Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(15): 2918-2934.e11, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39025072

RESUMO

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.


Assuntos
Proteínas Argonautas , Conformação de Ácido Nucleico , RNA Guia de Sistemas CRISPR-Cas , Complexo de Inativação Induzido por RNA , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/química , Humanos , Complexo de Inativação Induzido por RNA/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/química , Cinética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Interferência de RNA , Sequência de Bases , Células HEK293
2.
Mol Cell ; 83(14): 2509-2523.e13, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402366

RESUMO

K-Ras frequently acquires gain-of-function mutations (K-RasG12D being the most common) that trigger significant transcriptomic and proteomic changes to drive tumorigenesis. Nevertheless, oncogenic K-Ras-induced dysregulation of post-transcriptional regulators such as microRNAs (miRNAs) during oncogenesis is poorly understood. Here, we report that K-RasG12D promotes global suppression of miRNA activity, resulting in the upregulation of hundreds of targets. We constructed a comprehensive profile of physiological miRNA targets in mouse colonic epithelium and tumors expressing K-RasG12D using Halo-enhanced Argonaute pull-down. Combining this with parallel datasets of chromatin accessibility, transcriptome, and proteome, we uncovered that K-RasG12D suppressed the expression of Csnk1a1 and Csnk2a1, subsequently decreasing Ago2 phosphorylation at Ser825/829/832/835. Hypo-phosphorylated Ago2 increased binding to mRNAs while reducing its activity to repress miRNA targets. Our findings connect a potent regulatory mechanism of global miRNA activity to K-Ras in a pathophysiological context and provide a mechanistic link between oncogenic K-Ras and the post-transcriptional upregulation of miRNA targets.


Assuntos
MicroRNAs , Neoplasias , Animais , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Genes ras , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Proteômica
3.
Mol Cell ; 78(2): 317-328.e6, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32191872

RESUMO

MicroRNAs (miRNAs) are sequentially processed by two RNase III enzymes, Drosha and Dicer. miR-451 is the only known miRNA whose processing bypasses Dicer and instead relies on the slicer activity of Argonaute-2 (Ago2). miR-451 is highly conserved in vertebrates and regulates erythrocyte maturation, where it becomes the most abundant miRNA. However, the basis for the non-canonical biogenesis of miR-451 is unclear. Here, we show that Ago2 is less efficient than Dicer in processing pre-miRNAs, but this deficit is overcome when miR-144 represses Dicer in a negative-feedback loop during erythropoiesis. Loss of miR-144-mediated Dicer repression in zebrafish embryos and human cells leads to increased canonical miRNA production and impaired miR-451 maturation. Overexpression of Ago2 rescues some of the defects of miR-451 processing. Thus, the evolution of Ago2-dependent processing allows miR-451 to circumvent the global repression of canonical miRNAs elicited, in part, by the miR-144 targeting of Dicer during erythropoiesis.


Assuntos
Proteínas Argonautas/genética , Eritropoese/genética , MicroRNAs/genética , Animais , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Interferência de RNA , Ribonuclease III/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
4.
Mol Cell ; 79(1): 167-179.e11, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32497496

RESUMO

The identification of microRNA (miRNA) targets by Ago2 crosslinking-immunoprecipitation (CLIP) methods has provided major insights into the biology of this important class of non-coding RNAs. However, these methods are technically challenging and not easily applicable to an in vivo setting. To overcome these limitations and facilitate the investigation of miRNA functions in vivo, we have developed a method based on a genetically engineered mouse harboring a conditional Halo-Ago2 allele expressed from the endogenous Ago2 locus. By using a resin conjugated to the HaloTag ligand, Ago2-miRNA-mRNA complexes can be purified from cells and tissues expressing the endogenous Halo-Ago2 allele. We demonstrate the reproducibility and sensitivity of this method in mouse embryonic stem cells, developing embryos, adult tissues, and autochthonous mouse models of human brain and lung cancers. This method and the datasets we have generated will facilitate the characterization of miRNA-mRNA networks in vivo under physiological and pathological conditions.


Assuntos
Proteínas Argonautas/fisiologia , Células-Tronco Embrionárias/metabolismo , Glioma/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica , Glioma/genética , Glioma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Hidrolases/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Ligação Proteica , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética
5.
EMBO J ; 42(11): e112721, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070548

RESUMO

Different mutations in the RNA-binding protein Pumilio1 (PUM1) cause divergent phenotypes whose severity tracks with dosage: a mutation that reduces PUM1 levels by 25% causes late-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Yet PUM1 targets are derepressed to equal degrees in both cases, and the more severe mutation does not hinder PUM1's RNA-binding ability. We therefore considered the possibility that the severe mutation might disrupt PUM1 interactions, and identified PUM1 interactors in the murine brain. We find that mild PUM1 loss derepresses PUM1-specific targets, but the severe mutation disrupts interactions with several RNA-binding proteins and the regulation of their targets. In patient-derived cell lines, restoring PUM1 levels restores these interactors and their targets to normal levels. Our results demonstrate that dosage sensitivity does not always signify a linear relationship with protein abundance but can involve distinct mechanisms. We propose that to understand the functions of RNA-binding proteins in a physiological context will require studying their interactions as well as their targets.


Assuntos
Encéfalo , Proteínas de Ligação a RNA , Animais , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mutação , Encéfalo/metabolismo , Convulsões
6.
Mol Cell ; 69(5): 787-801.e8, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499134

RESUMO

MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Inativação Gênica , MicroRNAs/metabolismo , RNA de Helmintos/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , RNA de Helmintos/genética , Proteína FUS de Ligação a RNA/genética
7.
Mol Cell ; 69(2): 265-278.e6, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351846

RESUMO

While Slicer activity of Argonaute is central to RNAi, conserved roles of slicing in endogenous regulatory biology are less clear, especially in mammals. Biogenesis of erythroid Dicer-independent mir-451 involves Ago2 catalysis, but mir-451-KO mice do not phenocopy Ago2 catalytic-dead (Ago2-CD) mice, suggesting other needs for slicing. Here, we reveal mir-486 as another dominant erythroid miRNA with atypical biogenesis. While it is Dicer dependent, it requires slicing to eliminate its star strand. Thus, in Ago2-CD conditions, miR-486-5p is functionally inactive due to duplex arrest. Genome-wide analyses reveal miR-486 and miR-451 as the major slicing-dependent miRNAs in the hematopoietic system. Moreover, mir-486-KO mice exhibit erythroid defects, and double knockout of mir-486/451 phenocopies the cell-autonomous effects of Ago2-CD in the hematopoietic system. Finally, we observe that Ago2 is the dominant-expressed Argonaute in maturing erythroblasts, reflecting a specialized environment for processing slicing-dependent miRNAs. Overall, the mammalian hematopoietic system has evolved multiple conserved requirements for Slicer-dependent miRNA biogenesis.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/fisiologia , RNA Helicases DEAD-box/metabolismo , Eritroblastos/metabolismo , Estudo de Associação Genômica Ampla , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Interferência de RNA , Ribonuclease III/metabolismo , Análise de Sequência de RNA , Homologia de Sequência do Ácido Nucleico
8.
RNA ; 29(10): 1453-1457, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37414463

RESUMO

RNA-binding proteins (RBPs) are critical regulators of gene expression. An RBP typically binds to multiple mRNAs and modulates their expression. Although loss-of-function experiments on an RBP can infer how it regulates a specific target mRNA, the results are confounded by potential secondary effects due to the attenuation of all other interactions of the target RBP. For example, regarding the interaction between Trim71, an evolutionarily conserved RBP, and Ago2 mRNA, although Trim71 binds to Ago2 mRNA and overexpression of Trim71 represses Ago2 mRNA translation, it is puzzling that AGO2 protein levels are not altered in the Trim71 knockdown/knockout cells. To address this, we adapted the dTAG (degradation tag) system for determining the direct effects of the endogenous Trim71. Specifically, we knocked in the dTAG to the Trim71 locus, enabling inducible rapid Trim71 protein degradation. We observed that following the induction of Trim71 degradation, Ago2 protein levels first increased, confirming the Trim71-mediated repression, and then returned to the original levels after 24 h post-induction, revealing that the secondary effects from the Trim71 knockdown/knockout counteracted its direct effects on Ago2 mRNA. These results highlight a caveat in interpreting the results from loss-of-function studies on RBPs and provide a method to determine the primary effect(s) of RBPs on their target mRNAs.


Assuntos
Biossíntese de Proteínas , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Mol Ther ; 32(5): 1578-1594, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475992

RESUMO

Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.


Assuntos
Proteínas Argonautas , Modelos Animais de Doenças , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Repressoras , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Camundongos , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Remodelação Ventricular , Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regulação da Expressão Gênica , Masculino , Dependovirus/genética , Transcrição Gênica
10.
Mol Cell ; 68(6): 1095-1107.e5, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272705

RESUMO

The RNAi pathway provides both innate immunity and efficient gene-knockdown tools in many eukaryotic species, but curiously not in zebrafish. We discovered that RNAi is less effective in zebrafish at least partly because Argonaute2-catalyzed mRNA slicing is impaired. This defect is due to two mutations that arose in an ancestor of most teleost fish, implying that most fish lack effective RNAi. Despite lacking efficient slicing activity, these fish have retained the ability to produce miR-451, a microRNA generated by a cleavage reaction analogous to slicing. This ability is due to a G-G mismatch within the fish miR-451 precursor, which substantially enhances its cleavage. An analogous G-G mismatch (or sometimes also a G-A mismatch) enhances target slicing, despite disrupting seed pairing important for target binding. These results provide a strategy for restoring RNAi to zebrafish and reveal unanticipated opposing effects of a seed mismatch with implications for mechanism and guide-RNA design.


Assuntos
Proteínas Argonautas/metabolismo , Pareamento Incorreto de Bases , MicroRNAs/metabolismo , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , Peixe-Zebra/genética , Animais , Proteínas Argonautas/genética , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Peixe-Zebra/fisiologia
11.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38372062

RESUMO

Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.


Assuntos
MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células HeLa , Inativação Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , RNA Mensageiro/genética
12.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972443

RESUMO

Lung cancer is the deadliest malignancy in the United States. Non-small cell lung cancer (NSCLC) accounts for 85% of cases and is frequently driven by activating mutations in the gene encoding the KRAS GTPase (e.g., KRASG12D). Our previous work demonstrated that Argonaute 2 (AGO2)-a component of the RNA-induced silencing complex (RISC)-physically interacts with RAS and promotes its downstream signaling. We therefore hypothesized that AGO2 could promote KRASG12D-dependent NSCLC in vivo. To test the hypothesis, we evaluated the impact of Ago2 knockout in the KPC (LSL-KrasG12D/+;p53f/f;Cre) mouse model of NSCLC. In KPC mice, intratracheal delivery of adenoviral Cre drives lung-specific expression of a stop-floxed KRASG12D allele and biallelic ablation of p53 Simultaneous biallelic ablation of floxed Ago2 inhibited KPC lung nodule growth while reducing proliferative index and improving pathological grade. We next applied the KPHetC model, in which the Clara cell-specific CCSP-driven Cre activates KRASG12D and ablates a single p53 allele. In these mice, Ago2 ablation also reduced tumor size and grade. In both models, Ago2 knockout inhibited ERK phosphorylation (pERK) in tumor cells, indicating impaired KRAS signaling. RNA sequencing (RNA-seq) of KPC nodules and nodule-derived organoids demonstrated impaired canonical KRAS signaling with Ago2 ablation. Strikingly, accumulation of pERK in KPC organoids depended on physical interaction of AGO2 and KRAS. Taken together, our data demonstrate a pathogenic role for AGO2 in KRAS-dependent NSCLC. Given the prevalence of this malignancy and current difficulties in therapeutically targeting KRAS signaling, our work may have future translational relevance.


Assuntos
Proteínas Argonautas/fisiologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Neoplasias Pulmonares/etiologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Modelos Animais de Doenças , Progressão da Doença , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
13.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750254

RESUMO

The commitment of hematopoietic multipotent progenitors (MPPs) toward a particular lineage involves activation of cell type-specific genes and silencing of genes that promote alternate cell fates. Although the gene expression programs of early-B and early-T lymphocyte development are mutually exclusive, we show that these cell types exhibit significantly correlated microRNA (miRNA) profiles. However, their corresponding miRNA targetomes are distinct and predominated by transcripts associated with natural killer, dendritic cell, and myeloid lineages, suggesting that miRNAs function in a cell-autonomous manner. The combinatorial expression of miRNAs miR-186-5p, miR-128-3p, and miR-330-5p in MPPs significantly attenuates their myeloid differentiation potential due to repression of myeloid-associated transcripts. Depletion of these miRNAs caused a pronounced de-repression of myeloid lineage targets in differentiating early-B and early-T cells, resulting in a mixed-lineage gene expression pattern. De novo motif analysis combined with an assay of promoter activities indicates that B as well as T lineage determinants drive the expression of these miRNAs in lymphoid lineages. Collectively, we present a paradigm that miRNAs are conserved between developing B and T lymphocytes, yet they target distinct sets of promiscuously expressed lineage-inappropriate genes to suppress the alternate cell-fate options. Thus, our studies provide a comprehensive compendium of miRNAs with functional implications for B and T lymphocyte development.


Assuntos
Linfócitos B/fisiologia , Linhagem da Célula/genética , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Linfócitos T/fisiologia , Animais , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Células Mieloides/fisiologia
14.
Anim Biotechnol ; 35(1): 2295926, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38149679

RESUMO

The body size traits are major traits in livestock, which intuitively displays the development of the animal's bones and muscles. This study used PCR amplification, Sanger sequencing, KASPar genotyping, and quantitative real-time reverse transcription PCR (qRT-PCR) to analyze the Single-nucleotide polymorphism and expression characteristics of Argonaute RISC catalytic component 2 (AGO2) and Plectin (PLEC) genes in Hu sheep. Two intron mutations were found in Hu sheep, which were AGO2 g.51700 A > C and PLEC g.23157 C > T, respectively. Through association analysis of two mutation sites and body size traits, it was found that AGO2 g.51700 A > C mainly affects the chest and cannon circumference of Hu sheep of while PLEC g.23157 C mainly affects body height and body length. The combined genotypes of AGO2 and PLEC genes with body size traits showed SNPs at the AGO2 g.51700 A > C and PLEC g.23157 C > T loci significantly improved the body size traits of Hu sheep. In addition, the AGO2 gene has the highest expression levels in the heart, rumen, and tail fat, and the PLEC gene is highly expressed in the heart. These two loci can provide new research ideas for improving the body size traits of Hu sheep.


Assuntos
Plectina , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Animais , Plectina/genética , Tamanho Corporal/genética , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Fenótipo
15.
Biochem Biophys Res Commun ; 643: 157-168, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36610381

RESUMO

RNA activation, as a method of regulating gene expression at the transcriptional level, is far less widely used than RNA interference because of the insufficient understanding of the mechanism and the unstable success rate. It is necessary to analyze the failure cases of RNA activation to promote the application of RNA activation. When we validated the saRNAs designed to induce KLK1 expression, we found that saKLK1-374 can upregulate KLK1 expression in prostate tumor cell lines, but failed in normal prostate cell lines. To determine whether the RNA activation of normal cells is difficult only when the target gene is KLK1, we tested p21WAF1/CIP1 as the target gene in RNA activation experiments of normal and cancer prostate cells. Next, to determine whether the above phenomenon exists in other tissues, we used normal and cancerous bladder cells to perform RNA activation experiments with KLK1 and p21WAF1/CIP1 as targets. We have also extended the time from transfection to detection to evaluate whether a longer incubation time can make saRNA upregulate the target genes in normal cells. Fluorescently labeled dsRNA was transfected to evaluate the transfection efficiency, and the expression of Ago2 and IPO8 necessary for RNA activation was also detected. The p21WAF1/CIP1 could be significantly upregulated by saRNA in prostate cancer cells, but not in normal prostate cells. The expression of KLK1 in bladder-derived cell lines was extremely low and could not be induced by saRNA. The p21WAF1/CIP1 was upregulated by saRNA to a higher extent in bladder cancer cells but to a lower extent in normal bladder cells. Prolonging incubation time could not make saRNA induce the expression of target genes in normal cells. Compared with tumor cells used in this study, normal cells had lower transfection efficiency or lower expression of Ago2 and IPO8. Although it has been currently found that normal cell lines in the prostate and bladder might be more difficult to be successfully induced target gene expression by exogenous saRNA than tumor cells due to low transfection efficiency or Ago2 and IPO8 expression, it is not certain that this phenomenon occurs in other types of tissue. However, researchers still need to pay attention to the transfection efficiency and/or the expression levels of Ago2 and IPO8 when conducting RNA activation experiments in normal cells.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , RNA de Cadeia Dupla , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral
16.
Mol Carcinog ; 62(6): 820-832, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36920046

RESUMO

CircRNAs play an important role in the progression of hepatocellular carcinoma (HCC), however, the role of circ_0007429 in HCC remains unknown. Using bioinformatics tools, we selected circ_0007429 that was most highly expressed in HCC tissues and investigated its role in HCC progression. Immunohistochemistry, plasmid transfection, real-time quantitative PCR, and western blot analysis were used to identify the relationship between circ_0007429 and its potential target, miR-637, and TRIM71. The regulatory effect of circ_0007429 on miR-637/TRIM71/Ago2 signaling and its key role in HCC progression were studied in vitro. A nude mouse xenograft model was used to examine tumor growth in vivo. Circ_0007429 and TRIM71 expression were upregulated, while miR-637 expression was downregulated in HCC tissues and cells compared with their expression in control groups. Knockdown of circ_0007429 enhanced apoptosis in HCC cells, while impeded proliferation, migration, invasion, and aerobic glycolysis, which were reversed by miR-637 inhibitor. High levels of circ_0007429 correlated with a poor survival rate of HCC patients. Additionally, circ_0007429 interfering inhibited tumor growth in vivo. TRIM71 directly bound to miR-637 and inhibited Ago2 expression. Moreover, circ_0007429 promotes aerobic glycolysis in HCC cells through the miR/TRIM71/Ago2 axis. Circ_0007429 promotes HCC progression by promoting cell proliferation, migration, invasion, and aerobic glycolysis and by inhibiting cell apoptosis through the miR/TRIM71/Ago2 axis. These results provide molecular insights into the mechanism of HCC and suggest that circ_0007429 could be a therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Apoptose/genética , Proliferação de Células/genética , Camundongos Nus , Glicólise/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
17.
J Virol ; 96(3): e0178221, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787459

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.


Assuntos
Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno/genética , Polirribossomos/metabolismo , RNA não Traduzido/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Estudo de Associação Genômica Ampla , Infecções por Herpesviridae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Replicação Viral
18.
Chemistry ; 29(3): e202202013, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253322

RESUMO

By virtue of their key roles in pathologies, miRNAs represent a promising class of therapeutic targets. While high-fidelity small-molecule modulators of miRNAs can be identified via high-throughput screening using cellular reporter systems, their modes of action are elusive due to the lack of proper tools. Here, we report a small-molecule probe, 1 a, that is capable of elucidating its biological target along miRNA inhibition. Derived from norathyriol, a nature product, 1 a possessed a bioorthogonal alkyne moiety for subsequent labeling via copper-catalyzed azide-alkyne cycloaddition chemistry. We demonstrated that 1 a inhibited a panel of different miRNAs by blocking their loading onto argonaute 2 (AGO2), which is the key protein responsible for miRNA function. With the alkyne handle, we successfully identified AGO2 as an intracellular target of 1 a. Therefore, this work presents a novel small-molecule tool for suppressing and probing miRNA regulatory pathways.


Assuntos
MicroRNAs , MicroRNAs/química , Ensaios de Triagem em Larga Escala , Alcinos/química
19.
Proc Natl Acad Sci U S A ; 117(39): 24213-24223, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929008

RESUMO

MicroRNAs (miRNAs) function cell-intrinsically to regulate gene expression by base-pairing to complementary mRNA targets while in association with Argonaute, the effector protein of the miRNA-mediated silencing complex (miRISC). A relatively dilute population of miRNAs can be found extracellularly in body fluids such as human blood plasma and cerebrospinal fluid (CSF). The remarkable stability of circulating miRNAs in such harsh extracellular environments can be attributed to their association with protective macromolecular complexes, including extracellular vesicles (EVs), proteins such as Argonaut 2 (AGO2), or high-density lipoproteins. The precise origins and the potential biological significance of various forms of miRNA-containing extracellular complexes are poorly understood. It is also not known whether extracellular miRNAs in their native state may retain the capacity for miRISC-mediated target RNA binding. To explore the potential functionality of circulating extracellular miRNAs, we comprehensively investigated the association between circulating miRNAs and the miRISC Argonaute AGO2. Using AGO2 immunoprecipitation (IP) followed by small-RNA sequencing, we find that miRNAs in circulation are primarily associated with antibody-accessible miRISC/AGO2 complexes. Moreover, we show that circulating miRNAs can base-pair with a target mimic in a seed-based manner, and that the target-bound AGO2 can be recovered from blood plasma in an ∼1:1 ratio with the respective miRNA. Our findings suggest that miRNAs in circulation are largely contained in functional miRISC/AGO2 complexes under normal physiological conditions. However, we find that, in human CSF, the assortment of certain extracellular miRNAs into free miRISC/AGO2 complexes can be affected by pathological conditions such as amyotrophic lateral sclerosis.


Assuntos
Proteínas Argonautas/sangue , MicroRNAs/sangue , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Proteínas Argonautas/líquido cefalorraquidiano , Pareamento de Bases , Estudos de Casos e Controles , Humanos , Imunoprecipitação , MicroRNAs/líquido cefalorraquidiano
20.
BMC Biol ; 20(1): 194, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050755

RESUMO

BACKGROUND: Nuclear factor 90 (NF90) is a double-stranded RNA-binding protein involved in a multitude of different cellular mechanisms such as transcription, translation, viral infection, and mRNA stability. Recent data suggest that NF90 might influence the abundance of target mRNAs in the cytoplasm through miRNA- and Argonaute 2 (Ago2)-dependent activity. RESULTS: Here, we identified the interactome of NF90 in the cytoplasm, which revealed several components of the RNA-induced silencing complex (RISC) and associated factors. Co-immunoprecipitation analysis confirmed the interaction of NF90 with the RISC-associated RNA helicase, Moloney leukemia virus 10 (MOV10), and other proteins involved in RISC-mediated silencing, including Ago2. Furthermore, NF90 association with MOV10 and Ago2 was found to be RNA-dependent. Glycerol gradient sedimentation of NF90 immune complexes indicates that these proteins occur in the same protein complex. At target RNAs predicted to bind both NF90 and MOV10 in their 3' UTRs, NF90 association was increased upon loss of MOV10 and vice versa. Interestingly, loss of NF90 led to an increase in association of Ago2 as well as a decrease in the abundance of the target mRNA. Similarly, during hypoxia, the binding of Ago2 to vascular endothelial growth factor (VEGF) mRNA increased after loss of NF90, while the level of VEGF mRNA decreased. CONCLUSIONS: These findings reveal that, in the cytoplasm, NF90 can associate with components of RISC such as Ago2 and MOV10. In addition, the data indicate that NF90 and MOV10 may compete for the binding of common target mRNAs, suggesting a role for NF90 in the regulation of RISC-mediated silencing by stabilizing target mRNAs, such as VEGF, during cancer-induced hypoxia.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA , Regiões 3' não Traduzidas , Proteínas Argonautas/genética , Humanos , Hipóxia/genética , MicroRNAs/metabolismo , Proteínas do Fator Nuclear 90/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA