Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 162(4): 900-10, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26276636

RESUMO

CTCF and the associated cohesin complex play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and ß-globin as model genes. Inversion of CBS elements within the Pcdh enhancer reconfigures the topology of chromatin loops between the distal enhancer and target promoters and alters gene-expression patterns. Thus, although enhancers can function in an orientation-independent manner in reporter assays, in the native chromosome context, the orientation of at least some enhancers carrying CBSs can determine both the architecture of topological chromatin domains and enhancer/promoter specificity. These findings reveal how 3D chromosome architecture can be encoded by linear genome sequences.


Assuntos
Cromossomos/metabolismo , Técnicas Genéticas , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Caderinas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/química , Elementos Facilitadores Genéticos , Expressão Gênica , Genoma Humano , Humanos , Células K562 , Camundongos , Regiões Promotoras Genéticas , Globinas beta/genética , Coesinas
2.
Small ; 20(7): e2305195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803472

RESUMO

Human gustatory system recognizes salty/sour or sweet tastants based on their different ionic or nonionic natures using two different signaling pathways. This suggests that evolution has selected this detection dualism favorably. Analogically, this work constructs herein bioinspired stimulus-responsive hydrogels to recognize model salty/sour or sweet tastes based on two different responses, that is, electrical and volumetric responsivities. Different compositions of zwitter-ionic sulfobetainic N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (DMAPS) and nonionic 2-hydroxyethyl methacrylate (HEMA) are co-polymerized to explore conditions for gelation. The hydrogel responses upon adding model tastant molecules are explored using electrical and visual de-swelling observations. Beyond challenging electrochemical impedance spectroscopy measurements, naive multimeter electrical characterizations are performed, toward facile applicability. Ionic model molecules, for example, sodium chloride and acetic acid, interact electrostatically with DMAPS groups, whereas nonionic molecules, for example, D(-)fructose, interact by hydrogen bonding with HEMA. The model tastants induce complex combinations of electrical and volumetric responses, which are then introduced as inputs for machine learning algorithms. The fidelity of such a trained dual response approach is tested for a more general taste identification. This work envisages that the facile dual electric/volumetric hydrogel responses combined with machine learning proposes a generic bioinspired avenue for future bionic designs of artificial taste recognition, amply needed in applications.

3.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36058206

RESUMO

Updated and expert-quality knowledge bases are fundamental to biomedical research. A knowledge base established with human participation and subject to multiple inspections is needed to support clinical decision making, especially in the growing field of precision oncology. The number of original publications in this field has risen dramatically with the advances in technology and the evolution of in-depth research. Consequently, the issue of how to gather and mine these articles accurately and efficiently now requires close consideration. In this study, we present OncoPubMiner (https://oncopubminer.chosenmedinfo.com), a free and powerful system that combines text mining, data structure customisation, publication search with online reading and project-centred and team-based data collection to form a one-stop 'keyword in-knowledge out' oncology publication mining platform. The platform was constructed by integrating all open-access abstracts from PubMed and full-text articles from PubMed Central, and it is updated daily. OncoPubMiner makes obtaining precision oncology knowledge from scientific articles straightforward and will assist researchers in efficiently developing structured knowledge base systems and bring us closer to achieving precision oncology goals.


Assuntos
Neoplasias , Mineração de Dados , Humanos , Oncologia , Medicina de Precisão , PubMed , Publicações
4.
Theor Appl Genet ; 137(7): 154, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856926

RESUMO

KEY MESSAGE: Our findings highlight a valuable breeding resource, demonstrating the potential to concurrently enhance grain shape, thermotolerance, and alkaline tolerance by manipulating Gγ protein in rice. Temperate Geng/Japonica (GJ) rice yields have improved significantly, bolstering global food security. However, GJ rice breeding faces challenges, including enhancing grain quality, ensuring stable yields at warmer temperatures, and utilizing alkaline land. In this study, we employed CRISPR/Cas9 gene-editing technology to knock out the GS3 locus in seven elite GJ varieties with superior yield performance. Yield component measurements revealed that GS3 knockout mutants consistently enhanced grain length and reduced plant height in diverse genetic backgrounds. The impact of GS3 on the grain number per panicle and setting rate depended on the genetic background. GS3 knockout did not affect milling quality and minimally altered protein and amylose content but notably influenced chalkiness-related traits. GS3 knockout indiscriminately improved heat and alkali stress tolerance in the GJ varieties studied. Transcriptome analysis indicated differential gene expression between the GS3 mutants and their wild-type counterparts, enriched in biological processes related to photosynthesis, photosystem II stabilization, and pathways associated with photosynthesis and cutin, suberine, and wax biosynthesis. Our findings highlight GS3 as a breeding resource for concurrently improving grain shape, thermotolerance, and alkaline tolerance through Gγ protein manipulation in rice.


Assuntos
Grão Comestível , Oryza , Melhoramento Vegetal , Proteínas de Plantas , Termotolerância , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Termotolerância/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Edição de Genes , Álcalis , Sistemas CRISPR-Cas , Plantas Geneticamente Modificadas/genética
5.
Int J Colorectal Dis ; 39(1): 97, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922361

RESUMO

BACKGROUND: The 8th AJCC TNM staging for non-metastatic lymph node-positive colon adenocarcinoma patients(NMLP-CA) stages solely by lymph node status, irrespective of the positivity of tumor deposits (TD). This study uses machine learning and Cox regression to predict the prognostic value of tumor deposits in NMLP-CA. METHODS: Patient data from the SEER registry (2010-2019) was used to develop CSS nomograms based on prognostic factors identified via multivariate Cox regression. Model performance was evaluated by c-index, dynamic calibration, and Schmid score. Shapley additive explanations (SHAP) were used to explain the selected models. RESULTS: The study included 16,548 NMLP-CA patients, randomized 7:3 into training (n = 11,584) and test (n = 4964) sets. Multivariate Cox analysis identified TD, age, marital status, primary site, grade, pT stage, and pN stage as prognostic for cancer-specific survival (CSS). In the test set, the gradient boosting machine (GBM) model achieved the best C-index (0.733) for CSS prediction, while the Cox model and GAMBoost model optimized dynamic calibration(6.473) and Schmid score (0.285), respectively. TD ranked among the top 3 most important features in the models, with increasing predictive significance over time. CONCLUSIONS: Positive tumor deposit status confers worse prognosis in NMLP-CA patients. Tumor deposits may confer higher TNM staging. Furthermore, TD could play a more significant role in the staging system.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Linfonodos , Metástase Linfática , Aprendizado de Máquina , Modelos de Riscos Proporcionais , Humanos , Neoplasias do Colo/patologia , Neoplasias do Colo/mortalidade , Masculino , Adenocarcinoma/patologia , Adenocarcinoma/mortalidade , Feminino , Prognóstico , Pessoa de Meia-Idade , Linfonodos/patologia , Idoso , Estadiamento de Neoplasias , Nomogramas , Programa de SEER
6.
Cereb Cortex ; 33(6): 3043-3052, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788284

RESUMO

Electroencephalogram (EEG)-based brain-machine interface (BMI) has the potential to enhance rehabilitation training efficiency, but it still remains elusive regarding how to design BMI training for heterogeneous stroke patients with varied neural reorganization. Here, we hypothesize that tailoring BMI training according to different patterns of neural reorganization can contribute to a personalized rehabilitation trajectory. Thirteen stroke patients were recruited in a 2-week personalized BMI training experiment. Clinical and behavioral measurements, as well as cortical and muscular activities, were assessed before and after training. Following treatment, significant improvements were found in motor function assessment. Three types of brain activation patterns were identified during BMI tasks, namely, bilateral widespread activation, ipsilesional focusing activation, and contralesional recruitment activation. Patients with either ipsilesional dominance or contralesional dominance can achieve recovery through personalized BMI training. Results indicate that personalized BMI training tends to connect the potentially reorganized brain areas with event-contingent proprioceptive feedback. It can also be inferred that personalization plays an important role in establishing the sensorimotor loop in BMI training. With further understanding of neural rehabilitation mechanisms, personalized treatment strategy is a promising way to improve the rehabilitation efficacy and promote the clinical use of rehabilitation robots and other neurotechnologies.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Medicina de Precisão , Acidente Vascular Cerebral/terapia , Encéfalo
7.
J Nanobiotechnology ; 22(1): 117, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493145

RESUMO

Reactive oxygen species (ROS) has emerged as potent therapeutic agents for biofilm-associated bacterial infections. Chemodynamic therapy (CDT), involving the generation of high-energy ROS, displays great potential in the therapy of bacterial infections. However, challenges such as insufficient hydrogen peroxide (H2O2) and over-expressed glutathione (GSH) levels within the microenvironment of bacterial biofilms severely limit the antibacterial efficacy of CDT. Herein, we have developed a multifunctional nanoplatform (CuS@CaO2@Dex) by integrating copper sulfide (CuS) and calcium peroxide (CaO2) into dextran (Dex)-coated nanoparticles. This innovative platform enhanced ROS generation for highly efficient biofilm elimination by simultaneously supplying H2O2 and depleting GSH. The Dex-coating facilitated the penetrability of CuS@CaO2@Dex into biofilms, while CaO2 generated a substantial amount of H2O2 in the acidic biofilm microenvironment. CuS, through a Fenton-like reaction, catalyzed the conversion of self-supplied H2O2 into hydroxyl radicals (•OH) and consumed the overexpressed GSH. Additionally, the incorporation of near-infrared II (NIR II) laser irradiation enhanced the photothermal properties of CuS, improving the catalytic efficiency of the Fenton-like reaction for enhanced antibacterial effects. In vivo experiments have demonstrated that CuS@CaO2@Dex exhibited remarkable antibacterial and antibiofilm efficacy, exceptional wound healing capabilities, and notable biosafety. In summary, the Dex-coated nanoplatform proposed in this study, with its self-sterilization capability through ROS, holds significant potential for future biomedical applications.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Neoplasias , Humanos , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Plant Biotechnol J ; 21(1): 202-218, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196761

RESUMO

Temperate japonica/geng (GJ) rice yield has significantly improved due to intensive breeding efforts, dramatically enhancing global food security. However, little is known about the underlying genomic structural variations (SVs) responsible for this improvement. We compared 58 long-read assemblies comprising cultivated and wild rice species in the present study, revealing 156 319 SVs. The phylogenomic analysis based on the SV dataset detected the putatively selected region of GJ sub-populations. A significant portion of the detected SVs overlapped with genic regions were found to influence the expression of involved genes inside GJ assemblies. Integrating the SVs and causal genetic variants underlying agronomic traits into the analysis enables the precise identification of breeding signatures resulting from complex breeding histories aimed at stress tolerance, yield potential and quality improvement. Further, the results demonstrated genomic and genetic evidence that the SV in the promoter of LTG1 is accounting for chilling sensitivity, and the increased copy numbers of GNP1 were associated with positive effects on grain number. In summary, the current study provides genomic resources for retracing the properties of SVs-shaped agronomic traits during previous breeding procedures, which will assist future genetic, genomic and breeding research on rice.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Genômica/métodos , Fenótipo , Grão Comestível
9.
Nucleic Acids Res ; 49(14): 7966-7985, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34244796

RESUMO

Proper cell fate determination is largely orchestrated by complex gene regulatory networks centered around transcription factors. However, experimental elucidation of key transcription factors that drive cellular identity is currently often intractable. Here, we present ANANSE (ANalysis Algorithm for Networks Specified by Enhancers), a network-based method that exploits enhancer-encoded regulatory information to identify the key transcription factors in cell fate determination. As cell type-specific transcription factors predominantly bind to enhancers, we use regulatory networks based on enhancer properties to prioritize transcription factors. First, we predict genome-wide binding profiles of transcription factors in various cell types using enhancer activity and transcription factor binding motifs. Subsequently, applying these inferred binding profiles, we construct cell type-specific gene regulatory networks, and then predict key transcription factors controlling cell fate transitions using differential networks between cell types. This method outperforms existing approaches in correctly predicting major transcription factors previously identified to be sufficient for trans-differentiation. Finally, we apply ANANSE to define an atlas of key transcription factors in 18 normal human tissues. In conclusion, we present a ready-to-implement computational tool for efficient prediction of transcription factors in cell fate determination and to study transcription factor-mediated regulatory mechanisms. ANANSE is freely available at https://github.com/vanheeringen-lab/ANANSE.


Assuntos
Algoritmos , Biologia Computacional/métodos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Diferenciação Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Especificidade de Órgãos/genética , RNA-Seq/métodos , Fatores de Transcrição/metabolismo
10.
J Neuroeng Rehabil ; 20(1): 155, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957755

RESUMO

BACKGROUND: Sensory stimulation can play a fundamental role in the activation of the primary sensorimotor cortex (S1-M1), which can promote motor learning and M1 plasticity in stroke patients. However, studies have focused mainly on investigating the influence of brain lesion profiles on the activation patterns of S1-M1 during motor tasks instead of sensory tasks. Therefore, the objective of this study is to explore the lesion-specific activation patterns due to different brain lesion profiles and types during focal vibration (FV). METHODS: In total 52 subacute stroke patients were recruited in this clinical experiment, including patients with basal ganglia hemorrhage/ischemia, brainstem ischemia, other subcortical ischemia, cortical ischemia, and mixed cortical-subcortical ischemia. Electroencephalograms (EEG) were recorded following a resting state lasting for 4 min and three sessions of FV. FV was applied over the muscle belly of the affected limb's biceps for 3 min each session. Beta motor-related EEG power desynchronization overlying S1-M1 was used to indicate the activation of S1-M1, while the laterality coefficient (LC) of the activation of S1-M1 was used to assess the interhemispheric asymmetry of brain activation. RESULTS: (1) Regarding brain lesion profiles, FV could lead to the significant activation of bilateral S1-M1 in patients with basal ganglia ischemia and other subcortical ischemia. The activation of ipsilesional S1-M1 in patients with brainstem ischemia was higher than that in patients with cortical ischemia. No activation of S1-M1 was observed in patients with lesions involving cortical regions. (2) Regarding brain lesion types, FV could induce the activation of bilateral S1-M1 in patients with basal ganglia hemorrhage, which was significantly higher than that in patients with basal ganglia ischemia. Additionally, LC showed no significant correlation with the modified Barthel index (MBI) in all patients, but a positive correlation with MBI in patients with basal ganglia lesions. CONCLUSIONS: These results reveal that sensory stimulation can induce lesion-specific activation patterns of S1-M1. This indicates FV could be applied in a personalized manner based on the lesion-specific activation of S1-M1 in stroke patients with different lesion profiles and types. Our study may contribute to a better understanding of the underlying mechanisms of cortical reorganization.


Assuntos
Hemorragia dos Gânglios da Base , Acidente Vascular Cerebral , Humanos , Encéfalo , Eletroencefalografia , Isquemia , Imageamento por Ressonância Magnética
11.
Entropy (Basel) ; 25(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37761565

RESUMO

A periodic intermittent adaptive control method with saturation is proposed to pin the quasi-consensus of nonlinear heterogeneous multi-agent systems with external disturbances in this paper. A new periodic intermittent adaptive control protocol with saturation is designed to control the internal coupling between the follower agents and the feedback gain between the leader and the follower. In particular, we use the saturation adaptive law: when the quasi-consensus error converges to a certain range, the adaptive coupling edge weight and the adaptive feedback gain will not be updated. Furthermore, we propose three saturated adaptive pinning control protocols. The quasi-consensus is achieved through its own pinning as long as the agents remain connected to each other. Using the Lyapunov function method and inequality technique, the convergence range of the quasi-consensus error of a heterogeneous multi-agent system is obtained. Finally, the rationality of the proposed control protocol is verified through numerical simulation. Theoretical derivation and simulation results show that the novel proposed periodic intermittent adaptive control method with saturation can successfully be used to achieve the pinning of quasi-consensus of nonlinear heterogeneous multi-agent systems.

12.
Angew Chem Int Ed Engl ; 62(33): e202305988, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37339945

RESUMO

Ether solvents with superior reductive stability promise excellent interphasial stability with high-capacity anodes while the limited oxidative resistance hinders their high-voltage operation. Extending the intrinsic electrochemical stability of ether-based electrolytes to construct stable-cycling high-energy-density lithium-ion batteries is challenging but rewarding. Herein, the anion-solvent interactions were concerned as the key point to optimize the anodic stability of the ether-based electrolytes and an optimized interphase was realized on both pure-SiOx anodes and LiNi0.8 Mn0.1 Co0.1 O2 cathodes. Specifically, the small-anion-size LiNO3 and tetrahydrofuran with high dipole moment to dielectric constant ratio realized strengthened anion-solvent interactions, which enhance the oxidative stability of the electrolyte. The designed ether-based electrolyte enabled a stable cycling performance over 500 cycles in pure-SiOx ||LiNi0.8 Mn0.1 Co0.1 O2 full cell, demonstrating its superior practical prospects. This work provides new insight into the design of new electrolytes for emerging high-energy density lithium-ion batteries through the regulation of interactions between species in electrolytes.

13.
Plant Cell Environ ; 45(8): 2492-2507, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35592911

RESUMO

Cell walls constitute the majority of plant biomass and are essential for plant resistance to environmental stresses. It is promising to improve both plant biomass production and stress resistance simultaneously by genetic modification of cell walls. Here, we report the functions of a UDP-galactose/glucose epimerase 3 (OsUGE3) in rice growth and salt tolerance by characterizing its overexpressing plants (OsUGE3-OX) and loss-of-function mutants (uge3). The OsUGE3-OX plants showed improvements in biomass production and mechanical strength, whereas uge3 mutants displayed growth defects. The OsUGE3 exhibits UDP-galactose/glucose epimerase activity that provides substrates for polysaccharides polymerization, consistent with the increased biosynthesis of cellulose and hemicelluloses and strengthened walls in OsUGE3-OX plants. Notably, the OsUGE3 is ubiquitously expressed and induced by salt treatment. The uge3 mutants were hypersensitive to salt and osmotic stresses, whereas the OsUGE3-OX plants showed improved tolerance to salt and osmotic stresses. Moreover, OsUGE3 overexpression improves the homeostasis of Na+ and K+ and induces a higher accumulation of hemicelluloses and soluble sugars during salt stress. Our results suggest that OsUGE3 improves biomass production, mechanical strength, and salt stress tolerance by reinforcement of cell walls with polysaccharides and it could be targeted for genetic modification to improve rice growth under salt stress.


Assuntos
Oryza , Tolerância ao Sal , Biomassa , Parede Celular/metabolismo , Galactose , Regulação da Expressão Gênica de Plantas , Glucose , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos , Racemases e Epimerases/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Difosfato de Uridina
14.
Opt Express ; 30(20): 36552-36563, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258581

RESUMO

Moiré configurations have recently attracted much attention due to their ability to enhance photonic responses and manipulate surface waves in the subwavelength ranges. However, previous studies have usually been focused on natural hyperbolic materials with limitations on patterning procedures, controlling rotation angles, and merely manipulating electric surface plasmons. Here, we theoretically and numerically investigate a novel magnetic moiré hyperbolic metasurface in the terahertz region, which enables two types of topological transition and a plethora of unusual magnetic moiré effects (magnetic surface wave manipulation, dispersion engineering, magic angles, spacer-dependent topological transition, and local field enhancement). This work extends twistronics and moiré physics to the terahertz region and magnetic polaritons, with potential applications in quantum physics, energy transfer, and planarized magnetic plasmonic devices.

15.
Opt Express ; 30(16): 29088-29098, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299092

RESUMO

Bound state in the continuum (BIC) refers to the trapped state in the radiation continuum of a system. In the terahertz band, BIC provides a unique and feasible method to design devices with ultra-high quality factor (Q factor) and to achieve intense terahertz-matter interaction, which is of great value to terahertz science and technology. Here, multiple BICs protected by the resonance symmetry in the terahertz metasurface consisting of metallic split ring resonators (SRR) is demonstrated. The evolution from the BIC to the quasi-BIC (QBIC) is induced by changing the gap width of the SRRs. The proposed BICs are experimentally demonstrated and analyzed by the coupled mode theory along with the numerical simulation. It is found that the leakage behavior of these QBICs is strongly affected by the intrinsic Ohmic loss in the SRRs while it is quite robust to the tilted incidence.

16.
Opt Express ; 30(15): 28158-28169, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236969

RESUMO

Various kinds of metasurfaces have been proposed because they can be tailored to achieve the desired modulations on electromagnetic wave that do not occur in nature. Compared to conventional metamaterials, coding metasurfaces integrated with information science theory possess numerous distinctive advantages - simple design, time-saving and compatibility with digital devices. Here we propose terahertz multifunctional anisotropic reflective metasurfaces with a metal-insulator-metal cavity structure whose top constructional layer consists of a pair of gold arc-rings and a gold cut-wire located between them. Two different functions of narrow-band absorption and broadband polarization conversion are realized based on different coding matrices using the binary codes '0' and '1'. Furthermore, we integrate a specific coding metasurface with vanadium dioxide (VO2) to realize a temperature-controlled active metasurface. Through the temperature change, dynamic functionalities switching between a narrow-band polarization converter with a polarization conversion ratio over 94% and an efficient low-pass filter are achieved under the phase transition of VO2, and the active metasurface is polarization independent. The proposed coding metasurfaces are verified numerically and experimentally, and have promising applications in terahertz modulation and functional devices.

17.
J Exp Bot ; 73(8): 2320-2335, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35104839

RESUMO

Although UDP-glucuronic acid decarboxylases (UXSs) have been well studied with regard to catalysing the conversion of UDP-glucuronic acid into UDP-xylose, their biological roles in grasses remain largely unknown. The rice (Oryza sativa) genome contains six UXSs, but none of them has been genetically characterized. Here, we reported on the characterization of a novel rice fragile culm mutant, fc18, which exhibited brittleness with altered cell wall and pleiotropic defects in growth. Map-based cloning and transgenic analyses revealed that the FC18 gene encodes a cytosol-localized OsUXS3 and is widely expressed with higher expression in xylan-rich tissues. Monosaccharide analysis showed that the xylose level was decreased in fc18, and cell wall fraction determinations confirmed that the xylan content in fc18 was lower, suggesting that UDP-xylose from FC18 participates in xylan biosynthesis. Moreover, the fc18 mutant displayed defective cellulose properties, which led to an enhancement in biomass saccharification. Furthermore, expression of genes involved in sugar metabolism and phytohormone signal transduction was largely altered in fc18. Consistent with this, the fc18 mutant exhibited significantly reduced free auxin (indole-3-acetic acid) content and lower expression levels of PIN family genes compared with wild type. Our work reveals the physiological roles of FC18/UXS3 in xylan biosynthesis, cellulose deposition, and plant growth in rice.


Assuntos
Carboxiliases , Oryza , Carboxiliases/genética , Carboxiliases/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Glucurônico/metabolismo , Oryza/metabolismo , Uridina Difosfato Xilose/metabolismo , Xilanos , Xilose/metabolismo
18.
Eur J Neurol ; 29(6): 1805-1814, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35188698

RESUMO

BACKGROUND: To analyze disease generalization in patients with ocular myasthenia gravis (OMG) treated with immunosuppression compared with patients without immunosuppression treatment. METHODS: In this retrospective cohort study, we analyzed data from patients with OMG at seven medical centers in China from January 1, 2015 to May 1, 2019 and compared disease generalization in patients (treated with immunosuppression vs. not treated) within 2 years of disease onset using raw and inverse probability of treatment weighting (IPTW) analyses. RESULTS: In the study population of 813 patients with OMG, 425 (52.3%) with immunosuppression had a mean (SD) onset age of 50.0 (15.1) years, and 188 (44.2%) were women. The remaining 388 (47.7%) patients were not immunosuppressed (mean age, 48.4 [15.0] years; 185 [47.7%] women). Disease generalization developed in 122 (31.4%) and 37 (8.7%) patients in the non-immunosuppression and immunosuppression groups, respectively. Relative to non-immunosuppression, immunosuppression was associated with a lower risk of generalization in a multivariable-adjusted Cox model (hazard ratio [HR] 0.27; 95% confidence interval [CI] 0.18-0.40; p < 0.001) and IPTW-weighted Cox model (HR 0.28; 95% CI 0.19-0.42; p < 0.001). In sensitivity analyses, longer duration of immunosuppression was associated with a lower risk of generalization (HR 0.90 for every 1-month increase; 95% CI 0.87-0.92; p < 0.001; IPTW-adjusted). Combination therapy with steroids and non-steroidal immunosuppressants showed superior efficacy in reducing the risk of generalization (HR 0.14; 95% CI 0.07-0.26; p < 0.001). CONCLUSION: Immunosuppression significantly reduced the 2-year risk of generalization in patients with OMG.


Assuntos
Miastenia Gravis , Idade de Início , Feminino , Humanos , Terapia de Imunossupressão , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/tratamento farmacológico , Pontuação de Propensão , Estudos Retrospectivos
19.
Soft Matter ; 18(40): 7699-7734, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36205123

RESUMO

Compared to traditional rigid-bodied robots, soft robots are constructed using physically flexible/elastic bodies and electronics to mimic nature and enable novel applications in industry, healthcare, aviation, military, etc. Recently, the fabrication of robots on soft matter with great flexibility and compliance has enabled smooth and sophisticated 'multi-degree-of-freedom' 3D actuation to seamlessly interact with humans, other organisms and non-idealized environments in a highly complex and controllable manner. Herein, we summarize the fabrication approaches, driving strategies, novel applications, and future trends of soft robots. Firstly, we introduce the different fabrication approaches to prepare soft robots and compare and systematically discuss their advantages and disadvantages. Then, we present the actuator-based and material-based driving strategies of soft robotics and their characteristics. The representative applications of soft robotics in artificial intelligence, medicine, sensors, and engineering are summarized. Also, some remaining challenges and future perspectives in soft robotics are provided. This work highlights the recent advances of soft robotics in terms of functional material selection, structure design, control strategies and biomimicry, providing useful insights into the development of next-generation functional soft robotics.


Assuntos
Biomimética , Robótica , Humanos , Inteligência Artificial , Eletrônica
20.
Bioorg Med Chem ; 71: 116936, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917766

RESUMO

Phidianidines A and B are novel marine indole alkaloids with various biological activities. Based on their potential anti-inflammatory properties, a series of phidianidine derivatives were designed, synthesized, and tested for their effects on IL-17A production in PMA/ionomycin-stimulated T-cell-lymphoma EL-4 cells. Compounds 9a and 22c exhibited excellent anti-inflammatory activity and low toxicity, with IC50 values of 7.7 µM and 5.3 µM for IL-17A production in PMA/ionomycin-stimulated EL-4 cells, respectively. Further mechanistic study showed that 9a could decrease the STAT3 phosphorylation at Y705 to inhibit IL-17A production in EL-4 cells, indicating its ability of preventing the differentiation of Th17 cells and their possible function. This research may give an insight for the discovery of marine indole alkaloid derived anti-inflammatory drug leads for the treatment of T cell-mediated diseases.


Assuntos
Alcaloides Indólicos , Interleucina-17 , Anti-Inflamatórios/farmacologia , Ionomicina , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA