Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 134(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34369573

RESUMO

Synaptic strength is altered during synaptic plasticity by controlling the number of AMPA receptors (AMPARs) at excitatory synapses. During long-term potentiation and synaptic upscaling, AMPARs are accumulated at synapses to increase synaptic strength. Neuronal activity leads to phosphorylation of AMPAR subunit GluA1 (also known as GRIA1) and subsequent elevation of GluA1 surface expression, either by an increase in receptor forward trafficking to the synaptic membrane or a decrease in receptor internalization. However, the molecular pathways underlying GluA1 phosphorylation-induced elevation of surface AMPAR expression are not completely understood. Here, we employ fluorescence recovery after photobleaching (FRAP) to reveal that phosphorylation of GluA1 serine 845 (S845) predominantly plays a role in receptor internalization, rather than forward trafficking, during synaptic plasticity. Notably, internalization of AMPARs depends upon the clathrin adaptor AP2, which recruits cargo proteins into endocytic clathrin-coated pits. In fact, we further reveal that an increase in GluA1 S845 phosphorylation upon two distinct forms of synaptic plasticity diminishes the binding of the AP2 adaptor, reducing internalization and resulting in elevation of GluA1 surface expression. We thus demonstrate a mechanism of GluA1 phosphorylation-regulated clathrin-mediated internalization of AMPARs.


Assuntos
Clatrina , Receptores de AMPA , Clatrina/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Fosforilação , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo
2.
EMBO J ; 36(2): 232-244, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27856517

RESUMO

mGluR long-term depression (mGluR-LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR-LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor-controlled Ca2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high-conducting Ca2+-permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal.


Assuntos
Retículo Endoplasmático/metabolismo , Neurônios/fisiologia , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Mol Cell Neurosci ; 91: 3-9, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29545119

RESUMO

A fundamental property of the brain is its ability to modify its function in response to its own activity. This ability for self-modification depends to a large extent on synaptic plasticity. It is now appreciated that for excitatory synapses, a significant part of synaptic plasticity depends upon changes in the post synaptic response to glutamate released from nerve terminals. Modification of the post synaptic response depends, in turn, on changes in the abundances of AMPA receptors in the post synaptic membrane. In this review, we consider mechanisms of trafficking of AMPA receptors to and from synapses that take place in the early trafficking stages, starting in the endoplasmic reticulum (ER) and continuing into the secretory pathway. We consider mechanisms of AMPA receptor assembly in the ER, highlighting the role of protein synthesis and the selective properties of specific AMPA receptor subunits, as well as regulation of ER exit, including the roles of chaperones and accessory proteins and the incorporation of AMPA receptors into COPII vesicles. We consider these processes in the context of the mechanism of mGluR LTD and discuss a compelling role for the dendritic ER membrane that is found proximal to synapses. The review illustrates the important, yet little studied, contribution of the early stages of AMPA receptor trafficking to synaptic plasticity.


Assuntos
Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Humanos , Plasticidade Neuronal , Neurônios/fisiologia , Transporte Proteico , Receptores de AMPA/genética
4.
Proc Natl Acad Sci U S A ; 112(10): 3122-7, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713349

RESUMO

Gene knockout (KO) does not always result in phenotypic changes, possibly due to mechanisms of functional compensation. We have studied mice lacking cGMP-dependent kinase II (cGKII), which phosphorylates GluA1, a subunit of AMPA receptors (AMPARs), and promotes hippocampal long-term potentiation (LTP) through AMPAR trafficking. Acute cGKII inhibition significantly reduces LTP, whereas cGKII KO mice show no LTP impairment. Significantly, the closely related kinase, cGKI, does not compensate for cGKII KO. Here, we describe a previously unidentified pathway in the KO hippocampus that provides functional compensation for the LTP impairment observed when cGKII is acutely inhibited. We found that in cultured cGKII KO hippocampal neurons, cGKII-dependent phosphorylation of inositol 1,4,5-trisphosphate receptors was decreased, reducing cytoplasmic Ca(2+) signals. This led to a reduction of calcineurin activity, thereby stabilizing GluA1 phosphorylation and promoting synaptic expression of Ca(2+)-permeable AMPARs, which in turn induced a previously unidentified form of LTP as a compensatory response in the KO hippocampus. Calcineurin-dependent Ca(2+)-permeable AMPAR expression observed here is also used during activity-dependent homeostatic synaptic plasticity. Thus, a homeostatic mechanism used during activity reduction provides functional compensation for gene KO in the cGKII KO hippocampus.


Assuntos
Cálcio/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Hipocampo/enzimologia , Receptores de AMPA/metabolismo , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Homeostase/efeitos dos fármacos , Potenciação de Longa Duração , Camundongos , Camundongos Knockout , Fosforilação , Sinapses/enzimologia , Sinapses/metabolismo , Tetrodotoxina/farmacologia
5.
PLoS Biol ; 12(7): e1001900, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24983627

RESUMO

Homeostatic synaptic plasticity is a negative-feedback mechanism for compensating excessive excitation or inhibition of neuronal activity. When neuronal activity is chronically suppressed, neurons increase synaptic strength across all affected synapses via synaptic scaling. One mechanism for this change is alteration of synaptic AMPA receptor (AMPAR) accumulation. Although decreased intracellular Ca2+ levels caused by chronic inhibition of neuronal activity are believed to be an important trigger of synaptic scaling, the mechanism of Ca2+-mediated AMPAR-dependent synaptic scaling is not yet understood. Here, we use dissociated mouse cortical neurons and employ Ca2+ imaging, electrophysiological, cell biological, and biochemical approaches to describe a novel mechanism in which homeostasis of Ca2+ signaling modulates activity deprivation-induced synaptic scaling by three steps: (1) suppression of neuronal activity decreases somatic Ca2+ signals; (2) reduced activity of calcineurin, a Ca2+-dependent serine/threonine phosphatase, increases synaptic expression of Ca2+-permeable AMPARs (CPARs) by stabilizing GluA1 phosphorylation; and (3) Ca2+ influx via CPARs restores CREB phosphorylation as a homeostatic response by Ca2+-induced Ca2+ release from the ER. Therefore, we suggest that synaptic scaling not only maintains neuronal stability by increasing postsynaptic strength but also maintains nuclear Ca2+ signaling by synaptic expression of CPARs and ER Ca2+ propagation.


Assuntos
Calcineurina/fisiologia , Sinalização do Cálcio/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Animais , Calcineurina/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Homeostase , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Tetrodotoxina/farmacologia
6.
Learn Mem ; 23(8): 435-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27421896

RESUMO

Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO hippocampus is increased as a functional compensation for gene deletion, while such compensation is absent in the prefrontal cortex. Thus, there are brain region-specific effects of cGKII KO on AMPAR trafficking, which could affect animal behavior. Here, we show that GluA1 phosphorylation levels differ in various brain regions, and specific behaviors are altered according to region-specific changes in GluA1 phosphorylation. Moreover, we identified distinct regulations of phosphatases in different brain regions, leading to regional heterogeneity of GluA1 phosphorylation in the KO brain. Our work demonstrates region-specific changes in GluA1 phosphorylation in cGKII KO mice and corresponding effects on cognitive performance. We also reveal distinct regulation of phosphatases in different brain region in which region-specific effects of kinase gene KO arise and can selectively alter animal behavior.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Transporte Proteico , Receptores de AMPA/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Condicionamento Clássico , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Depressão/fisiopatologia , Medo/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Bulbo Olfatório/metabolismo , Fosforilação , Córtex Pré-Frontal/metabolismo , Olfato/fisiologia
7.
J Biol Chem ; 289(27): 19218-30, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24831007

RESUMO

The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca(2+) permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca(2+) permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca(2+) release from internal stores, the activity of Ca(2+)/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca(2+) release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca(2+) dynamics and CaMKII activity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Nucleares/metabolismo , Receptores de AMPA/metabolismo , Animais , Proteínas de Transporte/química , Linhagem Celular , Membrana Celular/metabolismo , Proteínas do Citoesqueleto , Retroalimentação Fisiológica , Hipocampo/citologia , Humanos , Fosfatos de Inositol/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Transporte Proteico , Ratos
8.
J Neurosci ; 33(48): 19034-44, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285907

RESUMO

Depression is a salient emotional feature of chronic pain. Depression alters the pain threshold and impairs functional recovery. To date, however, there has been limited understanding of synaptic or circuit mechanisms that regulate depression in the pain state. Here, we demonstrate that depression-like behaviors are induced in a rat model of chronic neuropathic pain. Using this model, we show that chronic pain selectively increases the level of GluA1 subunits of AMPA-type glutamate receptors at the synapses of the nucleus accumbens (NAc), a key component of the brain reward system. We find, in addition, that this increase in GluA1 levels leads to the formation of calcium-permeable AMPA receptors (CPARs). Surprisingly, pharmacologic blockade of these CPARs in the NAc increases depression-like behaviors associated with pain. Consistent with these findings, an AMPA receptor potentiator delivered into the NAc decreases pain-induced depression. These results show that transmission through CPARs in the NAc represents a novel molecular mechanism modulating the depressive symptoms of pain, and thus CPARs may be a promising therapeutic target for the treatment of pain-induced depression. More generally, these findings highlight the role of central glutamate signaling in pain states and define the brain reward system as an important region for the regulation of depressive symptoms of pain.


Assuntos
Comportamento Animal/fisiologia , Cálcio/metabolismo , Depressão/fisiopatologia , Depressão/psicologia , Neuralgia/fisiopatologia , Neuralgia/psicologia , Núcleo Accumbens/fisiologia , Receptores de AMPA/fisiologia , Animais , Western Blotting , Doença Crônica , Temperatura Baixa , Fenômenos Eletrofisiológicos/fisiologia , Masculino , Microinjeções , Atividade Motora/fisiologia , Medição da Dor/efeitos dos fármacos , Estimulação Física , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/biossíntese , Receptores de AMPA/genética , Frações Subcelulares/fisiologia , Sacarose , Natação/psicologia
9.
J Neurosci ; 33(14): 6123-32, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23554493

RESUMO

The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.


Assuntos
Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Animais , Proteínas de Transporte , Condicionamento Operante/fisiologia , Dopamina beta-Hidroxilase/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Locomoção/fisiologia , Masculino , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Fosfoproteínas/metabolismo , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
10.
J Biol Chem ; 288(49): 35297-306, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24133208

RESUMO

Regulation of striatal medium spiny neuron synapses underlies forms of motivated behavior and pathological drug seeking. A primary mechanism for increasing synaptic strength is the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into the postsynapse, a process mediated by GluA1 AMPAR subunit phosphorylation. We have examined the role of converging glutamate and dopamine inputs in regulating biochemical cascades upstream of GluA1 phosphorylation. We focused on the role of Ca(2+)-permeable AMPARs (CPARs), which lack the GluA2 AMPAR subunit. Under conditions that prevented depolarization, stimulation of CPARs activated neuronal nitric oxide synthase and production of cGMP. CPAR-dependent cGMP production was sufficient to induce synaptic insertion of GluA1, detected by confocal microscopy, through a mechanism dependent on GluA1 Ser-845 phosphorylation. Dopamine D1 receptors, in contrast, stimulate GluA1 extra synaptic insertion. Simultaneous activation of dopamine D1 receptors and CPARs induced additive increases in GluA1 membrane insertion, but only CPAR stimulation augmented CPAR-dependent GluA1 synaptic insertion. This incorporation into the synapse proceeded through a sequential two-step mechanism; that is, cGMP-dependent protein kinase II facilitated membrane insertion and/or retention, and protein kinase C activity was necessary for synaptic insertion. These data suggest a feed-forward mechanism for synaptic priming whereby an initial stimulus acting independently of voltage-gated conductance increases striatal neuron excitability, facilitating greater neuronal excitation by a subsequent stimulus.


Assuntos
Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Corpo Estriado/metabolismo , GMP Cíclico/biossíntese , Fosforilação , Subunidades Proteicas , Ratos , Receptores de AMPA/química , Transdução de Sinais
11.
Neurobiol Learn Mem ; 114: 32-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24752151

RESUMO

Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response.


Assuntos
Ansiedade/genética , Comportamento Animal/fisiologia , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Memória de Curto Prazo/fisiologia , Animais , Ansiedade/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Fosforilação
12.
Neurobiol Learn Mem ; 99: 32-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103773

RESUMO

Activity-dependent trafficking of AMPA receptors to synapses regulates synaptic strength. Activation of the NMDA receptor induces several second messenger pathways that contribute to receptor trafficking-dependent plasticity, including the NO pathway, which elevates cGMP. In turn, cGMP activates the cGMP-dependent protein kinase type II (cGKII), which phosphorylates the AMPA receptor subunit GluA1 at serine 845, a critical step facilitating synaptic delivery in the mechanism of activity-dependent synaptic potentiation. Since cGKII is expressed in the striatum, amygdala, cerebral cortex, and hippocampus, it has been proposed that mice lacking cGKII may present phenotypic differences compared to their wild-type littermates in emotion-dependent tasks, learning and memory, and drug reward salience. Previous studies have shown that cGKII KO mice ingest higher amounts of ethanol as well as exhibit elevated anxiety levels compared to wild-type (WT) littermates. Here, we show that cGKII KO mice are significantly deficient in spatial learning while exhibiting facilitated motor coordination, demonstrating a clear dependence of memory-based tasks on cGKII. We also show diminished GluA1 phosphorylation in the postsynaptic density (PSD) of cGKII KO prefrontal cortex while in hippocampal PSD fractions, phosphorylation was not significantly altered. These data suggest that the role of cGKII may be more robust in particular brain regions, thereby impacting complex behaviors dependent on these regions differently.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo II/fisiologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Destreza Motora/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/deficiência , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Hipocampo/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/fisiologia , Densidade Pós-Sináptica/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de AMPA/metabolismo , Teste de Desempenho do Rota-Rod , Filtro Sensorial
13.
J Neurosci ; 31(34): 12083-93, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21865451

RESUMO

The proteolytic machinery comprising metalloproteases and γ-secretase, an intramembrane aspartyl protease involved in Alzheimer's disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metalloproteases and γ-secretase are physiologic regulators of synapses. Both proteases are synaptic, with γ-secretase tethered at the synapse by δ-catenin, a synaptic scaffolding protein that also binds to N-cadherin and, through scaffolds, to AMPA receptor and a metalloprotease. Activity-dependent proteolysis by metalloproteases and γ-secretase takes place at both sides of the synapse, with the metalloprotease cleavage being NMDA receptor-dependent. This proteolysis decreases levels of synaptic proteins and diminishes synaptic transmission. Our results suggest that activity-dependent substrate cleavage by synaptic metalloproteases and γ-secretase modifies synaptic transmission, providing a novel form of synaptic autoregulation.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Hipocampo/enzimologia , Homeostase/fisiologia , Metaloproteases/fisiologia , Sinapses/enzimologia , Transmissão Sináptica/fisiologia , Animais , Cateninas/deficiência , Cateninas/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Membranas Sinápticas/enzimologia , Membranas Sinápticas/ultraestrutura , delta Catenina
14.
Neuron ; 53(5): 627-33, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17329203

RESUMO

AMPA receptors (AMPARs) conduct fast, excitatory currents that depolarize neurons and trigger action potentials. AMPARs took on new importance when it was shown that AMPAR transport can increase or decrease the number of AMPARs at synapses and give rise to synapse plasticity, including long-term potentiation (LTP) and long-term depression (LTD). This review considers how transmembrane AMPAR regulatory proteins (TARPs), a novel family of AMPAR auxiliary subunits, have changed our view of AMPAR transport and raised some perplexing questions.


Assuntos
Canais de Cálcio/genética , Camundongos Mutantes Neurológicos , Transporte Proteico/fisiologia , Receptores de AMPA/fisiologia , Animais , Canais de Cálcio/química , Camundongos , Estrutura Terciária de Proteína , Receptores de AMPA/química
15.
Neuron ; 56(4): 670-88, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18031684

RESUMO

Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Domínio Catalítico , Linhagem Celular , Células Cultivadas , Proteína Quinase Dependente de GMP Cíclico Tipo II , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipocampo/ultraestrutura , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Cultura de Órgãos , Fosforilação , Ligação Proteica/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Synapse ; 65(10): 1024-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21425350

RESUMO

Insertion and removal of AMPA receptors from the synaptic membrane underlie dynamic tuning of synaptic transmission and enduring changes in synaptic strength. Preclinical addiction research suggests that AMPA receptor trafficking plays an important role in nucleus accumbens (NAc) neuroplasticity underlying the compulsive and persistent quality of drug-seeking. Considering the parallels between drug addiction and compulsive eating, plus the supranormal reward properties of sucrose, and the role of dieting as a risk factor in development of binge pathology, the present study used a biochemical subcellular fractionation approach to determine whether brief intake of a 10% sucrose solution increases synaptic delivery of AMPA receptors in NAc of chronically food-restricted (FR) relative to ad libitum fed (AL) rats. FR, alone, produced a small but significant increase in synaptic expression of AMPA receptors. This may contribute to NAc integrative mechanisms that mediate the enhanced behavioral responsiveness of FR subjects to phasic reward stimuli, including food and drugs. Brief intake of sucrose increased GluR1 in the PSD, regardless of dietary condition, though the net effect was greater in FR than AL subjects. A marked increase in GluR2 was also observed, but only in FR rats. This set of results suggests that in FR subjects, sucrose may have primarily increased delivery of GluR1/GluR2 heteromers to the PSD, while in AL subjects sucrose increased delivery of GluR2-lacking channels. The functional consequences of these possible differences in subunit composition of trafficked AMPA receptors between diet groups remain to be determined. Nevertheless, the present set of results suggest a promising new avenue to pursue in the effort to understand synaptic plasticity involved in adaptive and pathological food-directed behavior and the mechanistic basis of severe dieting as a risk factor for the latter.


Assuntos
Restrição Calórica/efeitos adversos , Sacarose Alimentar/metabolismo , Ingestão de Alimentos/fisiologia , Núcleo Accumbens/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Regulação do Apetite/fisiologia , Restrição Calórica/métodos , Masculino , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Membranas Sinápticas/metabolismo , Regulação para Cima/fisiologia
17.
Anesthesiology ; 115(4): 812-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21934410

RESUMO

BACKGROUND: Chronic pain is associated with depression. In rodents, pain is often assessed by sensory hypersensitivity, which does not sufficiently measure affective responses. Low-dose ketamine has been used to treat both pain and depression, but it is not clear whether ketamine can relieve depression associated with chronic pain and whether this antidepressant effect depends on its antinociceptive properties. METHODS: The authors examined whether the spared nerve injury model of neuropathic pain induces depressive behavior in rats, using sucrose preference test and forced swim test, and tested whether a subanesthetic dose of ketamine treats spared nerve injury-induced depression. RESULTS: Spared nerve injury-treated rats, compared with control rats, showed decreased sucrose preference (0.719 ± 0.068 (mean ± SEM) vs. 0.946 ± 0.010) and enhanced immobility in the forced swim test (107.3 ± 14.6s vs. 56.2 ± 12.5s). Further, sham-operated rats demonstrated depressive behaviors in the acute postoperative period (0.790 ± 0.062 on postoperative day 2). A single subanesthetic dose of ketamine (10 mg/kg) did not alter spared nerve injury-induced hypersensitivity; however, it treated spared nerve injury-associated depression-like behaviors (0.896 ± 0.020 for ketamine vs. 0.663 ± 0.080 for control rats 1 day after administration; 0.858 ± 0.017 for ketamine vs. 0.683 ± 0.077 for control rats 5 days after administration). CONCLUSIONS: Chronic neuropathic pain leads to depression-like behaviors. The postoperative period also confers vulnerability to depression, possibly due to acute pain. Sucrose preference test and forced swim test may be used to compliment sensory tests for assessment of pain in animal studies. Low-dose ketamine can treat depression-like behaviors induced by chronic neuropathic pain.


Assuntos
Anestésicos Dissociativos/farmacologia , Antidepressivos , Depressão/etiologia , Depressão/psicologia , Ketamina/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Temperatura Baixa , Corticosterona/sangue , Relação Dose-Resposta a Droga , Hiperalgesia/psicologia , Masculino , Neuralgia/complicações , Medição da Dor/efeitos dos fármacos , Estimulação Física , Ratos , Ratos Sprague-Dawley , Sacarose , Natação/psicologia , Paladar/efeitos dos fármacos
18.
Mol Cell Neurosci ; 43(4): 341-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20083202

RESUMO

AMPA receptor binding protein (ABP) is a multi-PDZ domain scaffold that binds and stabilizes AMPA receptor (AMPAR) GluR2/3 subunits at synapses. A palmitoylated N-terminal splice variant (pABP-L) concentrates in spine heads, whereas a non-palmitoylated form (ABP-L) is intracellular. We show that postsynaptic Sindbis viral expression of pABP-L increased AMPAR mediated mEPSC amplitude and frequency and elevated surface levels of GluR1 and GluR2, suggesting an increase in AMPA receptors at individual synapses. Spines were enlarged and more numerous and nerve terminals contacting these cells displayed enlarged synaptophysin puncta. A non-palmitoylated pABP-L mutant (C11A) did not change spine density or size. Exogenous pABP-L and endogenous GRIP, a related scaffold, colocalized with NPRAP (delta-catenin), to which ABP and GRIP bind, and with cadherins, which bind NPRAP. Thus postsynaptic pABP-L induces pre and postsynaptic changes that are dependent on palmitoylation and likely achieved through ABP association with a multi-molecular cell surface signaling complex.


Assuntos
Proteínas de Transporte/metabolismo , Lipoilação/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Caderinas/metabolismo , Forma Celular , Células Cultivadas , Espinhas Dendríticas/metabolismo , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios/citologia , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Sinaptofisina/metabolismo
19.
Nat Neurosci ; 10(4): 427-35, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17334360

RESUMO

Neuronal development, plasticity and survival require activity-dependent synapse-to-nucleus signaling. Most studies implicate an activity-dependent regulation of gene expression in this phenomenon. However, little is known about other nuclear functions that are regulated by synaptic activity. Here we show that a newly identified component of rat postsynaptic densities (PSDs), AIDA-1d, can regulate global protein synthesis by altering nucleolar numbers. AIDA-1d binds to the first two postsynaptic density-95/Discs large/zona occludens-1 (PDZ) domains of the scaffolding protein PSD-95 via its C-terminal three amino acids. Stimulation of NMDA receptors (NMDARs), which are also bound to PSD-95, results in a Ca2+-independent translocation of AIDA-1d to the nucleus, where it couples to Cajal bodies and induces Cajal body-nucleolar association. Long-term neuronal stimulation results in an AIDA-1-dependent increase in nucleolar numbers and protein synthesis. We propose that AIDA-1d mediates a link between synaptic activity and control of protein biosynthetic capacity by regulating nucleolar assembly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Nucléolo Celular/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Biossíntese de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Nucléolo Celular/efeitos dos fármacos , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Fosfoproteínas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Ratos , Sinapses/metabolismo , Transfecção/métodos , Proteína da Zônula de Oclusão-1
20.
Neuron ; 51(1): 85-97, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16815334

RESUMO

The subunit composition determines AMPA receptor (AMPA-R) function and trafficking. Mechanisms underlying channel assembly are thus central to the efficacy and plasticity of glutamatergic synapses. We previously showed that RNA editing at the Q/R site of the GluR2 subunit contributes to the assembly of AMPA-R heteromers by attenuating formation of GluR2 homotetramers. Here we report that this function of the Q/R site depends on subunit contacts between adjacent ligand binding domains (LBDs). Changes of LBD interface contacts alter GluR2 assembly properties, forward traffic, and expression at synapses. Interestingly, developmentally regulated RNA editing within the LBD (at the R/G site) produces analogous effects. Our data reveal that editing to glycine reduces the self-assembly competence of this critical subunit and slows GluR2 maturation in the endoplasmic reticulum (ER). Therefore, RNA editing sites, located at strategic subunit interfaces, shape AMPA-R assembly and trafficking in a developmentally regulated manner.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Edição de RNA/genética , RNA/biossíntese , Receptores de AMPA/biossíntese , Receptores de AMPA/genética , Sinapses/metabolismo , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Encéfalo/citologia , Linhagem Celular , Células Cultivadas , Cristalografia por Raios X , Glicina/metabolismo , Humanos , Modelos Moleculares , Plasticidade Neuronal/genética , Conformação Proteica , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , RNA/genética , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA