Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pak J Med Sci ; 40(1Part-I): 174-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38196469

RESUMO

Objective: To identify the association between the changes in intestinal microflora and renal function in patients with chronic renal failure (CRF). Methods: This retrospective case-control study included 50 patients with CRF (study group), admitted to the Clinical Laboratory Department of Shenzhen People's Hospital from March 2021 to May 2022, and 50 healthy individuals (control group). The association between the distribution of intestinal microflora and the glomerular filtration rate (GFR), levels of serum creatinine (SCr), blood urea nitrogen (BUN), and serum cystatin C (CysC) were analyzed. Results: Intestinal microflora of CRF patients had significantly higher levels of Enterococci compared to the control group (p-Value <0.05), while the levels of Bifidobacterium spp. and Escherichia coli were lower in the study group (p-Value <0.05). GFR was lower, and the levels of BUN, SCr, and CysC were higher in the study group compared to the control group (all p-Value <0.05). GFR, BUN, SCr and CysC levels in the study group negatively correlated with the levels of Bifidobacterium spp. and Lactobacillus spp. (r<0, P<0.05), and positively correlated with the abundance of Enterococcus spp. and Escherichia coli (r>0, P<0.05) in the intestinal microflora. Conclusions: Changes in intestinal microbiota are associated with a significant decrease in GFR and a marked increase in serum levels of renal function indicators, and alterations in the balance of intestinal microbiota may lead to further aggravation of the renal function damage in patients with CRF.

2.
J Transl Med ; 21(1): 839, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993937

RESUMO

BACKGROUND: Activated osteoclasts cause excessive bone resorption, and disrupt bone homeostasis, leading to osteoporosis. The extracellular signal-regulated kinase (ERK) signaling is the classical pathway related to osteoclast differentiation, and mitochondrial reactive oxygen species are closely associated with the differentiation of osteoclasts. Myrislignan (MRL), a natural product derived from nutmeg, has multiple pharmacological activities; however, its therapeutic effect on osteoporosis is unclear. Here, we investigated whether MRL could inhibit osteoclastogenesis and bone mass loss in an ovariectomy mouse model by suppressing mitochondrial function and ERK signaling. METHODS: Tartrate-resistant and phosphatase (TRAP) and bone resorption assays were performed to observe the effect of MRL on osteoclastogenesis of bone marrow macrophages. MitoSOX RED and tetramethyl rhodamine methyl ester (TMRM) staining was performed to evaluate the inhibitory effect of MRL on mitochondria. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was performed to detect whether MRL suppressed the expression of osteoclast-specific genes. The impact of MRL on the protein involved in the mitogen-activated protein kinase (MAPK) and nuclear factor-κB pathways was evaluated using western blotting. In addition, a specific ERK agonist LM22B-10, was used to revalidate the inhibitory effect of MRL on ERK. Finally, we established an ovariectomy mouse model to assess the therapeutic effect of MRL on osteoporosis in vivo. RESULTS: MRL inhibited osteoclast differentiation and the associated bone resorption, by significantly decreasing osteoclastic gene expression. Mechanistically, MRL inhibited the phosphorylation of ERK by suppressing the mitochondrial function, thereby downregulating the nuclear factor of activated T cells 1 (NFATc1) signaling. LM22B-10 treatment further verified the targeted inhibition effect of MRL on ERK. Microscopic computed tomographic and histologic analyses of the tibial tissue sections indicated that ovariectomized mice had lower bone mass and higher expression of ERK compared with normal controls. However, MRL treatment significantly reversed these effects, indicating the anti-osteoporosis effect of MRL. CONCLUSION: We report for the first time that MRL inhibits ERK signaling by suppressing mitochondrial function, thereby ameliorating ovariectomy-induced osteoporosis. Our findings can provide a basis for the development of a novel therapeutic strategy for osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Humanos , Feminino , Camundongos , Animais , Osteogênese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteoclastos , Reabsorção Óssea/patologia , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/metabolismo , NF-kappa B/metabolismo , Diferenciação Celular , Ovariectomia , Ligante RANK/metabolismo
3.
J Transl Med ; 21(1): 656, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740194

RESUMO

BACKGROUND: The catenin beta 1 gene (CTNNB1) plays a crucial role in the malignant progression of various cancers. Recent studies have suggested that CTNNB1 hyperactivation is closely related to the occurrence and development of bladder cancer (BCa). As a member of the deubiquitinating enzyme (DUB) family, ubiquitin C-terminal hydrolase L3 (UCHL3) is abnormally expressed in various cancers. In this study, we discovered that UCHL3 is a novel oncogene in bladder cancer, suggesting it is a promising target against bladder cancer. METHODS: We utilized CRISPR‒Cas9 technology to construct cell lines with UCHL3 stably overexpressed or knocked out. The successful overexpression or knockout of UCHL3 was determined using Western blotting. Then, we performed CCK-8, colony formation, soft agar and Transwell migration assays to determine the impact of the UCHL3 gene on cell phenotype. RNA-seq was performed with UCHL3-depleted T24 cells (established via CRISPR-Cas9-mediated genomic editing). We analyzed differences in WNT pathway gene expression in wild-type and UCHL3-deficient T24 cell lines using a heatmap and by gene set enrichment analysis (GSEA). Then, we validated the effect of UCHL3 on the Wnt pathway using a dual fluorescence reporter. We then analyzed the underlying mechanisms involved using Western blots, co-IP, and immunofluorescence results. We also conducted nude mouse tumor formation experiments. Moreover, conditional UCHL3-knockout mice and bladder cancer model mice were established for research. RESULTS: We found that the overexpression of UCHL3 boosted bladder cancer cell proliferation, invasion and migration, while the depletion of UCHL3 in bladder cancer cells delayed tumor tumorigenesis in vitro and in vivo. UCHL3 was highly associated with the Wnt signaling pathway and triggered the activation of the Wnt signaling pathway, which showed that its functions depend on its deubiquitination activity. Notably, Uchl3-deficient mice were less susceptible to bladder tumorigenesis. Additionally, UCHL3 was highly expressed in bladder cancer cells and associated with indicators of advanced clinicopathology. CONCLUSION: In summary, we found that UCHL3 is amplified in bladder cancer and functions as a tumor promoter that enhances proliferation and migration of tumor cells in vitro and bladder tumorigenesis and progression in vivo. Furthermore, we revealed that UCHL3 stabilizes CTNNB1 expression, resulting in the activation of the oncogenic Wnt signaling pathway. Therefore, our findings strongly suggest that UCHL3 is a promising therapeutic target for bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Camundongos , Animais , Neoplasias da Bexiga Urinária/genética , Transformação Celular Neoplásica , Carcinogênese , Enzimas Desubiquitinantes
4.
Plant J ; 107(1): 136-148, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866620

RESUMO

Cucumis metuliferus (African horned cucumber), a wild relative of Cucumis sativus (cucumber) and Cucumis melo (melon), displays high-level resistance to several important plant pathogens (e.g., root-knot nematodes and several viruses). Here, we report a chromosome-level genome assembly for C. metuliferus, with a 316 Mb genome sequence comprising 29 039 genes. Phylogenetic analysis of related species in family Cucurbitaceae indicated that the divergence time between C. metuliferus and melon was 17.8 million years ago. Comparisons between the C. metuliferus and melon genomes revealed large structural variations (inversions and translocations >1 Mb) in eight chromosomes of these two species. Gene family comparison showed that C. metuliferus has the largest number of resistance-related nucleotide-binding site leucine-rich repeat (NBS-LRR) genes in Cucurbitaceae. The loss of NBS-LRR loci caused by large insertions or deletions (indels) and pseudogenization caused by small indels explained the loss of NBS-LRR genes in Cucurbitaceae. Population structure analysis suggested that C. metuliferus originated in Zimbabwe, then spread to other southern African regions where it likely underwent similar domestic selection as melon. This C. metuliferus reference sequence will accelerate the understanding of the molecular evolution of resistance-related genes and enhance cucurbit crop improvement efforts.


Assuntos
Cucumis/genética , Genes de Plantas , Genoma de Planta , Filogenia , África , Cromossomos de Plantas , Cucumis melo/genética , Evolução Molecular , Variação Genética , Genética Populacional , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Seleção Genética , Zimbábue
5.
Plant Cell Physiol ; 63(9): 1309-1320, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35861152

RESUMO

Optimal plant growth and development rely on morphological and physiological adaptions of the root system to forage heterogeneously distributed nitrogen (N) in soils. Rice grows mainly in the paddy soil where ammonium (NH4+) is present as the major N source. Although root NH4+ foraging behaviors are expected to be agronomically relevant, the underlying mechanism remains largely unknown. Here, we showed that NH4+ supply transiently enhanced the high-affinity NH4+ uptake and stimulated lateral root (LR) branching and elongation. These synergistic physiological and morphological responses were closely related to NH4+-induced expression of NH4+ transporters OsAMT1;1 and OsAMT1;2 in roots. The two independent double mutants (dko) defective in OsAMT1;1 and OsAMT1;2 failed to induce NH4+ uptake and stimulate LR formation, suggesting that OsAMT1s conferred the substrate-dependent root NH4+ foraging. In dko plants, NH4+ was unable to activate the expression of OsPIN2, and the OsPIN2 mutant (lra1) exhibited a strong reduction in NH4+-triggered LR branching, suggesting that the auxin pathway was likely involved in OsAMT1s-dependent LR branching. Importantly, OsAMT1s-dependent root NH4+ foraging behaviors facilitated rice growth and N acquisition under fluctuating NH4+ supply. These results revealed an essential role of OsAMT1s in synergizing root morphological and physiological processes, allowing for efficient root NH4+ foraging to optimize N capture under fluctuating N availabilities.


Assuntos
Compostos de Amônio , Proteínas de Transporte de Cátions , Oryza , Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
6.
Appl Microbiol Biotechnol ; 106(5-6): 2161-2173, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218389

RESUMO

Gut microbiota is a primary driver of inflammation in the colon and is linked to early colorectal cancer (CRC) development. Thus, a novel and noninvasive microbiome-based model could promote screening in patients at average risk for CRC. Nevertheless, the relevance and effectiveness of microbial biomarkers for noninvasive CRC screening remains unclear, and researchers lack the data to distinguish CRC-related gut microbiome biomarkers from those of other common gastrointestinal (GI) diseases. Microbiome-based classification distinguishes patients with CRC from normal participants and excludes other CRC-relevant diseases (e.g., GI bleed, adenoma, bowel diseases, and postoperative). The area under the receiver operator characteristic curve (AUC) was 92.2%. Known associations with oral pathogenic features, benefits-generated features, and functional features of CRC were confirmed using the model. Our optimised prediction model was established using large-scale experimental population-based data and other sequence-based faecal microbial community data. This model can be used to identify the high-risk groups and has the potential to become a novel screening method for CRC biomarkers because of its low false-positive rate (FPR) and good stability. KEY POINTS: • A total of 5744 CRC and non-CRC large-scale faecal samples were sequenced, and a model was constructed for CRC discrimination on the basis of the relative abundance of taxonomic and functional features. • This model could identify high-risk groups and become a novel screening method for CRC biomarkers because of its low FPR and good stability. • The association relationship of oral pathogenic features, benefits-generated features, and functional features in CRC was confirmed by the study.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Biomarcadores Tumorais , Neoplasias Colorretais/diagnóstico , Fezes , Humanos
7.
Prenat Diagn ; 41(11): 1401-1413, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34091931

RESUMO

OBJECTIVE: To investigate the genetic etiology of skeletal dysplasia in highly selected fetuses during the first and second trimesters using deep phenotyping and exome sequencing (ES). METHOD: Fetuses with short femurs were identified using the established prenatal diagnostic approach. A multidisciplinary team reviewed fetal phenotypic information (prenatal ultrasound findings, fetal postmortem, and radiographs) in a cohort of highly selected fetuses with skeletal dysplasia during the first and second trimesters. The affected families underwent multiplatform genetic tests. RESULTS: Of the 27 affected fetuses, 21 (77.8%) had pathogenic or potential pathogenic variations in the following genes: COL1A1, FGFR3, COL2A1, COL1A2, FLNB, DYNC2LI1, and TRIP11. Two fetuses had compound heterozygous mutations in DYNC2LI1 and TRIP11, respectively, and the other 19 carried de novo autosomal dominant variants. Novel variants were identified in COL1A1, COL2A1, COL1A2, DYNC2LI1, and TRIP11 in 11 fetuses. We also included the first description of the phenotype of odontochondrodysplasia in a prenatal setting. CONCLUSIONS: ES or panel sequencing offers a high diagnostic yield for fetal skeletal dysplasia during the first and second trimesters. Comprehensive and complete phenotypic information is indispensable for genetic analysis and the expansion of genotype-phenotype correlations in fetal skeletal abnormalities.


Assuntos
Dentinogênese Imperfeita/diagnóstico , Sequenciamento do Exoma/normas , Osteocondrodisplasias/diagnóstico , Fenótipo , Adulto , Dentinogênese Imperfeita/genética , Feminino , Feto , Idade Gestacional , Humanos , Osteocondrodisplasias/genética , Gravidez , Primeiro Trimestre da Gravidez/genética , Segundo Trimestre da Gravidez/genética , Ultrassonografia Pré-Natal/métodos , Ultrassonografia Pré-Natal/normas , Ultrassonografia Pré-Natal/estatística & dados numéricos , Sequenciamento do Exoma/métodos , Sequenciamento do Exoma/estatística & dados numéricos
8.
Surg Radiol Anat ; 43(10): 1703-1709, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34232369

RESUMO

PURPOSE: Vascularized pedicled bone-grafting from the cuboid to the talus provides low donor site morbidity and satisfactory outcomes in patients with early-stage talar avascular necrosis. We investigated the anatomy of the rotational vascularized pedicled bone graft from the cuboid. METHODS: 15 embalmed cadaver specimens were perfused with red latex via the popliteal artery. The lateral malleolus was dissected. The course of the lateral tarsal artery and the vascular territory in the cuboid supplied by the lateral tarsal artery were observed. Vessel diameters were measured. RESULTS: The course of the lateral tarsal artery to the cuboid was consistent, and a vascularized pedicle of the lateral tarsal artery was present in all specimens. Mean diameter of the lateral tarsal artery was 1.40 ± 0.12 mm (range 1.67-1.25). Mean length of the vascularized pedicle was 67.15 ± 3.18 mm (range 62.43-74.36). The pedicle bone graft was long enough to reach the bony border of both the lateral and medial malleolus. CONCLUSION: A vascularized pedicled cuboid bone graft based on the lateral tarsal artery has clinical utility for early-stage talar avascular necrosis.


Assuntos
Transplante Ósseo/métodos , Osteonecrose/cirurgia , Ossos do Tarso/anatomia & histologia , Ossos do Tarso/irrigação sanguínea , Artérias , Cadáver , Humanos , Tálus/anatomia & histologia , Tálus/irrigação sanguínea , Tálus/cirurgia , Ossos do Tarso/cirurgia
9.
Mol Med ; 25(1): 28, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195953

RESUMO

BACKGROUND: Circular RNAs (circRNAs) contribute to the epigenetic modulation of pathological and physiological conditions. The understanding of the impact of circRNAs on generation of testicular inflammatory reactions is insufficient. METHODS: Our research adopted a poly I:C-triggered testicular inflammation murine model and cell assays. RESULTS: Microarray data and quantitative evaluation revealed the elevation in the concentrations of Toll-like receptor 3 (TLR3), circRNA-9119, and retinoic acid inducible gene-I (RIG-I) and repression in the levels of miR-136 and miR-26a. Inhibition of circRNA-9119 expression impaired the inflammatory reactions in the separated Leydig and Sertoli cells subjected to poly I:C treatment. CircRNA-9119 suppressed the expression of miR-136 and miR-26a by acting as a microRNA sponge. miR-136 and miR-26a repressed the expression of RIG-I and TLR3 through the expected target region in Leydig and Sertoli cells in vitro. Inhibition of miR-136 and miR-26a expression, at least in part, restored the expression of inflammatory cytokines, which were inhibited upon circRNA-9119 expression silencing. Furthermore, the expression of circRNA-9119 was positively associated with RIG-I and TLR3 mRNA and protein levels. The expression of inflammatory genes triggered by poly I:C treatment was noticeably suppressed after RIG-I and TLR3 knockout. CONCLUSIONS: Our results suggest that circRNA-9119 may serve as a competing endogenous RNA that insulated miR-136 and miR-26a and consequently defended RIG-I and TLR3 mRNAs against miR-26a/miR-136-mediated inhibition of testicular cells. Moreover, RIG-I and TLR3 contributed to the modulation of poly I:C-triggered inflammatory cytokine generation during orchitis in testicular cells.


Assuntos
Proteína DEAD-box 58/metabolismo , Células Germinativas/metabolismo , Inflamação/metabolismo , Células Intersticiais do Testículo/metabolismo , Poli I-C/metabolismo , RNA Circular/metabolismo , Células de Sertoli/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/genética
10.
Theor Appl Genet ; 132(1): 27-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30242492

RESUMO

KEY MESSAGE: Quantitative Trait Loci (QTL) analysis of multiple populations in multiple environments revealed that the fsd6.2 locus, which includes the candidate gene Csgl3, controls high fruit spine density in natural cucumbers. GWAS identified a novel locus fsd6.1, which regulates ultra-high fruit spine density in combination with Csgl3, and evolved during cucumber domestication. Fruit spine density, a domestication trait, largely influences the commercial value of cucumbers. However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, four populations were derived from five materials, which included three with low fruit spine density, one with high fruit spine density, and one with ultra-high fruit spine density. Fruit spine densities were measured in 15 environments over a span of 6 years. The distributions were bimodal suggesting that fruit spine density is controlled by a major-effect QTL. QTL analysis determined that the same major-effect QTL, fsd6.2, is present in four populations. Fine mapping indicated that Csgl3 is the candidate gene at the fsd6.2 locus. Phylogenetic and geographical distribution analyses revealed that Csgl3 originated from China, which has the highest genetic diversity for fruit spine density. One novel minor-effect QTL, fsd6.1, was detected in the HR and HP populations derived from the cross between 65G and 02245. In addition, GWAS identified a novel locus that colocates with fsd6.1. Inspection of a candidate region of about 18 kb in size using pairwise LD correlations, combined with genetic diversity and phylogenetic analysis of fsd6.1 in natural populations, indicated that Csa6G421750 is the candidate gene responsible for ultra-high fruit spine density in cucumber. This study provides new insights into the origin of fruit spine density and the evolution of high/ultra-high fruit spine density during cucumber domestication.


Assuntos
Cucumis sativus/genética , Frutas/fisiologia , Locos de Características Quantitativas , China , Mapeamento Cromossômico , Domesticação , Frutas/genética , Genes de Plantas , Estudos de Associação Genética , Ligação Genética , Variação Genética , Fenótipo , Filogenia
11.
Angew Chem Int Ed Engl ; 58(20): 6663-6668, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30884032

RESUMO

The key challenge for the broad application of implantable biofuel cells (BFCs) is to achieve inorganic-organic composite biocompatibility while improving the activity and selectivity of the catalysts. We have fabricated nanoengineered red blood cells (NERBCs) by an environmentally friendly method by using red blood cells as the raw material and hemoglobin (Hb) embedded with ultrasmall hydroxyapatite (HAP, Ca10 (PO4 )6 (OH)2 ) as the functional BFC cathode material. The NERBCs showed greatly enhanced cell performance with high electrocatalytic activity, stability, and selectivity. The NERBCs maintained the original biological properties of the natural cell, while enhancing the catalytic oxygen reduction reaction (ORR) through the interaction between -OH groups in HAP and the Hb in RBCs. They also enabled direct electron transportation, eliminating the need for an electron-transfer mediator, and showed catalytic inactivity for glucose oxidation, thus potentially enabling the development of separator-free BFCs.


Assuntos
Fontes de Energia Bioelétrica/normas , Técnicas Biossensoriais/métodos , Hemoglobinas/metabolismo , Humanos
12.
Proteins ; 84(12): 1929-1937, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27699887

RESUMO

Kir2.1 (also known as IRK1) plays key roles in regulation of resting membrane potential and cell excitability. To achieve its physiological roles, Kir2.1 performs a series of conformational transition, named as gating. However, the structural basis of gating is still obscure. Here, we combined site-directed mutation, two-electrode voltage clamp with molecular dynamics simulations and determined that H221 regulates the gating process of Kir2.1 by involving a weak interaction network. Our data show that the H221R mutant accelerates the rundown kinetics and decelerates the reactivation kinetics of Kir2.1. Compared with the WT channel, the H221R mutation strengthens the interaction between the CD- and G-loops (E303-R221) which stabilizes the close state of the G-loop gate and weakens the interactions between C-linker and CD-loop (R221-R189) and the adjacent G-loops (E303-R312) which destabilizes the open state of G-loop gate. Our data indicate that the three pairs of interactions (E303-H221, H221-R189 and E303-R312) precisely regulate the G-loop gate by controlling the conformation of G-loop. Proteins 2016; 84:1929-1937. © 2016 Wiley Periodicals, Inc.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Ativação do Canal Iônico , Potenciais da Membrana/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/química , Animais , Galinhas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Expressão Gênica , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Plasmídeos/química , Plasmídeos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Xenopus laevis
13.
Bioorg Med Chem Lett ; 26(18): 4408-4413, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27544401

RESUMO

A series of 4,6-disubstituted quinazoline derivatives as potential PI3K inhibitors were designed and synthesized. All compounds exhibited significant anti-proliferative activities against HCT-116 and MCF-7 cell lines, and compounds A7, A9, and A11 displayed the most potent anti-proliferative activity against the HCT-116. Further PI3K inhibitory activity evaluation showed that compound A7 displayed high potency against PI3K enzymes. The in vivo anti-tumor study showed compound A7 can efficaciously inhibit tumor growth in a mice S-180 model. These results suggest that our designed compounds can serve as potent PI3K inhibitors and effective antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinazolinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Células MCF-7
14.
Bioorg Med Chem ; 24(2): 179-90, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706113

RESUMO

In present study, 4-anilinoquinazolines scaffold, arylurea and tertiary amine moiety were combined to design, synthesize gefitinib analogs and discover novel anticancer agents. A series of 4-anilinoquinazoline derivatives (1, 2, 3 and 4) bearing arylurea and tertiary amine moiety at its 6-position were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against A431 cell and A549 cell. The SAR of the title compounds was discussed. The compounds 2d, 2i and 2j with potent antiproliferative activities were evaluated their inhibitory activity against EGFR-TK. Compound 2j displayed potent inhibitory activity against EGFR-TK. In addition, compound 2j, at 50 mg/kg, can completely inhibit cancer growth in established nude mouse A549 xenograft model in vivo. These results suggest that the 4-anilinoquinazoline derivatives bearing diarylurea and tertiary amino moiety at its 6-position can serve as anticancer agents and EGFR inhibitors.


Assuntos
Aminas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Ureia/farmacologia , Aminas/química , Compostos de Anilina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
15.
Bioorg Med Chem ; 23(24): 7765-76, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26652969

RESUMO

In present study, a series of N-(2-methoxy-5-(3-substituted quinazolin-4(3H)-one-6-yl)-pyridin-3-yl)phenylsulfonamide were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against HCT116 and MCF-7 cancer cell lines. The SAR of title compounds was discussed. The compounds (S)-C5 and (S)-C8 displayed potent inhibitory activity against PI3Ks and mTOR, especially against PI3Kα. In addition, compound (S)-C5 can efficaciously inhibit tumor growth in a mice S-180 model. These findings suggest that our designed compounds can serve as potent PI3K inhibitors and effective anticancer agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Quinazolinonas/química , Quinazolinonas/uso terapêutico , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Camundongos , Modelos Moleculares , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/síntese química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
16.
Bioorg Med Chem ; 23(17): 5662-71, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26210161

RESUMO

N-(6-(2-Methoxy-3-(4-fluorophenylsulfonamido)pyridin-5-yl)-[1,2,4]triazolo[1,5-a]pyridin-2-yl)acetamide exhibits remarkable anticancer effects and toxicity when orally administrated. In present study, alkylurea moiety replaced the acetamide group in the compound and a series of 1-alkyl-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)-[1,2,4]triazolo[1,5-a]pyridin-2-yl)urea derivatives were synthesized. The antiproliferative activities of the synthesized compounds in vitro were evaluated against four human cancer cell lines. Several compounds with potent antiproliferative activities were tested for their acute oral toxicity and their inhibitory activity against PI3Ks and mTOR. The results indicate that the compound attached a alkylurea or 2-(dialkylamino)ethylurea moiety at the 2-position of [1,2,4]triazolo[1,5-a]pyridine can retain the antiproliferative activity and the inhibitory activity against PI3Ks and mTOR. In addition, their acute oral toxicity reduced dramatically. Moreover, the results also indicate that compound 1e can efficaciously inhibit tumor growth in a mice S180 model. These findings suggest that title compounds can serve as potent PI3K inhibitors and effective anticancer agents with low toxicity.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Ureia/química , Acetamidas , Animais , Proliferação de Células , Descoberta de Drogas , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ureia/análogos & derivados
17.
Bioorg Med Chem ; 23(19): 6477-85, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26321603

RESUMO

As a PI3K and mTOR dual inhibitor, N-(2-chloro-5-(2-acetylaminobenzo[d]thiazol-6-yl)pyridin-3-yl)-4-fluorophenylsulfonamide displays toxicity when orally administrated. In the present study, alkylurea moiety replaced the acetamide group in the compound and a series of 1-alkyl-3-(6-(2,3-disubstituted pyridin-5-yl)benzo[d]thiazol-2-yl)urea derivatives were synthesized. The antiproliferative activities of the synthesized compounds in vitro were evaluated against HCT116, MCF-7, U87 MG and A549 cell lines. The compounds with potent antiproliferative activity were tested for their acute oral toxicity and inhibitory activity against PI3Ks and mTORC1. The results indicate that the compound attached a 2-(dialkylamino)ethylurea moiety at the 2-positeion of benzothiazole can retain the antiproliferative activity and inhibitory activity against PI3K and mTOR. In addition, their acute oral toxicity reduced dramatically. Moreover, compound 2f can effectively inhibit tumor growth in a mice S180 homograft model. These findings suggest that 1-(2-dialkylaminoethyl)-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzo[d]thiazol-2-yl)urea derivatives can serve as potent PI3K inhibitors and anticancer agents with low toxicity.


Assuntos
Antineoplásicos/síntese química , Ureia/análogos & derivados , Administração Oral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzotiazóis/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Simulação de Acoplamento Molecular , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transplante Homólogo , Ureia/síntese química , Ureia/farmacologia
18.
BMC Surg ; 14: 39, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24970300

RESUMO

BACKGROUND: The posterior and anterior circumflex humeral artery (PCHA and ACHA) are crucial for the blood supply of humeral head. We aimed to identify simple landmarks for guiding the quick access to PCHA and ACHA, which might help to protect the arteries during the surgical management of proximal humeral fractures. METHODS: Twenty fresh cadavers were dissected to measure the distances from the origins of PCHA and ACHA to the landmarks (the acromion, the coracoid, the infraglenoid tubercle, the midclavicular line) using Vernier calipers. RESULTS: The mean distances from the origin of PCHA to the infraglenoid tubercle, the coracoid, the acromion and the midclavicular line were 27.7 mm, 50.2 mm, 68.4 mm and 75.8 mm. The mean distances from the origin of ACHA to the above landmarks were 26.9 mm, 49.2 mm, 67.0 mm and 74.9 mm. CONCLUSION: Our study provided a practical method for the intraoperative identification as well as quick access of PCHA and ACHA based on a series of anatomical measurements.


Assuntos
Pontos de Referência Anatômicos , Artérias/anatomia & histologia , Úmero/irrigação sanguínea , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias/cirurgia , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Vasculares
19.
Alpha Psychiatry ; 25(2): 243-248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38798818

RESUMO

Background: In this study, the effect of magnesium sulfate and labetalol in treating pregnancy-induced hypertension (PIH) and its influence on anxiety and depression in patients are observed, and new ideas for treating anxiety and depression in PIH are introduced. Methods: A retrospective cohort study was conducted to select patients with PlH diagnosed from July 2020 to July 2023 from Affiliated Hospital of Electronic Science and Technology University and Chengdu Women' s and Children's Central Hospital in Chengdu of Sichuan Province. The changes in blood pressure, Edinburgh Postnatal Depression Scale (EPDS), and generalized anxiety disorder 7 (GAD-7) in patients with hypertensive pregnancy were collected and analyzed. Results: In our investigation, 219 patients completed the study, and 36.1% (79/219) of them developed anxiety and depression. According to whether the patients were treated with magnesium sulfate and labetalol, 49 cases were assigned to the magnesium sulfate and labetalol treatment (MSLT) group, and 30 cases were assigned to the conventional treatment (CT) group. Edinburgh Postnatal Depression Scale scores and GAD-7 scores in the MSLT group were significantly lower than those in the CT group, indicating that magnesium sulfate and labetalol can improve anxiety and depression in hypertensive patients during pregnancy. The difference was statistically significant (P < .05). According to the changes in systolic blood pressure, the clinical efficacy of patients was evaluated, and no significant difference in efficacy existed between the MSLT and CT groups. Conclusion: Magnesium sulfate and labetalol can control the blood pressure of patients with PIH and indirectly improve anxiety and depression in patients with PIH, thereby introducing new ideas for the treatment of PIH accompanied by anxiety and depression.

20.
ACS Appl Mater Interfaces ; 16(27): 34705-34719, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935462

RESUMO

Osteoarthritis (OA) is a progressive joint disorder characterized by sustained oxidative stress, chronic inflammation, and the degradation of cartilage. Despite extensive research on nanocarrier treatment strategies, the therapeutic efficacy remains limited due to the lack of satisfactory vehicles that can simultaneously exhibit excellent ROS scavenging capabilities and high drug loading capacity for effective nonsurgical management of OA. In this work, we propose an innovative strategy utilizing hollow mesoporous cerium oxide nanospheres coated with membranes derived from apoptotic chondrocytes as a reactive oxygen species "sweeper" for targeted and anti-inflammatory therapy of OA. The developed DEX@HMCeNs@M demonstrates superior drug loading capacity, notable antioxidant properties, favorable biocompatibility, and controlled drug release. By leveraging the camouflage provided by apoptotic chondrocyte membranes, the engineered DEX@HMCeNs@M, which bear natural "eat me" signals, can effectively mimic chondrocyte apoptotic bodies within the joints, thereby enabling targeted delivery of the anti-inflammatory drug DEX and subsequent controlled release triggered by the acidic environment of OA. Both in vitro and in vivo experiments validate the enhanced therapeutic efficacy of our DEX@HMCeNs@M sweeper, which operates through a synergistic mechanism involving scavenging of ROS overproduction, inhibition of inflammation, restoration of mitochondrial damage, and reduction of chondrocyte apoptosis. These findings underscore the potential and efficiency of our developed DEX@HMCeNs@M strategy as an encouraging interventional approach for the progressive treatment of OA.


Assuntos
Anti-Inflamatórios , Cério , Condrócitos , Nanosferas , Osteoartrite , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Nanosferas/química , Apoptose/efeitos dos fármacos , Camundongos , Humanos , Porosidade , Ratos , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA