Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 259: 108718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369180

RESUMO

Helminth infections and their components has been recognized to have a positive impact on the immune system. This study aimed to investigate the potential of Metagonimus yokogawai-derived proteins (MYp) to provide protection against ankylosing spondylitis (AS) through modulation of immune responses. The cytotoxicity of MYp at various doses was first assessed using MTS and flow cytometry. Peripheral blood mononuclear cells (PBMCs) were collected from AS patients, and the production of inflammatory cytokines was analyzed through flow cytometry. In the experiments with SKG mice, MYp or vehicle was administered and inflammation was evaluated through immunohistochemistry and enzyme-linked immunosorbent assay. The results showed that MYp did not decrease cell viability of PBMCs even after 48 h. Additionally, the frequencies of IFN-γ and IL-17A producing cells were significantly reduced after MYp treatment in the PBMC cultures. Furthermore, MYp treatment significantly suppressed arthritis and enthesitis in the SKG mouse model. The results suggest the first evidence that MYp can effectively alleviate clinical symptoms and restore cytokine balance in patients with AS.


Assuntos
Heterophyidae , Espondilite Anquilosante , Humanos , Animais , Camundongos , Espondilite Anquilosante/tratamento farmacológico , Leucócitos Mononucleares , Citocinas/metabolismo , Inflamação/tratamento farmacológico
2.
Biochem Biophys Res Commun ; 633: 61-63, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36344165

RESUMO

Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein. Like ubiquitin, UFM1 is conjugated to its target proteins through a three-step enzyme system: UBA5 (E1), UFC1 (E2), and UFL1 (E3), but with an additional essential component, UFBP1. This protein modification by UFM1 (ufmylation) can be reversed by UFM1-specific proteases (UFSPs). So far only a handful of target proteins for ufmylation have been identified, and they are mostly associated with either promotion or suppression of tumorigenesis. Here, we summarize the recent progress in the knowledge of tumor-suppressive and tumorigenic functions of ufmylation as well as in the development of therapeutic drugs against ufmylation-associated cancer.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Enzimas Ativadoras de Ubiquitina/genética , Proteínas/metabolismo , Neoplasias/metabolismo , Ubiquitinas/metabolismo
3.
Anal Bioanal Chem ; 414(5): 1773-1785, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34958396

RESUMO

Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Genoma Viral , RNA Viral/genética , Kit de Reagentes para Diagnóstico/normas , SARS-CoV-2/genética , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/normas , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Dosagem de Genes , Expressão Gênica , Humanos , Células Jurkat , Lentivirus/genética , Lentivirus/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Viral/metabolismo , RNA Viral/normas , Kit de Reagentes para Diagnóstico/provisão & distribuição , Padrões de Referência , Reprodutibilidade dos Testes , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Empacotamento do Genoma Viral
4.
Mol Cell ; 56(2): 261-274, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25219498

RESUMO

Biological roles for UFM1, a ubiquitin-like protein, are largely unknown, and therefore we screened for targets of ufmylation. Here we show that ufmylation of the nuclear receptor coactivator ASC1 is a key step for ERα transactivation in response to 17ß-estradiol (E2). In the absence of E2, the UFM1-specific protease UfSP2 was bound to ASC1, which maintains ASC1 in a nonufmylated state. In the presence of E2, ERα bound ASC1 and displaced UfSP2, leading to ASC1 ufmylation. Polyufmylation of ASC1 enhanced association of p300, SRC1, and ASC1 at promoters of ERα target genes. ASC1 overexpression or UfSP2 knockdown promoted ERα-mediated tumor formation in vivo, which could be abrogated by treatment with the anti-breast cancer drug tamoxifen. In contrast, expression of ufmylation-deficient ASC1 mutant or knockdown of the UFM1-activating E1 enzyme UBA5 prevented tumor growth. These findings establish a role for ASC1 ufmylation in breast cancer development by promoting ERα transactivation.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Proteínas/química , Sistema y+ de Transporte de Aminoácidos/química , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Proteína p300 Associada a E1A/genética , Ativação Enzimática/genética , Estradiol/genética , Estradiol/metabolismo , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Coativador 1 de Receptor Nuclear/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas/metabolismo , Tamoxifeno/farmacologia , Ativação Transcricional , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Mar Drugs ; 21(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36662185

RESUMO

Prolonged exposure to fine dust (FD) increases the risk of skin inflammation. Stimulated epidermal cells release growth factors into their extracellular environment, which can induce inflammation in dermal cells. Algae are considered rich sources of bioactive materials. The present study emphasized the effect of low-molecular-weight fucoidan isolated from Sargassum confusum (LMF) against FD-induced inflammation in HaCaT keratinocytes and underneath fibroblasts (HDFs) in an integrated culture model. HDFs were treated with media from FD-stimulated HaCaT with LMF treatments (preconditioned media). The results suggested that FD increased the oxidative stress in HaCaT, thereby increasing the sub-G1 phase of the cell cycle up to 587%, as revealed via flow cytometric analysis. With preconditioned media, HDFs also displayed oxidative stress; however, the increase in the sub-G1 phase was insignificant compared with HaCaT. LMF dose-dependently regulated the NF-κB/MAPK signaling in HaCaT. Furthermore, significant downregulation in NF-κB/MAPK signaling, as well as inflammatory cytokines, tissue inhibitors of metalloproteinases, matrix metalloproteinases, and reduction in relative elastase and collagenase activities related to the extracellular matrix degeneration were observed in HDFs with a preconditioned media treatment. Therefore, we concluded that HDFs were protected from inflammation by preconditioned media. Continued research on tissue culture and in vivo studies may reveal the therapeutic potential of LMF.


Assuntos
Antineoplásicos , Poeira , Humanos , NF-kappa B/metabolismo , Queratinócitos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antineoplásicos/farmacologia , Fibroblastos , Pele
6.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807265

RESUMO

Adenosine mediates various physiological activities in the body. Adenosine receptors (ARs) are widely expressed in tumors and the tumor microenvironment (TME), and they induce tumor proliferation and suppress immune cell function. There are four types of human adenosine receptor (hARs): hA1, hA2A, hA2B, and hA3. Both hA1 and hA3 AR play an important role in tumor proliferation. We designed and synthesized novel 1,3,5-triazine derivatives through amination and Suzuki coupling, and evaluated them for binding affinities to each hAR subtype. Compounds 9a and 11b showed good binding affinity to both hA1 and hA3 AR, while 9c showed the highest binding affinity to hA1 AR. In this study, we discovered that 9c inhibits cell viability, leading to cell death in lung cancer cell lines. Flow cytometry analysis revealed that 9c caused an increase in intracellular reactive oxygen species (ROS) and a depolarization of the mitochondrial membrane potential. The binding mode of 1,3,5-triazine derivatives to hA1 and hA3 AR were predicted by a molecular docking study.


Assuntos
Pirimidinas , Receptor A2A de Adenosina , Humanos , Simulação de Acoplamento Molecular , Pirimidinas/química , Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/química , Relação Estrutura-Atividade , Triazinas/farmacologia
7.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200331

RESUMO

The coronavirus disease 2019 (COVID-19) has caused a large global outbreak. It is accordingly important to develop accurate and rapid diagnostic methods. The polymerase chain reaction (PCR)-based method including reverse transcription-polymerase chain reaction (RT-PCR) is the most widely used assay for the detection of SARS-CoV-2 RNA. Along with the RT-PCR method, digital PCR has emerged as a powerful tool to quantify nucleic acid of the virus with high accuracy and sensitivity. Non-PCR based techniques such as reverse transcription loop-mediated isothermal amplification (RT-LAMP) and reverse transcription recombinase polymerase amplification (RT-RPA) are considered to be rapid and simple nucleic acid detection methods and were reviewed in this paper. Non-conventional molecular diagnostic methods including next-generation sequencing (NGS), CRISPR-based assays and nanotechnology are improving the accuracy and sensitivity of COVID-19 diagnosis. In this review, we also focus on standardization of SARS-CoV-2 nucleic acid testing and the activity of the National Metrology Institutes (NMIs) and highlight resources such as reference materials (RM) that provide the values of specified properties. Finally, we summarize the useful resources for convenient COVID-19 molecular diagnostics.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/virologia , Sistemas CRISPR-Cas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Diagnóstico Molecular , Nanotecnologia , Reação em Cadeia da Polimerase , RNA Viral , Recombinases , Transcrição Reversa , Sensibilidade e Especificidade
8.
Molecules ; 26(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401649

RESUMO

This study explores the potential anticancer effects of lesbicoumestan from Lespedeza bicolor against human leukemia cancer cells. Flow cytometry and fluorescence microscopy were used to investigate antiproliferative effects. The degradation of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) was evaluated using immunoprecipitation, Western blotting, and confocal microscopy. Apoptosis was investigated using three-dimensional (3D) Jurkat cell resistance models. Lesbicoumestan induced potent mitochondrial depolarization on the Jurkat cells via upregulated expression levels of mitochondrial reactive oxygen species. Furthermore, the underlying apoptotic mechanisms of lesbicoumestan through the MALT1/NF-κB pathway were comprehensively elucidated. The analysis showed that lesbicoumestan significantly induced MALT1 degradation, which led to the inhibition of the NF-κB pathway. In addition, molecular docking results illustrate how lesbicoumestan could effectively bind with MALT1 protease at the latter's active pocket. Similar to traditional 2D cultures, apoptosis was markedly induced upon lesbicoumestan treatment in 3D Jurkat cell resistance models. Our data support the hypothesis that lesbicoumestan is a novel inhibitor of MALT1, as it exhibited potent antiapoptotic effects in Jurkat cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Apoptose/fisiologia , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Mitocôndrias/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/química , Estresse Oxidativo/fisiologia , Esferoides Celulares
9.
Molecules ; 26(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443546

RESUMO

Recent studies found that short-chain fatty acids (SCFAs), which are produced through bacterial fermentation in the gastrointestinal tract, have oncoprotective effects against cervical cancer. The most common SCFAs that are well known include acetic acid, butyric acid, and propionic acid, among which propionic acid (PA) has been reported to induce apoptosis in HeLa cells. However, the mechanism in which SCFAs suppress HeLa cell viability remain poorly understood. Our study aims to provide a more detailed look into the mechanism of PA in HeLa cells. Flow cytometry analysis revealed that PA induces reactive oxygen species (ROS), leading to the dysfunction of the mitochondrial membrane. Moreover, PA inhibits NF-κB and AKT/mTOR signaling pathways and induces LC3B protein levels, resulting in autophagy. PA also increased the sub-G1 cell population that is characteristic of cell death. Therefore, the results of this study propose that PA inhibits HeLa cell viability through a mechanism mediated by the induction of autophagy. The study also suggests a new approach for cervical cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Propionatos/farmacologia , Neoplasias do Colo do Útero/patologia , Antineoplásicos/química , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Propionatos/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo
10.
Diabetes Obes Metab ; 22(8): 1302-1315, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32173999

RESUMO

AIM: Insulin resistance is a metabolic state where insulin sensitivity is lower than normal condition and strongly related to type 2 diabetes. However, an in vitro model mimicking insulin resistance is rare and thus screening drugs for insulin resistance severely depends on an in vivo model. Here, to increase anti-diabetic drug selectivity for humans, 3D ADMSCs and macrophages were co-cultured with in-house fabricated co-culture plates. MATERIAL AND METHODS: 3D co-culture plates were designed to load ADMSCs and RAW264.7 cells containing hydrogels in separate wells while allowing cell-cell interaction with co-culturing media. Hydrogels were constructed using a 3D cell-printing system containing 20 mg/ml alginate, 0.5 mg/ml gelatin and 0.5 mg/ml type I collagen. Cells containing hydrogels in 3D co-culture plates were incubated for 10 min to allow stabilization before the experiment. 3D co-culture plates were incubated with the CaCl2 solution for 5 min to complete the cross linking of alginate hydrogel. Cells in 3D co-culture plates were cultured for up to 12 days depending on the experiment and wells containing adipocytes and macrophages were separated and used for assays. RESULTS: KR-1, KR-2 and KR-3 compounds were applied during differentiation (12 days) in 3D co-cultured mouse 3T3-L1 adipocytes and 3D co-cultured human ADMSCs. Glucose uptake assay using 2-DG6P and 2-NBDG and western blot analysis were performed to investigate changes of insulin resistance in the 3D co-cultured model for interspecies selectivity of drug screening. KR-1 (mouse potent enantiomer) and KR-3 (racemic mixture) showed improvement of 2-DG and 2-NBDG uptake compared with KR-2 (human potent enantiomer) in 3D co-cultured 3T3-L1 adipocytes. In connection with insulin resistance in a 3D 3T3-L1 co-cultured model, KR-1 and KR-3 showed improvement of insulin sensitivity compared to KR-2 by markedly increasing GLUT4 expression. In contrast to the result of 3D co-cultured 3T3-L1 adipocytes, KR-1 failed to significantly improve 2-DG and 2-NBDG uptake in 3D co-cultured ADMSC adipocytes. Results of 2-NBDG accumulation and western blot analysis also showed that KR-2 and KR-3 improved insulin sensitivity relatively better than KR-1. CONCLUSIONS: Our 3D co-culture model with/without 3D co-culture plates can successfully mimic insulin resistance while allowing investigation of the effects of anti-obesity or anti-diabetic drugs on human or mouse co-culturing cell type. This 3D co-culture system may accelerate screening of drugs for insulin resistance depending on species.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Preparações Farmacêuticas , Células 3T3-L1 , Adipócitos , Animais , Técnicas de Cocultura , Glucose , Humanos , Insulina , Camundongos
11.
Dig Dis ; 38(6): 442-448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187603

RESUMO

INTRODUCTION: Although signet ring cell carcinoma (SRC) is a poorly differentiated cancer subtype, recent studies suggest that endoscopic resection can be applied in small, mucosal early gastric SRC. However, other studies report frequent positive lines at the lateral resection margin after endoscopic treatment. Subepithelial spread beneath normal mucosa can exist in SRC, and such lesions may be the cause of positive margins after endoscopic resection. Thus, we conducted a retrospective study in order to evaluate the significance of subepithelial spread in early gastric SRC. METHOD: Medical records of early gastric SRC patients who underwent surgery or endoscopic resection from January 2011 to December 2016 at a single tertiary hospital (Daejeon, South Korea) were reviewed to examine subepithelial spread and clinical datum. Two expert pathologists reviewed all pathologic specimens, and only patients showing a pure SRC component were included. RESULTS: Eighty-six patients were initially enrolled, and subepithelial spread existed in 62 patients (72.1%). The mean distance of subepithelial spread was 1,132.1 µm, and the maximal distance was 6,000 µm. Only discoloration was significantly associated with the presence of a subepithelial spread (p < 0.05, χ2 test, and logistic regression test). Distance of subepithelial spread did not correlate with total lesion size. CONCLUSION: Subepithelial spread of early gastric SRC occurs frequently and can reach up to 6 mm. Lesion discoloration may be associated with the presence of subepithelial spread. Our results suggest that careful decision of the margin is needed when performing endoscopic resection of early gastric SRC.


Assuntos
Carcinoma de Células em Anel de Sinete/patologia , Mucosa Gástrica/patologia , Neoplasias Gástricas/patologia , Feminino , Gastroscopia , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Metástase Neoplásica , República da Coreia , Estudos Retrospectivos , Fatores de Risco
12.
J Clin Lab Anal ; 34(8): e23344, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32329932

RESUMO

BACKGROUND: In standard analytical conditions, an isolation step is essential for circulating tumor DNA (ctDNA) analysis. The necessity of this step becomes unclear with the development of highly sensitive detection methods. The aim of this study was to evaluate ctDNA mimetic nDNA detection as reference materials (RMs) using dPCR technologies either directly from serum or without serum. METHODS: To determine an absolute count of both mutation and wild-type bearing DNA molecules, genomic DNA (gDNA) and nucleosomal DNA (nDNA), which are similar in size to cell-free DNA, were evaluated. We tested 3 KRAS mutations in colorectal cancer cell lines. RESULTS: We describe the recent progress in RMs. The short DNA fragments, such as sDNA and nDNA, exhibited higher quantitative values of dPCR compared to gDNA. The efficiency between Atlantis dsDNase (AD) and Micrococcal Nuclease (MN) affects DNA quantification. Moreover, there was a significant difference in dPCR output when spiking gDNA or nDNA containing KRAS mutations into FBS compared to the dPCR output under non-FBS conditions. CONCLUSION: The matrix effect crucially affects the accuracy of gDNA and nDNA level estimation in the direct detection of mimic of patient samples. The form of reference material we proposed should be optimized for various conditions to develop reference materials that can accurately measure copy number and verify the detection of KRAS mutations in the matrix.


Assuntos
DNA Tumoral Circulante/genética , Mutação/genética , Reação em Cadeia da Polimerase/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Humanos
13.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422864

RESUMO

The diagnosis of Parkinson's disease (PD) is initiated after the occurrence of motor symptoms, such as resting tremors, rigidity, and bradykinesia. According to previous reports, non-motor symptoms, notably gastrointestinal dysfunction, could potentially be early biomarkers in PD patients as such symptoms occur earlier than motor symptoms. However, connecting PD to the intestine is methodologically challenging. Thus, we generated in vitro human intestinal organoids from PD patients and ex vivo mouse small intestinal organoids from aged transgenic mice. Both intestinal organoids (IOs) contained the human LRRK2 G2019S mutation, which is the most frequent genetic cause of familial and sporadic PD. By conducting comprehensive genomic comparisons with these two types of IOs, we determined that a particular gene, namely, Iroquois homeobox protein 2 (IRX2), showed PD-related expression patterns not only in human pluripotent stem cell (PSC)-derived neuroectodermal spheres but also in human PSC-derived neuronal cells containing dopaminergic neurons. We expected that our approach of using various cell types presented a novel technical method for studying the effects of multi-organs in PD pathophysiology as well as for the development of diagnostic markers for PD.


Assuntos
Proteínas de Homeodomínio/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Organoides/metabolismo , Doença de Parkinson/diagnóstico , Fatores de Transcrição/genética , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Hipocinesia/diagnóstico , Hipocinesia/genética , Hipocinesia/patologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Tremor/diagnóstico , Tremor/genética , Tremor/patologia
14.
Molecules ; 25(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858952

RESUMO

A potential natural melanogenesis inhibitor was discovered in the form of a sesquiterpene isolated from the flowers of Inula britannica, specifically 6-O-isobutyrylbritannilactone (IBL). We evaluated the antimelanogenesis effects of IBL on B16F10 melanocytes and zebrafish embryos. As a result, we found that 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production was reduced in a dose-dependent manner in B16F10 cells by IBL. We also analyzed B16F10 cells that were and were not treated with IBMX, investigating the melanin concentration, tyrosinase activity, mRNA levels. We also studied the protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related proteins (TRP1, and TRP2). Furthermore, we found that melanin synthesis and tyrosinase expression were also inhibited by IBL through the modulation of the following signaling pathways: ERK, phosphoinositide 3-kinase (PI3K)/AKT, and CREB. In addition, we studied antimelanogenic activity using zebrafish embryos and found that the embryos had significantly reduced pigmentation in the IBL-treated specimens compared to the untreated controls.


Assuntos
Inula/química , Lactonas , Melanócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pigmentação da Pele/efeitos dos fármacos , Peixe-Zebra/embriologia , Animais , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Lactonas/química , Lactonas/farmacologia , Proteínas de Peixe-Zebra/biossíntese
15.
Molecules ; 25(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784741

RESUMO

Parkinson's disease (PD) is a well-known age-related neurodegenerative disease. Considering the vital importance of disease modeling based on reprogramming technology, we adopted direct reprogramming to human-induced neuronal progenitor cells (hiNPCs) for in vitro assessment of potential therapeutics. In this study, we investigated the neuroprotective effects of cryptotanshinone (CTN), which has been reported to have antioxidant properties, through PD patient-derived hiNPCs (PD-iNPCs) model with induced oxidative stress and cell death by the proteasome inhibitor MG132. A cytotoxicity assay showed that CTN possesses anti-apoptotic properties in PD-hiNPCs. CTN treatment significantly reduced cellular apoptosis through mitochondrial restoration, such as the reduction in mitochondrial reactive oxygen species and increments of mitochondrial membrane potential. These effects of CTN are mediated via the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in PD-hiNPCs. Consequently, CTN could be a potential antioxidant reagent for preventing disease-related pathological phenotypes of PD.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Fenantrenos/farmacologia , Estudos de Casos e Controles , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leupeptinas/farmacologia , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
16.
J Nat Prod ; 82(11): 3025-3032, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31675225

RESUMO

Chromatographic purification of a methanol extract of the roots of Lespedeza bicolor led to the isolation of four new pterocarpans (1-4), two new coumestans (6 and 7), two new arylbenzofurans (8 and 9), and the known pterocarpan 1-methoxyerythrabyssin II (5). Their structures were identified using NMR spectroscopy, UV spectroscopy, and mass spectrometry. Cytotoxicity assays showed that compounds 1-9 exerted antiproliferative effects on blood cancer cells. Of these compounds, 1 and 6 induced mitochondrial depolarization and induced apoptosis in Jurkat cells. These compounds promoted cell death by inducing cell-cycle arrest at the G1 stage, reducing levels of BCL2, and increasing cleavage of PARP-1. These findings indicate that 1 and 6 are possible lead compounds for the treatment of human leukemia cells via intracellular signaling.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cumarínicos/farmacologia , Lespedeza/química , Pterocarpanos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/isolamento & purificação , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Células Jurkat , Espectroscopia de Ressonância Magnética , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Pterocarpanos/isolamento & purificação , Espectrofotometria Ultravioleta
17.
Molecules ; 24(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443270

RESUMO

Betula platyphylla bark has been evaluated for the treatment of dermatitis, inflammatory conditions, and cancer. Diarylheptanoids are the major constituents of the B. platyphylla bark and possess various pharmacological effects. Our previous study confirmed the selective antiproliferative effect of platyphylloside (BPP) isolated from B. platyphylla on colon cancer and leukemic cells using 60 different cancer cell lines from thr National Cancer Institution (NCI). In line with previous reports, this study focuses on the apoptotic pathway of BPP, a phenolic glycoside composed of two aromatic rings joined by a seven-carbon chain. Cytotoxicity assays in solid tumor and blood cancer cell models demonstrated that BPP possesses potent antiproliferative activity. The level of apoptosis increased with BPP treatment, causing cell cycle arrest at the G1 phase along with the downregulation of IκBα phosphorylation and BCL-2, as well as upregulation of cleaved caspase 3 and BAX proteins. In addition, BPP displayed potent mitochondrial depolarization effects in Jurkat cells. The combined findings revealed that the cytotoxic effects of BPP were mediated by intracellular signaling, possibly through a mechanism involving the upregulation of mitochondrial reactive oxygen species (ROS). Thus, BPP could be a potential multitarget therapeutic agent in leukemia and colon cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Betula/química , Diarileptanoides/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo , Diarileptanoides/química , Humanos , Células Jurkat , Leucemia , Estrutura Molecular , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo
18.
Molecules ; 24(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623369

RESUMO

Our aim was to verify the potential ability of succinylacetone (SA) to inhibit mitochondrial function, thereby suppressing cancer cell proliferation. SA treatment caused apoptosis in HCT116 and HT29 cells, but not in SW480 cells, with mitochondria playing a key role. We checked for dysfunctional mitochondria after SA treatment. Mitochondria of HT29 cells were swollen, indicating damage, whereas in HCT116 cells, several mitochondria had a diminished size. Damaged mitochondria decreased ATP production and induced reactive oxygen species (ROS) in the cells. To understand SA-induced reduction in ATP production, we investigated the electron transfer chains (ETC) and pyruvate dehydrogenase kinase (PDK) activity, which prevents the transfer of acetyl-CoA to the TCA (tricarboxylic acid) cycle by inhibiting PDH (pyruvate dehydrogenase) activity. In each cell line, the inhibitory mechanism of ATP by SA was different. The activity of complex III consisting of the mitochondrial ETCs in HT29 cells was decreased. In contrast, PDH activity in HCT116 cells was reduced. Nicotinamide nucleotide transhydrogenase (NNT)-removing reactive oxygen species (ROS) was upregulated in HT29 cells, but not in HCT116 cells, indicating that in HT29 cells, a defense mechanism was activated against ROS. Collectively, our study showed a differential mechanism occurs in response to SA in colon cancer cells.


Assuntos
Trifosfato de Adenosina/biossíntese , Neoplasias do Colo/metabolismo , Heptanoatos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
19.
EMBO J ; 31(23): 4441-52, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23092970

RESUMO

Heterogeneous ribonucleoprotein-K (hnRNP-K) is normally ubiquitinated by HDM2 for proteasome-mediated degradation. Under DNA-damage conditions, hnRNP-K is transiently stabilized and serves as a transcriptional co-activator of p53 for cell-cycle arrest. However, how the stability and function of hnRNP-K is regulated remained unknown. Here, we demonstrated that UV-induced SUMOylation of hnRNP-K prevents its ubiquitination for stabilization. Using SUMOylation-defective mutant and purified SUMOylated hnRNP-K, SUMOylation was shown to reduce hnRNP-K's affinity to HDM2 with an increase in that to p53 for p21-mediated cell-cycle arrest. PIAS3 served as a small ubiquitin-related modifier (SUMO) E3 ligase for hnRNP-K in an ATR-dependent manner. During later periods after UV exposure, however, SENP2 removed SUMO from hnRNP-K for its destabilization and in turn for release from cell-cycle arrest. Consistent with the rise-and-fall of both SUMOylation and stability of hnRNP-K, its ability to interact with PIAS3 was inversely correlated to that with SENP2 during the time course after UV exposure. These findings indicate that SUMO modification plays a crucial role in the control of hnRNP-K's function as a p53 co-activator in response to DNA damage by UV.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Cisteína Endopeptidases/metabolismo , Dano ao DNA , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Mutação , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação , Ubiquitina/química , Raios Ultravioleta
20.
Biochem Biophys Res Commun ; 476(4): 450-456, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27240952

RESUMO

Ubiquitin-fold modifier 1 (Ufm1) specific protease (UfSP) is a novel cysteine protease that activates Ufm1 from its precursor by processing the C-terminus to expose the conserved Gly necessary for substrate conjugation and de-conjugates Ufm1 from the substrate. There are two forms: UfSP1 and UfSP2, the later with an additional domain at the N-terminus. Ufm1 and both the conjugating and deconjugating enzymes are highly conserved. However, in Caenorhabditis elegans there is one UfSP which has extra 136 residues at the N terminus compared to UfSP2. The crystal structure of cUfSP reveals that these additional residues display a MPN fold while the rest of the structure mimics that of UfSP2. The MPN domain does not have the metalloprotease activity found in some MPN-domain containing protein, rather it is required for the recognition and deufmylation of the substrate of cUfSP, UfBP1. In addition, the MPN domain is also required for localization to the endoplasmic reticulum.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cristalografia por Raios X , Cisteína Proteases/genética , Retículo Endoplasmático/enzimologia , Células HEK293 , Humanos , Modelos Moleculares , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA