhibition was correlated with the inhibition of MetAP-2 enzyme, in a dose-dependent fashion, as determined by a pharmacodynamic assay, which measures the amount of uninhibited MetAP-2 following PPI-2458 treatment. Prolonged exposure of B16F10 cells to PPI-2458 at concentrations of up to 1 microM, 5,000-fold above the GI50, did not alter their sensitivity to PPI-2458 growth inhibition and no drug resistance was observed. Moreover, prolonged exposure to this agent induced melanogenesis, concomitant with the elevated expression of the melanocyte-specific enzymes tyrosinase and tyrosinase-related proteins (TRP) 1 and 2, a morphological feature associated with differentiated melanocytes. PPI-2458, when administered orally (p.o.), significantly inhibited B16F10 tumor growth in mice in a dose-dependent fashion, with a maximum inhibition of 62% at 100 mg/kg. This growth inhibition was directly correlated to the amount of irreversibly inhibited MetAP-2 (80% at 100 mg/kg PPI-2458) in tumor tissue. These data demonstrate that PPI-2458 has potent antiproliferative activity against B16F10 cells in vitro and in vivo, and that both activities are directly correlated with levels of MetAP-2 enzyme inhibition. This antiproliferative activity, coupled with additional observations from studies in vitro (absence of detectable resistance to PPI-2458 and induction of morphological features consistent with differentiated melanocytes), provides a rationale for assessing the therapeutic potential of PPI-2458 in the treatment of melanoma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Melanoma Experimental/prevenção & controle , Valina/análogos & derivados , Administração Oral , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/uso terapêutico , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Humanos , Masculino , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Metionil Aminopeptidases , Camundongos , Camundongos Endogâmicos C57BL , Valina/administração & dosagem , Valina/farmacologia , Valina/uso terapêutico
20.
Cancer Res ; 63(9): 2079-87, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12727823

RESUMO

Members of the integrin family influence several aspects of tumor progression and metastasis, including cell survival, proliferation, and angiogenesis. Specific integrins such as alpha(v)beta(3) and alpha(v)beta(5) are involved in regulating endothelial cell function, and thus angiogenesis. We evaluated the effect of the alpha(v)beta(3)/alpha(v)beta(5) integrin antagonist S247 on the growth and angiogenesis of colon cancer liver metastases in an orthotopic murine model. Murine colon cancer cells were injected into the spleens of BALB/c mice to produce liver metastases. On day 7, miniature osmotic pumps were implanted into the subcutis to continuously infuse either saline or 70 mg/kg/day S247. All mice were sacrificed when control mice became moribund. Mice that received S247 developed significantly fewer liver metastases than did controls (P < 0.05). Using the same model, a subsequent survival study was performed. Mice were sacrificed when moribund as determined by an observer blinded to the treatment given. Treatment with S247 significantly prolonged overall survival (P < 0.05). Interestingly, primary tumors in the spleen were the cause of death in the S247-treated group as S247 appeared to have little effect on these tumors. Immunohistochemical staining demonstrated a significant reduction of vessels in liver metastases of S247-treated mice (P < 0.001), a significant increase in endothelial cell apoptosis (P < 0.05), and a significant decrease in pericyte coverage (P < 0.0001). To determine the role of S247 on angiogenesis, we examined the effect of S247 in vitro on human umbilical vein endothelial cells (HUVECs) and human vascular smooth muscle cells (hVSMCs). The addition of S247 to HUVECs and hVSMCs growing on vitronectin-coated flasks and in Matrigel significantly impaired cell growth and colony formation, respectively (P < 0.05). Furthermore, S247 completely inhibited the attachment of HUVECs and hVSMCs and increased apoptosis by six- to 9fold compared with controls. In in vitro invasion assays, S247-treated cells demonstrated decreased migration (P < 0.05). In conclusion, S247 demonstrated significant antimetastatic and antiangiogenic activity and impaired both endothelial and hVSMC/pericyte function in vitro and in vivo. The use of agents such as integrin antagonists that target multiple cell types involved in angiogenesis may be a more effective method of inhibiting angiogenesis than agents targeting only the endothelial cells.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias do Colo/tratamento farmacológico , Integrina alfaVbeta3/antagonistas & inibidores , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/secundário , Neovascularização Patológica/tratamento farmacológico , Compostos Orgânicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA