Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(37): e2201137119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36037389

RESUMO

Tumor necrosis factor-α (TNF-α) is a pleiotropic, proinflammatory cytokine related to different neurodegenerative diseases, including Alzheimer's disease (AD). Although the linkage between increased TNF-α levels and AD is widely recognized, TNF-α-neutralizing therapies have failed to treat AD. Previous research has associated this with the antithetic functions of the two TNF receptors, TNF receptor 1, associated with inflammation and apoptosis, and TNF receptor 2 (TNFR2), associated with neuroprotection. In our study, we investigated the effects of specifically stimulating TNFR2 with a TNFR2 agonist (NewStar2) in a transgenic Aß-overexpressing mouse model of AD by administering NewStar2 in two different ways: centrally, via implantation of osmotic pumps, or systemically by intraperitoneal injections. We found that both centrally and systemically administered NewStar2 resulted in a drastic reduction in amyloid ß deposition and ß-secretase 1 expression levels. Moreover, activation of TNFR2 increased microglial and astrocytic activation and promoted the uptake and degradation of Aß. Finally, cognitive functions were also improved after NewStar2 treatment. Our results demonstrate that activation of TNFR2 mitigates Aß-induced cognitive deficits and neuropathology in an AD mouse model and indicates that TNFR2 stimulation might be a potential treatment for AD.


Assuntos
Doença de Alzheimer , Cognição , Receptores Tipo II do Fator de Necrose Tumoral , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Fator de Necrose Tumoral alfa/metabolismo
2.
Cell Mol Life Sci ; 79(8): 398, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790583

RESUMO

Glioblastoma (GBM), a highly malignant and lethal brain tumor, is characterized by diffuse invasion into the brain and chemo-radiotherapy resistance resulting in poor prognosis. In this study, we examined the involvement of the cell adhesion molecule CD146/MCAM in regulating GBM aggressiveness. Analyses of GBM transcript expression databases revealed correlations of elevated CD146 levels with higher glioma grades, IDH-wildtype and unmethylated MGMT phenotypes, poor response to chemo-radiotherapy and worse overall survival. In a panel of GBM stem cells (GSCs) variable expression levels of CD146 were detected, which strongly increased upon adherent growth. CD146 was linked with mesenchymal transition since expression increased in TGF-ß-treated U-87MG cells. Ectopic overexpression of CD146/GFP in GG16 cells enhanced the mesenchymal phenotype and resulted in increased cell invasion. Conversely, GSC23-CD146 knockouts had decreased mesenchymal marker expression and reduced cell invasion in transwell and GBM-cortical assembloid assays. Moreover, using GSC23 xenografted zebrafish, we found that CD146 depletion resulted in more compact delineated tumor formation and reduced tumor cell dissemination. Stem cell marker expression and neurosphere formation assays showed that CD146 increased the stem cell potential of GSCs. Furthermore, CD146 mediated radioresistance by stimulating cell survival signaling through suppression of p53 expression and activation of NF-κB. Interestingly, CD146 was also identified as an inducer of the oncogenic Yes-associated protein (YAP). In conclusion, CD146 carries out various pro-tumorigenic roles in GBM involving its cell surface receptor function, which include the stimulation of mesenchymal and invasive properties, stemness, and radiotherapy resistance, thus providing an interesting target for therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/patologia , Antígeno CD146/genética , Antígeno CD146/metabolismo , Glioblastoma/patologia , Glioma/patologia , Peixe-Zebra/metabolismo
3.
PLoS Biol ; 17(11): e3000531, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682603

RESUMO

Recycling endosomes regulate plasma membrane recycling. Recently, recycling endosome-associated proteins have been implicated in the positioning and orientation of the mitotic spindle and cytokinesis. Loss of MYO5B, encoding the recycling endosome-associated myosin Vb, is associated with tumor development and tissue architecture defects in the gastrointestinal tract. Whether loss of MYO5B expression affects mitosis is not known. Here, we demonstrate that loss of MYO5B expression delayed cytokinesis, perturbed mitotic spindle orientation, led to the misorientation of the plane of cell division during the course of mitosis, and resulted in the delamination of epithelial cells. Remarkably, the effects on spindle orientation, but not cytokinesis, were a direct consequence of physical hindrance by giant late endosomes, which were formed in a chloride channel-sensitive manner concomitant with a redistribution of chloride channels from the cell periphery to late endosomes upon loss of MYO5B. Rab7 availability was identified as a limiting factor for the development of giant late endosomes. In accordance, increasing rab7 availability corrected mitotic spindle misorientation and cell delamination in cells lacking MYO5B expression. In conclusion, we identified a novel role for MYO5B in the regulation of late endosome size control and identify the inability to control late endosome size as an unexpected novel mechanism underlying defects in cell division orientation and epithelial architecture.


Assuntos
Endossomos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Fuso Acromático/metabolismo , Animais , Células CACO-2 , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Citocinese/genética , Citocinese/fisiologia , Endossomos/genética , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/fisiologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
4.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955549

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Remielinização , Encéfalo/metabolismo , Fibronectinas/metabolismo , Humanos , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Doenças Neurodegenerativas/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia
5.
Eur J Neurosci ; 53(3): 706-719, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32939863

RESUMO

Drug delivery to the brain is greatly hampered by the presence of the blood-brain barrier (BBB) which tightly regulates the passage of molecules from blood to brain and vice versa. Nanocarriers, in which drugs can be encapsulated, can move across the blood-brain barrier (BBB) via the process of transcytosis, thus showing promise to improve drug delivery to the brain. Here, we demonstrate the use of natural nanovesicles, that is, exosomes, derived from C17.2 neural stem cells (NSCs) to efficiently carry a protein cargo across an in vitro BBB model consisting of human brain microvascular endothelial cells. We show that the exosomes are primarily taken up in brain endothelial cells via endocytosis, while heparan sulfate proteoglycans (HSPGs) act as receptors. Taken together, our data support the view that NSC exosomes may act as biological nanocarriers for efficient passage across the BBB. Nanomedicines that target HSPGs may improve their binding to brain endothelial cells and, possibly, show subsequent transcytosis across the BBB.


Assuntos
Exossomos , Células-Tronco Neurais , Transporte Biológico , Barreira Hematoencefálica , Dinaminas/metabolismo , Células Endoteliais , Exossomos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos
6.
Nanomedicine ; 34: 102377, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33621652

RESUMO

Transport of therapeutics across the blood-brain barrier (BBB) is a fundamental requirement for effective treatment of numerous brain diseases. However, most therapeutics (>500 Da) are unable to permeate through the BBB and do not achieve therapeutic doses. Nanoparticles (NPs) are being investigated to facilitate drug delivery to the brain. Here, we investigate the effect of nanoparticle stiffness on NP transport across an in vitro BBB model. To this end, fluorescently labeled poly(N-isopropylmethacrylamide) (p(NIPMAM)) nanogels' stiffness was varied by the inclusion of 1.5 mol% (NG1.5), 5 mol% (NG5), and 14 mol% (NG14) N,N'-methylenebis(acrylamide) (BIS) cross-linker and nanogel uptake and transcytosis was quantified. The more densely cross-linked p(NIPMAM) nanogels showed the highest level of uptake by polarized brain endothelial cells, whereas the less densely cross-linked nanogels demonstrated the highest transcytotic potential. These findings suggest that nanogel stiffness has opposing effects on nanogel uptake and transcytosis at the BBB.


Assuntos
Barreira Hematoencefálica , Nanogéis/química , Acrilamidas/química , Linhagem Celular , Endotélio Vascular/citologia , Corantes Fluorescentes/química , Humanos , Técnicas In Vitro , Polímeros/química
7.
Acc Chem Res ; 52(7): 1750-1760, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31243966

RESUMO

Over the past decades, major efforts were undertaken to develop devices on a nanoscale level for the efficient and nontoxic delivery of molecules to tissues and cells, for the purpose of either diagnosis or treatment of disease. The application of such devices in drug delivery has proven to be beneficial for matters as diverse as drug solubility, drug targeting, controlled drug release, and transport of drugs across cellular barriers. Multiple nanotherapeutics have been approved for clinical treatment, and more products are being evaluated in preclinical and clinical trials. However, many biological barriers hinder the medical application of nanocarriers. There are two main classes of barriers that need to be overcome by drug nanocarriers: extracellular and intracellular barriers, both of which may capture and/or destroy therapeutics before they reach their target site. This Account discusses major biological barriers that are confronted by nanotherapeutics, following their systemic administration, focusing on cellular entry and endosomal escape of gene delivery vectors. The use of pH-responsive materials to overcome the endosomal barrier is addressed. Historically, cell biologists have studied the interaction between cells and pathogens in order to unveil the mechanisms of endocytosis and cell signaling. Meanwhile, it is becoming clear that cells may respond in similar ways to artificial drug delivery systems and, consequently, that knowledge on the cellular response against both pathogens and nanoparticulate systems will aid in the design of improved nanomedicine. A close collaboration between bioengineers and cell biologists will promote this development. At the same time, we have come to realize that tools that we use to study fundamental cellular processes, including metabolic inhibitors of endocytosis and overexpression/downregulation of proteins, may cause changes in cellular physiology. This calls for the implementation of refined methods to study nanocarrier-cell interactions, as is discussed in this Account. Finally, recent papers on the dynamics of cargo release from endosomes by means of live cell imaging have significantly advanced our understanding of the transfection process. They have initiated discussion (among others) on the limited number of endosomal escape events in transfection, and on the endosomal stage at which genetic cargo is most efficiently released. Advancements in imaging techniques, including super-resolution microscopy, in concert with techniques to label endogenous proteins and/or label proteins with synthetic fluorophores, will contribute to a more detailed understanding of nanocarrier-cell dynamics, which is imperative for the development of safe and efficient nanomedicine.


Assuntos
Portadores de Fármacos/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Lipossomos/metabolismo , Polímeros/metabolismo , DNA/metabolismo , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Células HeLa , Humanos , Lipossomos/química , Nanopartículas/química , Nanopartículas/metabolismo , Polímeros/química , RNA/metabolismo
8.
Chemistry ; 26(66): 15084-15088, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32608127

RESUMO

A multimodal approach for hydrogel-based nanoparticles was developed to selectively allow molecular conjugated species to either be released inside the cell or remain connected to the polymer network. Using the intrinsic difference in reactivity between esters and amides, nanogels with an amide-conjugated dye could be tracked intracellularly localizing next to the nucleus, while ester-conjugation allowed for liberation of the molecular species from the hydrogel network inside the cell, enabling delivery throughout the cytoplasm. The release was a result of particle exposure to the intracellular environment. The conjugation approach and polymer network building rely on the same chemistry and provide a diverse range of possibilities to be used in nanomedicine and theranostic approaches.


Assuntos
Nanogéis , Nanopartículas , Citoplasma/química , Sistemas de Liberação de Medicamentos , Nanomedicina , Polímeros/química
9.
Nat Methods ; 12(3): 227-9, 1 p following 229, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643150

RESUMO

Macromolecular crowding in cells influences processes such as folding, association and diffusion of proteins and polynucleic acids. Direct spatiotemporal readout of crowding would be a powerful approach for unraveling the structure of the cytoplasm and determining the impact of excluded volume on protein function in living cells. Here, we introduce a genetically encodable fluorescence resonance energy transfer (FRET) sensor for quantifying macromolecular crowding and discuss our application of the sensor in bacterial and mammalian cells.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência , Substâncias Macromoleculares/análise , Imagem Molecular/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calibragem , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Substâncias Macromoleculares/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
STAR Protoc ; 4(1): 102134, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861837

RESUMO

Here, we present a protocol using genetic engineering techniques to prepare small extracellular vesicles (sEVs) enriched in the chaperone protein DNAJB6. We describe steps to prepare cell lines overexpressing DNAJB6, followed by the isolation and characterization of sEVs from cell conditioned media. Further, we describe assays to examine effects of DNAJB6-loaded sEVs on protein aggregation in Huntington's disease cellular models. The protocol can be readily repurposed to study protein aggregation in other neurodegenerative disorders or extended to other therapeutic proteins. For complete details on the use and execution of this protocol, please refer to Joshi et al. (2021).1.


Assuntos
Vesículas Extracelulares , Doença de Huntington , Células-Tronco Neurais , Doenças Neurodegenerativas , Humanos , Agregados Proteicos , Doença de Huntington/genética , Doença de Huntington/terapia , Doença de Huntington/metabolismo , Células-Tronco Neurais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo
11.
Acta Biomater ; 155: 507-520, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371002

RESUMO

Targeted drug delivery requires -among others- specific interaction of nanocarriers with cell surface receptors enabling efficient internalization into the targeted cells. Thus, identification of receptors allowing efficient nanocarrier uptake is essential to improve the design of targeted nanomedicines. Here we used methods based on cell surface biotinylation to identify cell surface receptors mediating nanoparticle uptake by cells. We used human brain and liver endothelial cells as representative examples of cells typically showing very low and very high nanoparticle uptake, respectively. Amino-modified and carboxylated silica were used as model nanoparticles usually associated with high and low uptake into cells, respectively, and carrying different coronas after exposure in full human plasma. Using cell surface biotinylation of live cells and receptor pull-down assays, we compared the receptors internalized in control untreated cells and those internalized upon exposure to nanoparticles. In this way, we identified receptors associated with (high) nanoparticle uptake. The candidate receptors were further validated by decorating the nanoparticles with an artificial corona consisting of the respective receptor ligands. We found that a vitronectin corona can be used to target integrin receptors and strongly enhances nanoparticle uptake in brain and liver endothelial cells. The increased uptake was maintained in the presence of serum, suggesting that the vitronectin-corona could resist interaction and competition with serum. Furthermore, plasminogen-coated nanoparticles promoted uptake in endothelial cells of the liver, but not of the brain. The presented approach using reversible biotinylation of cell surface receptors in live cells allows for receptor-based targeting of nanocarriers that are instrumental in nanoparticle uptake, which can be exploited for targeted drug delivery. STATEMENT OF SIGNIFICANCE: In order to deliver drugs to their site of action, drug-loaded nanocarriers can be targeted to cell receptors enabling efficient uptake into target cells. Thus, methods to identify nanocarrier receptors are invaluable. Here we used reversible biotinylation of live cells and receptor pull-down approaches for receptor identification. By comparative analysis of the individual receptors internalized in untreated cells and cells exposed to nanoparticles, we identified receptors enabling high nanoparticle uptake into liver and brain endothelial cells. Their role was confirmed by decorating nanoparticles with an artificial corona composed of the receptor ligands. In conclusion, live cell reversible biotinylation of cell surface proteins is a powerful tool for the identification of potential receptors for receptor-based targeting of nanocarriers.


Assuntos
Células Endoteliais , Nanopartículas , Humanos , Células Endoteliais/metabolismo , Biotinilação , Vitronectina , Receptores de Superfície Celular/metabolismo
12.
Tissue Eng Regen Med ; 20(7): 1041-1052, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37861960

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common degenerative joint disease without an ultimate treatment. In a search for novel approaches, tissue engineering (TE) has shown great potential to be an effective way for hyaline cartilage regeneration and repair in advanced stages of OA. Recently, induced pluripotent stem cells (iPSCs) have been appointed to be essential stem cells for degenerative disease treatment because they allow a personalized medicine approach. For clinical translation, bioreactors in combination with iPSCs-engineerd cartilage could match patients needs, serve as platform for large-scale patient specific cartilage production, and be a tool for patient OA modelling and drug screening. Furthermore, to minimize in vivo experiments and improve cell differentiation and cartilage extracellular matrix (ECM) deposition, TE combines existing approaches with bioreactors. METHODS: This review summarizes the current understanding of bioreactors and the necessary parameters when they are intended for cartilage TE, focusing on the potential use of iPSCs. RESULTS: Bioreactors intended for cartilage TE must resemble the joint cavity niche. However, recreating human synovial joints is not trivial because the interactions between various stimuli are not entirely understood. CONCLUSION: The use of mechanical and electrical stimulation to differentiate iPSCs, and maintain and test chondrocytes are key stimuli influencing hyaline cartilage homeostasis. Incorporating these stimuli to bioreactors can positively impact cartilage TE approaches and their possibility for posterior translation into the clinics.


Assuntos
Cartilagem Articular , Células-Tronco Pluripotentes Induzidas , Osteoartrite , Humanos , Osteoartrite/terapia , Condrócitos , Reatores Biológicos
13.
Mol Imaging ; 11(1): 1-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22418021

RESUMO

The introduction of neural stem cells into the brain has promising therapeutic potential for the treatment of neurodegenerative diseases. To monitor the cellular replacement therapy, that is, to determine stem cell migration, survival, and differentiation, in vivo tracking methods are needed. Ideally, these tracking methods are noninvasive. Noninvasive tracking methods that have been successfully used for the visualization of blood-derived progenitor cells include magnetic resonance imaging and radionuclide imaging using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The SPECT tracer In-111-oxine is suitable for stem cell labeling, but for studies in small animals, the higher sensitivity and facile quantification that can be obtained with PET are preferred. Here the potential of 2'-[18F]fluoro-2'-deoxy-D-glucose ([18F]-FDG), a PET tracer, for tracking of neural stem cell (NSCs) trafficking toward an inflammation site was investigated. [18F]-FDG turns out to be a poor radiopharmaceutical to label NSCs owing to the low labeling efficiency and substantial release of radioactivity from these cells. Efflux of [18F]-FDG from NSCs can be effectively reduced by phloretin in vitro, but inhibition of tracer release is insufficient in vivo for accurate monitoring of stem cell trafficking.


Assuntos
Fluordesoxiglucose F18/metabolismo , Células-Tronco Neurais/metabolismo , Floretina/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Camada Fina , Fluordesoxiglucose F18/efeitos adversos , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Bioconjug Chem ; 23(5): 958-65, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22463082

RESUMO

Polymersomes, self-assembled from the block copolymer polybutadiene-block-poly(ethylene glycol), were prepared with well-defined diameters between 90 and 250 nm. The presence of ~1% of diethylene triamine penta acetic acid on the polymersome periphery allowed to chelate radioactive (111)In onto the surface and determine the biodistribution in mice as a function of both the polymersome size and poly(ethylene glycol) corona thickness (i.e., PEG molecular weight). Doubling the PEG molecular weight from 1 kg/mol to 2 kg/mol did not change the blood circulation half-life significantly. However, the size of the different polymersome samples did have a drastic effect on the blood circulation times. It was found that polymersomes of 120 nm and larger become mostly cleared from the blood within 4 h, presumably due to recognition by the reticuloendothelial system. In contrast, smaller polymersomes of around 90 nm circulated much longer. After 24 h more than 30% of the injected dose was still present in the blood pool. This sharp transition in blood circulation kinetics due to size is much more abrupt than observed for liposomes and was additionally visualized by SPECT/CT imaging. These findings should be considered in the formulation and design of polymersomes for biomedical applications. Size, much more than for liposomes, will influence the pharmacokinetics, and therefore, long circulating preparations should be well below 100 nm.


Assuntos
Butadienos/farmacocinética , Elastômeros/farmacocinética , Polietilenoglicóis/farmacocinética , Animais , Butadienos/administração & dosagem , Butadienos/química , Elastômeros/administração & dosagem , Elastômeros/química , Radioisótopos de Índio/análise , Lipossomos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
15.
Mol Pharm ; 9(6): 1620-7, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22536790

RESUMO

Due to the aging of the population, the incidence of neurodegenerative diseases, such as Parkinson's and Alzheimer's, is expected to grow and, hence, the demand for adequate treatment modalities. However, the delivery of medicines into the brain for the treatment of brain-related diseases is hampered by the presence of a tight layer of endothelial cells that forms the blood-brain barrier (BBB). Furthermore, most conventional drugs lack stability and/or bioavailability. These obstacles can be overcome by the application of nanocarriers, in which the therapeutic entity has been incorporated, provided that they are effectively targeted to the brain endothelial cell layer. Drug nanocarriers decorated with targeting ligands that bind BBB receptors may accumulate efficiently at/in brain microvascular endothelium and hence represent a promising tool for brain drug delivery. Following the accumulation of drug nanocarriers at the brain vasculature, the drug needs to be transported across the brain endothelial cells into the brain. Transport across brain endothelial cells can occur via passive diffusion, transport proteins, and the vesicular transport pathways of receptor-mediated and adsorptive-mediated transcytosis. When a small lipophilic drug is released from its carrier at the brain vasculature, it may enter the brain via passive diffusion. On the other hand, the passage of intact nanocarriers, which is necessary for the delivery of larger and more hydrophilic drugs into brain, may occur via active transport by means of transcytosis. In previous work we identified GM1 ganglioside and prion protein as potential transcytotic receptors at the BBB. GM1 is a glycosphingolipid that is ubiquitously present on the endothelial surface and capable of acting as the transcytotic receptor for cholera toxin B. Likewise, prion protein has been shown to have transcytotic capacity at brain endothelial cells. Here we determine the transcytotic potential of polymersome nanocarriers functionalized with GM1- and prion-targeting peptides (G23, P50 and P9), that were identified by phage display, in an in vitro BBB model. In addition, the biodistribution of polymersomes functionalized with either the prion-targeting peptide P50 or the GM1-targeting peptide G23 is determined following intravenous injection in mice. We show that the prion-targeting peptides do not induce efficient transcytosis of polymersomes across the BBB in vitro nor induce accumulation of polymersomes in the brain in vivo. In contrast, the G23 peptide is shown to have transcytotic capacity in brain endothelial cells in vitro, as well as a brain-targeting potential in vivo, as reflected by the accumulation of G23-polymersomes in the brain in vivo at a level comparable to that of RI7217-polymersomes, which are targeted toward the transferrin receptor. Thus the G23 peptide seems to serve both of the requirements that are needed for efficient brain drug delivery of nanocarriers. An unexpected finding was the efficient accumulation of G23-polymersomes in lung. In conclusion, because of its combined brain-targeting and transcytotic capacity, the G23 peptide could be useful in the development of targeted nanocarriers for drug delivery into the brain, but appears especially attractive for specific drug delivery to the lung.


Assuntos
Gangliosídeo G(M1)/administração & dosagem , Gangliosídeo G(M1)/farmacocinética , Príons/administração & dosagem , Príons/farmacocinética , Administração Intravenosa , Animais , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
16.
Pharm Res ; 29(12): 3213-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22806407

RESUMO

A major challenge in the development of central nervous system drugs is to obtain therapeutic effective drug concentrations inside the brain. Many potentially effective drugs have never reached clinical application because of poor brain penetration. Currently, devices are being developed that may improve drug delivery into the brain. One approach involves the encapsulation of drugs into nanocarriers that are targeted to the brain, where the drug is released. Alternatively, living cells have been engineered to produce the pharmaceutical of interest at the target site. It is important to follow the fate of these drug delivery devices inside the body to verify their efficiency in reaching the brain. To this end, both ex-vivo approaches and in-vivo imaging techniques are used, including ex-vivo biodistribution, autoradiography, MRI, optical imaging, PET and SPECT. All these methods have their specific advantages and limitations. Consequently, selection of the tracking method should be based on the specific aims of the experiment. Here, we will discuss the methods that are currently applied for tracking brain drug delivery devices, including the most commonly used labels and labeling procedures for living cells and nanocarriers. Subsequently, we will discuss specific applications in tracking drug delivery devices.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos/análise , Sistemas de Liberação de Medicamentos , Nanopartículas/análise , Animais , Meios de Contraste/análise , Sistemas de Liberação de Medicamentos/métodos , Corantes Fluorescentes/análise , Genes Reporter , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/análise , Coloração e Rotulagem/métodos , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos
17.
Mol Ther ; 19(2): 318-25, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21045812

RESUMO

A polarized layer of endothelial cells that comprises the blood-brain barrier (BBB) precludes access of systemically administered medicines to brain tissue. Consequently, there is a need for drug delivery vehicles that mediate transendothelial transport of such medicines. Endothelial cells use a variety of endocytotic pathways for the internalization of exogenous materials, including clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis. The different modes of endocytosis result in the delivery of endocytosed material to distinctive intracellular compartments and therewith correlated differential processing. To obtain insight into the properties of drug delivery vehicles that direct their intracellular processing in brain endothelial cells, we investigated the intracellular processing of fixed-size nanoparticles in an in vitro BBB model as a function of distinct nanoparticle surface modifications. Caveolar endocytosis, adsorptive-mediated endocytosis, and receptor-mediated endocytosis were promoted by the use of uncoated 500-nm particles, attachment of the cationic polymer polyethyleneimine (PEI), and attachment of prion proteins, respectively. We demonstrate that surface modifications of nanoparticles, including charge and protein ligands, affect their mode of internalization by brain endothelial cells and thereby their subcellular fate and transcytotic potential.


Assuntos
Barreira Hematoencefálica/citologia , Células Endoteliais/metabolismo , Linhagem Celular , Células Endoteliais/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura
18.
Pharmaceutics ; 14(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432676

RESUMO

Cell-derived extracellular vesicles (EVs) are effectors of cell-to-cell communication that are in the spotlight as promising candidates for in vivo drug delivery because of their ability to enter cells and deliver cargo. For example, proteins of interest can be loaded into EVs to mediate protein transfer into target cells. To determine causality between EV content and function, which is also important to assess the clinical safety of EVs, it is crucial to comprehensively characterize their complete molecular composition. Here, we investigated EVs loaded with the chaperone protein DNAJB6. Chaperone proteins assist in protein folding and have been suggested to alleviate protein aggregation diseases, such as Alzheimer's disease and Huntington's disease. We analyzed and compared the proteome of EVs isolated from wildtype HEK293T cells with that of EVs from HEK 293T cells overexpressing DNAJB6-WT or loss-of-function mutant DNAJB6-M3. Comprehensive analysis of proteomics data showed enhanced levels of DNAJB6 as well as protein-folding-related proteins in EVs derived from DNAJB6-overexpression cells. Interestingly, upregulation of a chaperone and its protein-folding-related proteins resulted in downregulation of another chaperone plus its related proteins, and vice versa. This implies the presence of compensatory mechanisms in the cellular expression of chaperones. Collectively, we provide the proteomic EV signatures underlying EV mediated DNAJB6 transmission by HEK293T cells, with the aim of establishing a causal relationship between EV protein content and EV function.

19.
Circ Res ; 104(5): 679-87, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19168443

RESUMO

Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4- and 70-kDa dextrans through the cytosol, and localization of 155- and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4- to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size.


Assuntos
Cavéolas/metabolismo , Dextranos/metabolismo , Sistemas de Liberação de Medicamentos , Endocitose , Células Endoteliais/metabolismo , Corantes Fluorescentes/metabolismo , Microbolhas , Ultrassom , Trifosfato de Adenosina/metabolismo , Androstadienos/farmacologia , Animais , Transporte Biológico , Bovinos , Caveolina 1/metabolismo , Células Cultivadas , Clorpromazina/farmacologia , Clatrina/metabolismo , Meios de Contraste/administração & dosagem , Citosol/metabolismo , Dextranos/administração & dosagem , Dextranos/química , Endocitose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Artéria Femoral/metabolismo , Filipina/farmacologia , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Imageamento Tridimensional , Infusões Intravenosas , Microscopia de Fluorescência , Peso Molecular , Fosfolipídeos/administração & dosagem , Pinocitose , Pressão , Ratos , Ratos Wistar , Hexafluoreto de Enxofre/administração & dosagem , Fatores de Tempo , Vesículas Transportadoras/metabolismo , Wortmanina
20.
ACS Biomater Sci Eng ; 7(12): 5573-5584, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34761907

RESUMO

The formation of the biomolecule corona on the surface of nanoparticles upon exposure to biological fluids critically influences nanocarrier performance in drug delivery. It has been shown that in some cases corona proteins can mediate specific nanoparticle interactions with cell receptors. Within this context, in order to identify corona proteins affecting nanoparticle uptake, in this work, correlation analysis is performed between the corona composition of a panel of silica nanoparticles of different sizes and surface functionalities and their uptake in four endothelial cell types derived from different organs. In this way, proteins that correlate with increased or decreased uptake were identified, and their effects were validated by studying the uptake of nanoparticles coated with a single protein corona and competition studies in brain and liver endothelium. The results showed that precoating nanoparticles with histidine-rich glycoprotein (HRG) alone strongly decreased uptake in both liver and brain endothelium. Furthermore, our results suggested the involvement of the transferrin receptor in nanoparticle uptake in liver endothelium and redirection of the nanoparticles to other receptors with higher uptake efficiency when the transferrin receptor was blocked by free transferrin. These data suggested that changes in the cell microenvironment can also affect nanoparticle uptake and may lead to a different interaction site with nanoparticles, affecting their uptake efficiency. Overall, correlating the composition of the protein corona and nanoparticle uptake by cells allows for the identification of corona molecules that can be used to increase as well as to reduce nanoparticle uptake by cells.


Assuntos
Nanopartículas , Coroa de Proteína , Células Endoteliais , Dióxido de Silício , Transferrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA