RESUMO
Fluorescent gold nanoclusters (AuNCs) have shown promise as metal ion sensors. Further research into surface ligands is crucial for developing sensors that are both selective and sensitive. Here, we designed simple tripeptides to form fluorescent AuNCs, capitalizing on tyrosine's reduction capability under alkaline conditions. We investigated tyrosine's role in both forming AuNCs and sensing metal ions. Two tripeptides, tyrosine-cysteine-tyrosine (YCY) and serine-cysteine-tyrosine (SCY), were used to form AuNCs. YCY peptides produced AuNCs with blue and red fluorescence, while SCY peptides produced blue-emitting AuNCs. The blue fluorescence of YCY- and SCY-AuNCs was selectively quenched by Fe3+ and Cu2+, whereas red-emitting YCY-AuNC fluorescence remained stable with 13 different metal ions. The number of tyrosine residues influenced the sensor response. DLS measurements revealed different aggregation propensities in the presence of various metal ions, indicating that chelation between the peptide and target ions led to aggregation and fluorescence quenching. Highlighting the innovation of our approach, our study demonstrates the feasibility of the rational design of peptides for the formation of fluorescent AuNCs that serve as highly selective and sensitive surface ligands for metal ion sensing. This method marks an advancement over existing methods due to its dual capability in both synthesizing gold nanoclusters and detecting analytes, specifically Fe3+ and Cu2+.
Assuntos
Cobre , Ouro , Ferro , Nanopartículas Metálicas , Ouro/química , Cobre/química , Cobre/análise , Nanopartículas Metálicas/química , Ferro/química , Ferro/análise , Oligopeptídeos/química , Oligopeptídeos/análise , Tirosina/química , Tirosina/análise , Espectrometria de Fluorescência/métodosRESUMO
Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach using Plasmonic nAnovesicles and cell-based neurotransmitter fluorescent engineered reporter (CNiFER), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin-14 (SST) can be rapidly released under near-infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130â µm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.
Assuntos
Neuropeptídeos , Animais , Encéfalo/metabolismo , Camundongos , Transdução de Sinais , Somatostatina/metabolismoRESUMO
Precise modulation of neuronal activity by neuroactive molecules is essential for understanding brain circuits and behavior. However, tools for highly controllable molecular release are lacking. Here, we developed a photoswitchable nanovesicle with azobenzene-containing phosphatidylcholine (azo-PC), coined 'azosome', for neuromodulation. Irradiation with 365 nm light triggers the trans-to-cis isomerization of azo-PC, resulting in a disordered lipid bilayer with decreased thickness and cargo release. Irradiation with 455 nm light induces reverse isomerization and switches the release off. Real-time fluorescence imaging shows controllable and repeatable cargo release within seconds (< 3 s). Importantly, we demonstrate that SKF-81297, a dopamine D1-receptor agonist, can be repeatedly released from the azosome to activate cultures of primary striatal neurons. Azosome shows promise for precise optical control over the molecular release and can be a valuable tool for molecular neuroscience studies.
RESUMO
A superhydrophobic xerogel coating synthesized from a mixture of nanostructured fluorinated silica colloids, fluoroalkoxysilane, and a backbone silane is reported. The resulting fluorinated surface was characterized using contact angle goniometry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Quantitative bacterial adhesion studies performed using a parallel plate flow cell demonstrated that the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa was reduced by 2.08 ± 0.25 and 1.76 ± 0.12 log over controls, respectively. This simple superhydrophobic coating synthesis may be applied to any surface, regardless of geometry, and does not require harsh synthesis or processing conditions, making it an ideal candidate as a biopassivation strategy.
Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Silanos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Coloides/química , Géis/síntese química , Géis/química , Géis/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Silanos/síntese química , Silanos/química , Relação Estrutura-Atividade , Propriedades de SuperfícieRESUMO
Understanding the signal transmission and processing within the central nervous system (CNS) is a grand challenge in neuroscience. The past decade has witnessed significant advances in the development of new tools to address this challenge. Development of these new tools draws diverse expertise from genetics, materials science, electrical engineering, photonics and other disciplines. Among these tools, nanomaterials have emerged as a unique class of neural interfaces due to their small size, remote coupling and conversion of different energy modalities, various delivery methods, and mitigated chronic immune responses. In this review, we will discuss recent advances in nanotransducers to modulate and interface with the neural system without physical wires. Nanotransducers work collectively to modulate brain activity through optogenetic, mechanical, thermal, electrical and chemical modalities. We will compare important parameters among these techniques including the invasiveness, spatiotemporal precision, cell-type specificity, brain penetration, and translation to large animals and humans. Important areas for future research include a better understanding of the nanomaterials-brain interface, integration of sensing capability for bidirectional closed-loop neuromodulation, and genetically engineered functional materials for cell-type specific neuromodulation.
RESUMO
We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.
Assuntos
Antineoplásicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Feminino , Xenoenxertos , Humanos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Peptoides/química , Peptoides/farmacologia , Fenótipo , Bibliotecas de Moléculas Pequenas/química , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Superhydrophobic nitric oxide (NO)-releasing xerogels were prepared by spray-coating a fluorinated silane/silica composite onto N-diazeniumdiolate NO donor-modified xerogels. The thickness of the superhydrophobic layer was used to extend NO release durations from 59 to 105h. The resulting xerogels were stable, maintaining superhydrophobicity for up to 1month (the longest duration tested) when immersed in solution, with no leaching of silica or undesirable fragmentation detected. The combination of superhydrophobicity and NO release reduced viable Pseudomonas aeruginosa adhesion by >2-logs. The killing effect of NO was demonstrated at longer bacterial contact times, with superhydrophobic NO-releasing xerogels resulting in 3.8-log reductions in adhered viable bacteria vs. controls. With no observed toxicity to L929 murine fibroblasts, NO-releasing superhydrophobic membranes may be valuable antibacterial coatings for implants as they both reduce adhesion and kill bacteria that do adhere.