Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(3): 1497-1514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018701

RESUMO

INTRODUCTION: The extent to which the Big Five personality traits and subjective well-being (SWB) are discriminatory predictors of clinical manifestation of dementia versus dementia-related neuropathology is unclear. METHODS: Using data from eight independent studies (Ntotal = 44,531; Ndementia = 1703; baseline Mage = 49 to 81 years, 26 to 61% female; Mfollow-up range = 3.53 to 21.00 years), Bayesian multilevel models tested whether personality traits and SWB differentially predicted neuropsychological and neuropathological characteristics of dementia. RESULTS: Synthesized and individual study results indicate that high neuroticism and negative affect and low conscientiousness, extraversion, and positive affect were associated with increased risk of long-term dementia diagnosis. There were no consistent associations with neuropathology. DISCUSSION: This multistudy project provides robust, conceptually replicated and extended evidence that psychosocial factors are strong predictors of dementia diagnosis but not consistently associated with neuropathology at autopsy. HIGHLIGHTS: N(+), C(-), E(-), PA(-), and NA(+) were associated with incident diagnosis. Results were consistent despite self-report versus clinical diagnosis of dementia. Psychological factors were not associated with neuropathology at autopsy. Individuals with higher conscientiousness and no diagnosis had less neuropathology. High C individuals may withstand neuropathology for longer before death.


Assuntos
Demência , Personalidade , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Teorema de Bayes , Autopsia , Neuropatologia , Demência/diagnóstico , Demência/patologia
2.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542104

RESUMO

Synaptic transmission is essential for nervous system function and the loss of synapses is a known major contributor to dementia. Alzheimer's disease dementia (ADD) is characterized by synaptic loss in the mesial temporal lobe and cerebral neocortex, both of which are brain areas associated with memory and cognition. The association of synaptic loss and ADD was established in the late 1980s, and it has been estimated that 30-50% of neocortical synaptic protein is lost in ADD, but there has not yet been a quantitative profiling of different synaptic proteins in different brain regions in ADD from the same individuals. Very recently, positron emission tomography (PET) imaging of synapses is being developed, accelerating the focus on the role of synaptic loss in ADD and other conditions. In this study, we quantified the densities of two synaptic proteins, the presynaptic protein Synaptosome Associated Protein 25 (SNAP25) and the postsynaptic protein postsynaptic density protein 95 (PSD95) in the human brain, using enzyme-linked immunosorbent assays (ELISA). Protein was extracted from the cingulate gyrus, hippocampus, frontal, primary visual, and entorhinal cortex from cognitively unimpaired controls, subjects with mild cognitive impairment (MCI), and subjects with dementia that have different levels of Alzheimer's pathology. SNAP25 is significantly reduced in ADD when compared to controls in the frontal cortex, visual cortex, and cingulate, while the hippocampus showed a smaller, non-significant reduction, and entorhinal cortex concentrations were not different. In contrast, all brain areas showed lower PSD95 concentrations in ADD when compared to controls without dementia, although in the hippocampus, this failed to reach significance. Interestingly, cognitively unimpaired cases with high levels of AD pathology had higher levels of both synaptic proteins in all brain regions. SNAP25 and PSD95 concentrations significantly correlated with densities of neurofibrillary tangles, amyloid plaques, and Mini Mental State Examination (MMSE) scores. Our results suggest that synaptic transmission is affected by ADD in multiple brain regions. The differences were less marked in the entorhinal cortex and the hippocampus, most likely due to a ceiling effect imposed by the very early development of neurofibrillary tangles in older people in these brain regions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons
3.
Eur J Neurosci ; 55(7): 1873-1886, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318767

RESUMO

The progression of Parkinson's disease (PD) is defined by six Braak stages. We used transcriptome data from PD patients with Braak stage information to understand underlying molecular mechanisms for the progress of the disease. We created networks of genes with continuously decreased/increased co-expression from control group to Braak 5-6 stages. These networks are significantly associated with PD-related mechanisms such as mitochondrial dysfunction and synaptic signalling among others. Applying weighted gene co-expression network analysis (WGCNA) algorithm to the co-expression networks led to more specific modules enriched with neurodegeneration-related disease pathways, seizure, abnormality of coordination, and hypotonia. Furthermore, we showed that one of the co-expression networks is clustered into three major communities with dedicated molecular functions: (i) tubulin folding pathway, gap junction-related mechanisms, neuronal system; (ii) synaptic vesicle, intracellular vesicle, proteasome complex, PD genes; (iii) energy metabolism, mitochondrial mechanisms, oxidative phosphorylation, TCA cycle, PD genes. The co-expression relations we identified in this study as crucial players in the disease progression cover several known PD-associated genes and genes whose products are known to physically interact with alpha-synuclein protein.


Assuntos
Doença de Parkinson , Humanos , Neurônios , Doença de Parkinson/genética , Transcriptoma
4.
Eur J Nucl Med Mol Imaging ; 48(7): 2272-2282, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33462630

RESUMO

PURPOSE: Tau pathology progression in Alzheimer's disease (AD) is explained through the network degeneration hypothesis and the neuropathological Braak stages; however, the compatibility of these models remains unclear. METHODS: We utilized [18F]AV-1451 tau-PET scans of 39 subjects with AD and 39 sex-matched amyloid-negative healthy controls (HC) in the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset. The peak cluster of tau-tracer uptake was identified in each Braak stage of neuropathological tau deposition and used to create a seed-based functional connectivity network (FCN) using 198 HC subjects, to identify healthy networks unaffected by neurodegeneration. RESULTS: Voxel-wise tau deposition was both significantly higher inside relative to outside FCNs and correlated significantly and positively with levels of healthy functional connectivity. Within many isolated Braak stages and regions, the correlation between tau and intrinsic functional connectivity was significantly stronger than it was across the whole brain. In this way, each peak cluster of tau was related to multiple Braak stages traditionally associated with both earlier and later stages of disease. CONCLUSION: We show specificity of healthy FCN topography for AD-pathological tau as well as positive voxel-by-voxel correlations between pathological tau and healthy functional connectivity. We propose a model of "up- and downstream" functional tau progression, suggesting that tau pathology evolves along functional connectivity networks not only "downstream" (i.e., along the expected sequence of the established Braak stages) but also in part "upstream" or "retrograde" (i.e., against the expected sequence of the established Braak stages), with pathology in earlier Braak stages intensified by its functional relationship to later disease stages.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Neuroimagem , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
5.
Brain ; 143(11): 3463-3476, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33150361

RESUMO

Alzheimer's disease is characterized by the presence of amyloid-ß and tau deposition in the brain, hippocampal atrophy and increased rates of hippocampal atrophy over time. Another protein, TAR DNA binding protein 43 (TDP-43) has been identified in up to 75% of cases of Alzheimer's disease. TDP-43, tau and amyloid-ß have all been linked to hippocampal atrophy. TDP-43 and tau have also been linked to hippocampal atrophy in cases of primary age-related tauopathy, a pathological entity with features that strongly overlap with those of Alzheimer's disease. At present, it is unclear whether and how TDP-43 and tau are associated with early or late hippocampal atrophy in Alzheimer's disease and primary age-related tauopathy, whether either protein is also associated with faster rates of atrophy of other brain regions and whether there is evidence for protein-associated acceleration/deceleration of atrophy rates. We therefore aimed to model how these proteins, particularly TDP-43, influence non-linear trajectories of hippocampal and neocortical atrophy in Alzheimer's disease and primary age-related tauopathy. In this longitudinal retrospective study, 557 autopsied cases with Alzheimer's disease neuropathological changes with 1638 ante-mortem volumetric head MRI scans spanning 1.0-16.8 years of disease duration prior to death were analysed. TDP-43 and Braak neurofibrillary tangle pathological staging schemes were constructed, and hippocampal and neocortical (inferior temporal and middle frontal) brain volumes determined using longitudinal FreeSurfer. Bayesian bivariate-outcome hierarchical models were utilized to estimate associations between proteins and volume, early rate of atrophy and acceleration in atrophy rates across brain regions. High TDP-43 stage was associated with smaller cross-sectional brain volumes, faster rates of brain atrophy and acceleration of atrophy rates, more than a decade prior to death, with deceleration occurring closer to death. Stronger associations were observed with hippocampus compared to temporal and frontal neocortex. Conversely, low TDP-43 stage was associated with slower early rates but later acceleration. This later acceleration was associated with high Braak neurofibrillary tangle stage. Somewhat similar, but less striking, findings were observed between TDP-43 and neocortical rates. Braak stage appeared to have stronger associations with neocortex compared to TDP-43. The association between TDP-43 and brain atrophy occurred slightly later in time (∼3 years) in cases of primary age-related tauopathy compared to Alzheimer's disease. The results suggest that TDP-43 and tau have different contributions to acceleration and deceleration of brain atrophy rates over time in both Alzheimer's disease and primary age-related tauopathy.


Assuntos
Doença de Alzheimer/patologia , Proteínas de Ligação a DNA/genética , Tauopatias/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Atrofia , Autopsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Hipocampo/patologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Neocórtex/patologia , Emaranhados Neurofibrilares/patologia , Estudos Retrospectivos , Tauopatias/diagnóstico por imagem , Tauopatias/genética
6.
Neuropathology ; 40(5): 415-425, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32750743

RESUMO

In Parkinson's disease (PD), neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the brain, spinal cord, sympathetic ganglia, submandibular gland, enteric nervous system, cardiac and pelvic plexuses, adrenal medulla, and skin. Thus, PD is a progressive multiorgan disease clinically associated with various motor and nonmotor symptoms. The earliest PD-related lesions appear to develop in the olfactory bulb, dorsal vagal nucleus, and possibly also the peripheral autonomic nervous system. The brain is closely connected with the enteric nervous system via axons of the efferent fibers of the dorsal nucleus of vagal nerve. Anatomical connections also exist between the olfactory bulb and brainstem. Accumulating evidence from experimental studies indicates that transneuronal propagation of misfolded alpha-synuclein is involved in the progression of PD. However, it cannot be ruled out that alpha-synuclein pathology in PD is multicentric in origin. Based on pathological findings from studies on human materials, the present review will update the progression pattern of alpha-synuclein pathology in PD.


Assuntos
Encéfalo/patologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Progressão da Doença , Humanos , Doença de Parkinson/metabolismo
7.
Alzheimers Dement ; 14(12): 1580-1588, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29550519

RESUMO

INTRODUCTION: Alzheimer's disease is a neurodegenerative disorder that is hypothesized to involve epigenetic dysregulation of gene expression in the brain. METHODS: We performed an epigenome-wide association study to identify differential DNA methylation associated with neuropathology in prefrontal cortex and superior temporal gyrus samples from 147 individuals, replicating our findings in two independent data sets (N = 117 and 740). RESULTS: We identify elevated DNA methylation associated with neuropathology across a 48-kb region spanning 208 CpG sites within the HOXA gene cluster. A meta-analysis of the top-ranked probe within the HOXA3 gene (cg22962123) highlighted significant hypermethylation across all three cohorts (P = 3.11 × 10-18). DISCUSSION: We present robust evidence for elevated DNA methylation associated with Alzheimer's disease neuropathology spanning the HOXA gene cluster on chromosome 7. These data add to the growing evidence highlighting a role for epigenetic variation in Alzheimer's disease, implicating the HOX gene family as a target for future investigation.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Metilação de DNA , Proteínas de Homeodomínio/genética , Córtex Pré-Frontal/patologia , Lobo Temporal/patologia , Ilhas de CpG , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Família Multigênica
8.
Mov Disord ; 31(1): 135-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26748832

RESUMO

BACKGROUND: The "dual-hit" and propagation hypotheses of α-synuclein suggests that the olfactory cells of the olfactory epithelium are among the earliest sites of involvement in Parkinson's disease (PD). We investigated the olfactory epithelium in consecutive cases that had been registered with a brain bank. OBJECTIVES: This study was undertaken to check the presence or absence of Lewy body pathology in olfactory cells. METHODS: Thirty-six male and 11 female patients were examined, including eight with PD, two with dementia with Lewy bodies, 11 with incidental Lewy body disease, and 26 with no Lewy-related alpha-synucleinopathy. The olfactory epithelium was sampled by craniotomy followed by resection of the cribriform plate, which was fixed in formalin and decalcified with ethylenediaminetetra-acetate. Coronal paraffin-embedded sections of the plate were stained with hematoxylin and eosin or immunohistochemically stained with antibodies against phosphorylated α-synuclein to detect Lewy body pathology and neuronal markers of protein gene product 9.5, phosphorylated neurofilament, and tyrosine hydroxylase. RESULTS: Lewy body pathology was detected in the olfactory cells of the olfactory epithelium in a single patient with incidental Lewy body disease and in six patients with PD, but it was not detected in patients who had dementia with Lewy bodies. CONCLUSIONS: We detected Lewy body pathology in the olfactory epithelium in six of the eight patients with Parkinson's disease and in one patient with incidental Lewy body pathology.


Assuntos
Corpos de Lewy/patologia , Mucosa Olfatória/patologia , Doença de Parkinson/patologia , Células Receptoras Sensoriais/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Ubiquitina Tiolesterase/metabolismo , alfa-Sinucleína/metabolismo
9.
Brain ; 137(Pt 9): 2578-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25012223

RESUMO

Alzheimer's disease, which is defined pathologically by abundant amyloid plaques and neurofibrillary tangles concurrent with synaptic and neuronal loss, is the most common underlying cause of dementia in the elderly. Among the oldest-old, those aged 90 and older, other ageing-related brain pathologies are prevalent in addition to Alzheimer's disease, including cerebrovascular disease and hippocampal sclerosis. Although definite Alzheimer's disease pathology can distinguish dementia from normal individuals, the pathologies underlying cognitive impairment, especially in the oldest-old, remain poorly understood. We therefore conducted studies to determine the relative contributions of Alzheimer's disease pathology, cerebrovascular disease, hippocampal sclerosis and the altered expression of three synaptic proteins to cognitive status and global cognitive function. Relative immunohistochemistry intensity measures were obtained for synaptophysin, Synaptic vesicle transporter Sv2 (now known as SV2A) and Vesicular glutamate transporter 1 in the outer molecular layer of the hippocampal dentate gyrus on the first 157 participants of 'The 90+ Study' who came to autopsy, including participants with dementia (n = 84), those with cognitive impairment but no dementia (n = 37) and those with normal cognition (n = 36). Thal phase, Braak stage, cerebrovascular disease, hippocampal sclerosis and Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) were also analysed. All measures were obtained blind to cognitive diagnosis. Global cognition was tested by the Mini-Mental State Examinaton. Logistic regression analysis explored the association between the pathological measures and the odds of being in the different cognitive groups whereas multiple regression analyses explored the association between pathological measures and global cognition scores. No measure clearly distinguished the control and cognitive impairment groups. Comparing the cognitive impairment and dementia groups, synaptophysin and SV2 were reduced, whereas Braak stage, TDP-43 and hippocampal sclerosis frequency increased. Thal phase and VGLUT1 did not distinguish the cognitive impairment and dementia groups. All measures distinguished the dementia and control groups and all markers associated with the cognitive test scores. When all markers were analysed simultaneously, a reduction in synaptophysin, a high Braak stage and the presence of TDP-43 and hippocampal sclerosis associated with global cognitive function. These findings suggest that tangle pathology, hippocampal sclerosis, TDP-43 and perforant pathway synaptic loss are the major contributors to dementia in the oldest-old. Although an increase in plaque pathology and glutamatergic synaptic loss may be early events associated with cognitive impairment, we conclude that those with cognitive impairment, but no dementia, are indistinguishable from cognitively normal subjects based on the measures reported here.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/psicologia , Via Perfurante/patologia , Sinapses/patologia , Idoso de 80 Anos ou mais , Contagem de Células/métodos , Feminino , Humanos , Estudos Longitudinais , Masculino , Testes Neuropsicológicos , Vigilância da População/métodos
10.
Mol Biotechnol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225961

RESUMO

Parkinson's disease (PD) involves alpha-synuclein accumulation according to Braak's pattern, with diverse clinical progressions that complicate diagnosis and treatment. We aimed to correlate Braak's pattern with rapid progressive PD to identify blood-based biomarkers and therapeutic targets exploiting brown algae-derived bioactives for potential treatment. We implemented a systematic workflow of transcriptomic profiling, co-expression networks, cluster profiling, transcriptional regulator identification, molecular docking, quantum calculations, and dynamic simulations. The transcriptomic analyses exhibited highly expressed genes at each Braak's stage and in rapidly progressive PD. Co-expression networks for Braak's stages were built, and the top five clusters from each stage displayed significant overlap with differentially expressed genes in rapidly progressive PD, indicating shared biomarkers between the blood and the PD brain. Further investigation showed, NF-kappa-B p105 as the master transcriptional regulator of these biomarkers. Molecular docking screened phlorethopentafuhalol-A from brown algae, exhibiting a superior inhibitory effect with p105 (- 7.51 kcal/mol) by outperforming PD drugs and anti-inflammatory compounds (- 5.73 to - 4.38 kcal/mol). Quantum mechanics and molecular mechanics (QM/MM) calculations and dynamic simulations have confirmed the interactive stability of phlorethopentafuhalol-A with p105. Overall, our combined computational study shows that phlorethopentafuhalol-A derived from brown algae, may have healing properties that could help treat PD.

11.
Magn Reson Imaging ; 102: 235-241, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356600

RESUMO

PURPOSE: Amide proton transfer (APT) imaging has shown its diagnostic and predictive superiority in Parkinson's disease (PD) in our previous studies using 2D APT imaging based on deep nuclei. We hypothesized that the pathophysiological abnormality of PD will change the APT-related parameters in the cerebral cortex, and the signal changes can contribute to accurate diagnosis of PD. METHODS: 34 patients with idiopathic Parkinson's disease (IPD) and 29 age- and sex-matched normal controls (NC) were enrolled in this prospective study. 3D-APT imaging and 3D-T1WI was performed in our participants. A volume-based morphometry algorithm was used and get automated cortical segmentations. Quantitative parameter maps of APT-related metrics were calculated by using SPM and MATLAB. The unpaired Student's t-test or Mann-Whitney U test was used for comparison of these values between IPD and NC groups. The associations between APT-related metrics and clinical assessments were investigated by Spearman correlation analysis. The receiver-operating characteristic (ROC) analysis was used to assess the diagnostic performances. The binary logistic regression model was used to combine the imaging parameters. RESULTS: There wasn't any correlations between cortical APT-related signals and clinical assessment, including the H&Y scale, the disease duration, the UPDRS III scores and the MMSE scores. The MTRasym, CESTRnr and MTRRex had significantly higher values (p <0.001, corrected by Bonferroni methods) in the IPD group than NC groups in the region of bilateral and total temporal grey matter. The single parameters achieved the best diagnostic performance among all APT-related metrics was MTRRex on the right temporal grey matter, with an area under the ROC curve (AUC) of 0.865. The combined parameters achieved the highest diagnostic performance (AUC: 0.932). CONCLUSIONS: 3D-APT imaging could identify the changes of the cerebral cortex in Parkinson's disease. The cortical changes of APT-related parameters could potentially serve as imaging biomarkers to aid in the non-invasive diagnosis of PD.


Assuntos
Neoplasias Encefálicas , Doença de Parkinson , Humanos , Encéfalo , Prótons , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico por imagem , Amidas , Estudos Prospectivos , Córtex Cerebral/diagnóstico por imagem
12.
Front Mol Neurosci ; 16: 1141079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266374

RESUMO

Introduction: The molecular changes leading to Alzheimer's disease (AD) progression are poorly understood. A decisive factor in the disease occurs when neurofibrillary tangles (NFT) composed of microtubule associated protein tau (MAPT) form in the entorhinal cortex and then spread throughout the brain. Methods: We therefore determined mRNA and circular RNA changes during AD progression, comparing Braak NFT stages I-VI. Total RNA was isolated from human brain (entorhinal and frontotemporal cortex). Poly(A)+ RNA was subjected to Nanopore sequencing, and total RNA was analyzed by standard Illumina sequencing. Circular RNAs were sequenced from RNase R treated and rRNA depleted total RNA. The sequences were analyzed using different bioinformatic tools, and expression constructs for circRNAs were analyzed in transfection experiments. Results: We detected 11,873 circRNAs of which 276 correlated with Braak NFT stages. Adenosine to inosine RNA editing increased about threefold in circRNAs during AD progression. Importantly, this correlation cannot be detected with mRNAs. CircMAN2A1 expression correlated with AD progression and transfection experiments indicated that RNA editing promoted its translation using start codons out of frame with linear mRNAs, which generates novel proteins. Discussion: Thus, we identified novel regulated retained introns that correlate with NFT Braak stages and provide evidence for a role of translated circRNAs in AD development.

13.
J Alzheimers Dis ; 91(2): 683-695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36502330

RESUMO

BACKGROUND: The strongest risk factor for the development of Alzheimer's disease (AD) is age. The progression of Braak stage and Thal phase with age has been demonstrated. However, prior studies did not include cognitive status. OBJECTIVE: We set out to define normative values for Alzheimer-type pathologic changes in individuals without cognitive decline, and then define levels that would qualify them to be resistant to or resilient against these changes. METHODS: Utilizing neuropathology data obtained from the National Alzheimer's Coordinating Center (NACC), we demonstrate the age-related progression of Alzheimer-type pathologic changes in cognitively normal individuals (CDR = 0, n = 542). With plots generated from these data, we establish standard lines that may be utilized to measure the extent to which an individual's Alzheimer-type pathology varies from the estimated normal range of pathology. RESULTS: Although Braak stage and Thal phase progressively increase with age in cognitively normal individuals, the Consortium to Establish a Registry for Alzheimer's Disease neuritic plaque score and Alzheimer's disease neuropathologic change remain at low levels. CONCLUSION: These findings suggest that an increasing burden of neuritic plaques is a strong predictor of cognitive decline, whereas, neurofibrillary degeneration and amyloid-ß (diffuse) plaque deposition, both to some degree, are normal pathologic changes of aging that occur in almost all individuals regardless of cognitive status. Furthermore, we have defined the amount of neuropathologic change in cognitively normal individuals that would qualify them to be "resilient" against the pathology (significantly above the normative values for age, but still cognitively normal) or "resistant" to the development of pathology (significantly below the normative values for age).


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Peptídeos beta-Amiloides , Envelhecimento/patologia , Placa Amiloide/patologia
14.
J Neuropathol Exp Neurol ; 81(3): 158-171, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35191506

RESUMO

The spread of neurofibrillary tau pathology in Alzheimer disease (AD) mostly follows a stereotypical pattern of topographical progression but atypical patterns associated with interhemispheric asymmetry have been described. Because histopathological studies that used bilateral sampling are limited, this study aimed to assess interhemispheric tau pathology differences and the presence of topographically atypical cortical spreading patterns. Immunohistochemical staining for detection of tau pathology was performed in 23 regions of interest in 57 autopsy cases comparing bilateral cortical regions and hemispheres. Frequent mild (82% of cases) and occasional moderate (32%) interhemispheric density discrepancies were observed, whereas marked discrepancies were uncommon (7%) and restricted to occipital regions. Left and right hemispheric tau pathology dominance was observed with similar frequencies, except in Braak Stage VI that favored a left dominance. Interhemispheric Braak stage differences were observed in 16% of cases and were more frequent in advanced (IV-VI) versus early (I-III) stages. One atypical lobar topographical pattern in which occipital tau pathology density exceeded frontal lobe scores was identified in 4 cases favoring a left dominant asymmetry. We speculate that asymmetry and atypical topographical progression patterns may be associated with atypical AD clinical presentations and progression characteristics, which should be tested by comprehensive clinicopathological correlations.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Humanos , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons , Tauopatias/patologia , Proteínas tau
15.
Front Aging Neurosci ; 14: 887168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619939

RESUMO

Background: Alzheimer's disease (AD) is the most common type of neurodegenerative disease. Tau pathology is one of the pathological features of AD, and its progression is closely related to the progress of AD. Immune system dysfunction is an important mediator of Tau pathological progression, but the specific molecular mechanism is still unclear. The purpose of this study is to determine the immune hub genes and peripheral immune cell infiltration associated with the Braak stages, and the molecular mechanisms between them. Methods: In this study, 60 samples with different Braak stages in the GSE106241 dataset were used to screen Braak stages-related immune hub genes by using the WGCNA package in R and cytoHubba plugin. The temporal lobe expression data in the Alzdata database were used to verify the results. The correlation between the expression level of immune core genes and the pathological features of AD was analyzed to evaluate the abundance of peripheral immune cell infiltration and screened Braak stages-related cells. Finally, we used correlation analysis of immune hub genes and immune cells and Gene Set Enrichment Analysis (GSEA) of them. Results: Seven genes (GRB2, HSP90AA1, HSPA4, IGF1, KRAS, PIK3R1, and PTPN11) were identified as immune core genes after the screening of the test datasets and validation of independent data. Among them, Kirsten rat sarcoma viral oncogene homolog (KRAS) and Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1) were the most closely related to Tau and Aß pathology in AD. In addition, the ImmuneScore increased gradually with the increase of Braak stages. Five types of immune cells (plasma cells, T follicular helper cells, M2 macrophage, activated NK cells, and eosinophils) were correlated with Braak stages. KRAS and PIK3R1 were the immune core genes most related to the abnormal infiltration of peripheral immune cells. They participated in the regulation of the pathological process of AD through axon guidance, long-term potentiation, cytokine-cytokine receptor interaction, RNA polymerase, etc. Conclusion: The KRAS and PIK3R1 genes were identified as the immune hub genes most associated with Tau pathological progress in AD. The abnormal infiltration of peripheral immune cells mediated by these cells was involved in the Tau pathological process. This provides new insights for AD.

16.
J Neuropathol Exp Neurol ; 81(8): 643-649, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35751438

RESUMO

The Alzheimer disease (AD) neuropathological hallmarks amyloid ß (Aß) and tau neurofibrillary (NF) pathology have been reported in the olfactory bulb (OB) in aging and in different neurodegenerative diseases, which coincides with frequently reported olfactory dysfunction in these conditions. To better understand when the OB is affected in relation to the hierarchical progression of Aß throughout the brain and whether OB pathology might be an indicator of AD severity, we assessed the presence of OB Aß and tau NF pathology in an autopsy cohort of 158 non demented control and 173 AD dementia cases. OB Aß was found in less than 5% of cases in lower Thal phases 0 and 1, in 20% of cases in phase 2, in 60% of cases in phase 3 and in more than 80% of cases in higher Thal phases 4 and 5. OB Aß and tau pathology significantly predicted a Thal phase greater than 3, a Braak NF stage greater than 4, and an MMSE score lower than 24. While OB tau pathology is almost universal in the elderly and therefore is not a good predictor of AD severity, OB Aß pathology coincides with clinically-manifest AD and might prove to be a useful biomarker of the extent of brain spread of both amyloid and tau pathology.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloidose/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Humanos , Bulbo Olfatório/metabolismo , Proteínas tau/metabolismo
17.
Alzheimers Dement (N Y) ; 8(1): e12274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35415206

RESUMO

Introduction: The neuronal mechanism driving Alzheimer's disease (AD) is incompletely understood. Methods: Immunohistochemistry, pharmacology, biochemistry, and behavioral testing are employed in two pathological contexts-AD and a transgenic mouse model-to investigate T14, a 14mer peptide, as a key signaling molecule in the neuropathology. Results: T14 increases in AD brains as the disease progresses and is conspicuous in 5XFAD mice, where its immunoreactivity corresponds to that seen in AD: neurons immunoreactive for T14 in proximity to T14-immunoreactive plaques. NBP14 is a cyclized version of T14, which dose-dependently displaces binding of its linear counterpart to alpha-7 nicotinic receptors in AD brains. In 5XFAD mice, intranasal NBP14 for 14 weeks decreases brain amyloid and restores novel object recognition to that in wild-types. Discussion: These findings indicate that the T14 system, for which the signaling pathway is described here, contributes to the neuropathological process and that NBP14 warrants consideration for its therapeutic potential.

18.
J Neuropathol Exp Neurol ; 80(3): 240-246, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33617650

RESUMO

We sought to determine the associations among cerebral amyloid angiopathy (CAA), white matter rarefaction (WMR), circle of Willis atherosclerosis (CWA), and total microinfarct number with Braak neurofibrillary stage in postmortem individuals with and without Alzheimer disease (AD). Data from 355 cases of autopsied individuals with Braak stage I-VI who had antemortem consensus diagnoses of cognitively unimpaired (n = 183), amnestic mild cognitive impairment (n = 31), and AD dementia (n = 141) were used. The association between Braak stage and vascular lesions were individually assessed using multivariable linear regression that adjusted for age at death, APOE ε4 carrier status, sex, education, and neuritic plaque density. CAA (p = 0.007) and WMR (p < 0.001) were associated with Braak stage, independent of amyloid load; microinfarct number and CWA showed no association. Analyses of the interactions between APOE ε4 carrier status and vascular lesions found that greater WMR and positive ε4 carrier status were associated with higher Braak stages. These results suggest that CAA and WMR are statistically linked to the severity of AD-related NFT pathology. The statistical link between WMR and NFT load may be strengthened by the presence of APOE ε4 carrier status. An additional finding was that Lewy body pathology was most prevalent in higher Braak stages.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteína E4/metabolismo , Círculo Arterial do Cérebro/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Bases de Dados Factuais/tendências , Feminino , Heterozigoto , Humanos , Masculino , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Proteínas tau/genética
19.
J Alzheimers Dis ; 80(1): 175-183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33492287

RESUMO

BACKGROUND: The ultimate validation of a clinical marker for Alzheimer's disease (AD) is its association with AD neuropathology. OBJECTIVE: To identify clinical measures that predict pathology, we evaluated the relationships of the picture version of the Free and Cued Selective Reminding Test (pFCSRT + IR), the Mini-Mental State Exam (MMSE), and the Clinical Dementia Rating scale Sum of Boxes (CDR-SB) to Braak stage. METHODS: 315 cases from the clinicopathologic series at the Knight Alzheimer's Disease Research Center were classified according to Braak stage. Boxplots of each predictor were compared to identify the earliest stage at which decline was observed and ordinal logistic regression was used to predict Braak stage. RESULTS: Looking at the assessment closest to death, free recall scores were lower in individuals at Braak stage III versus Braak stages 0 and I (combined) while MMSE and CDR scores for individuals did not differ from Braak stages 0/I until Braak stage IV. The sum of free recall and total recall scores independently predicted Braak stage and had higher predictive validity than MMSE and CDR-SB in models including all three. CONCLUSION: pFCSRT + IR scores may be more sensitive to early pathological changes than either the CDR-SB or the MMSE.


Assuntos
Doença de Alzheimer/psicologia , Sinais (Psicologia) , Memória , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Masculino , Rememoração Mental , Testes de Estado Mental e Demência , Testes Neuropsicológicos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
20.
J Alzheimers Dis ; 80(1): 185-195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33492286

RESUMO

BACKGROUND: The ultimate validation of a clinical marker for Alzheimer's disease (AD) is its association with AD neuropathology. OBJECTIVE: To examine how well the Stages of Objective Memory Impairment (SOMI) system predicts intermediate/high AD neuropathologic change and extent of neurofibrillary tangle (NFT) pathology defined by Braak stage, in comparison to the Clinical Dementia Rating (CDR) Scale sum of boxes (CDR-SB). METHODS: 251 well-characterized participants from the Knight ADRC clinicopathologic series were classified into SOMI stage at their last assessment prior to death using the free recall and total recall scores from the picture version of the Free and Cued Selective Reminding Test with Immediate Recall (pFCSRT + IR). Logistic regression models assessed the predictive validity of SOMI and CDR-SB for intermediate/high AD neuropathologic change. Receiver operating characteristics (ROC) analysis evaluated the discriminative validity of SOMI and CDR-SB for AD pathology. Ordinal logistic regression was used to predict Braak stage using SOMI and CDR-SB in separate and joint models. RESULTS: The diagnostic accuracy of SOMI for AD diagnosis was similar to that of the CDR-SB (AUC: 85%versus 83%). In separate models, both SOMI and CDR-SB predicted Braak stage. In a joint model SOMI remained a significant predictor of Braak stage but CDR-SB did not. CONCLUSION: SOMI provides a neuropathologically validated staging system for episodic memory impairment in the AD continuum and should be useful in predicting tau positivity based on its association with Braak stage.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Transtornos da Memória/psicologia , Testes de Estado Mental e Demência , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Escolaridade , Feminino , Humanos , Masculino , Memória Episódica , Rememoração Mental , Emaranhados Neurofibrilares/patologia , Testes Neuropsicológicos , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA