Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 39(1): 34-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055901

RESUMO

Chromoanagenesis is a single catastrophic event that involves, in most cases, localized chromosomal shattering and reorganization, resulting in a dramatically restructured chromosome. First discovered in cancer cells, it has since been observed in various other systems, including plants. In this review, we discuss the origin, characteristics, and potential mechanisms underlying chromoanagenesis in plants. We report that multiple processes, including mutagenesis and genetic engineering, can trigger chromoanagenesis via a variety of mechanisms such as micronucleation, breakage-fusion-bridge (BFB) cycles, or chain-like translocations. The resulting rearranged chromosomes can be preserved during subsequent plant growth, and sometimes inherited to the next generation. Because of their high tolerance to genome restructuring, plants offer a unique system for investigating the evolutionary consequences and potential practical applications of chromoanagenesis.


Assuntos
Cromossomos , Cromotripsia , Humanos , Genoma , Plantas/genética
2.
Semin Cell Dev Biol ; 123: 90-99, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33608210

RESUMO

Designated under the name of chromoanagenesis, the phenomena of chromothripsis, chromanasynthesis and chromoplexy constitute new types of complex rearrangements, including many genomic alterations localized on a few chromosomal regions, and whose discovery over the last decade has changed our perception about the formation of chromosomal abnormalities and their etiology. Although exhibiting specific features, these new catastrophic mechanisms generally occur within a single cell cycle and their emergence is closely linked to genomic instability. Various non-exclusive exogenous or cellular mechanisms capable of generating chromoanagenesis have been evoked. However, recent experimental data shed light on 2 major processes, which following a defect in the mitotic segregation of chromosomes, can generate a cascade of cellular events leading to chromoanagenesis. These mechanisms are the formation of micronuclei integrating isolated chromosomal material, and the occurrence of chromatin bridges around chromosomal material resulting from telomeric fusions. In both cases, the cellular and molecular mechanisms of fragmentation, repair and transmission of damaged chromosomal material are consistent with the features of chromoanagenesis-related complex chromosomal rearrangements. In this review, we introduce each type of chromoanagenesis, and describe the experimental models that have allowed to validate the existence of chromoanagenesis events and to better understand their cellular mechanisms of formation and transmission, as well as their impact on the stability and the plasticity of the genome.


Assuntos
Cromotripsia , Aberrações Cromossômicas , Rearranjo Gênico , Instabilidade Genômica/genética , Genômica , Humanos , Telômero/genética
3.
Clin Genet ; 103(4): 401-412, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36576162

RESUMO

Chromoanagenesis is a cellular mechanism that leads to complex chromosomal rearrangements (CCR) during a single catastrophic event. It may result in loss and/or gain of genetic material and may be responsible for various phenotypes. These rearrangements are usually sporadic. However, some familial cases have been reported. Here, we studied six families in whom an asymptomatic or paucisymptomatic parent transmitted a CCR to its offspring in an unbalanced manner. The rearrangements were characterized by karyotyping, fluorescent in situ hybridization, chromosomal microarray (CMA) and/or whole genome sequencing (WGS) in the carrier parents and offspring. We then hypothesized meiosis-pairing figures between normal and abnormal parental chromosomes that may have led to the formation of new unbalanced rearrangements through meiotic recombination. Our work indicates that chromoanagenesis might be associated with a normal phenotype and normal fertility, even in males, and that WGS may be the only way to identify these events when there is no imbalance. Subsequently, the CCR can be transmitted to the next generation in an unbalanced and unpredictable manner following meiotic recombination. Thereby, prenatal diagnosis using CMA should be proposed to these families to detect any pathogenic imbalances in the offspring.


Assuntos
Aberrações Cromossômicas , Rearranjo Gênico , Masculino , Feminino , Gravidez , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Meiose , Translocação Genética
4.
Trends Genet ; 35(11): 791-803, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421911

RESUMO

The advent of affordable, large-scale DNA sequencing methods, coupled with advanced computing power, is empowering a detailed analysis of the structure and function of chromosomes. Genomic instability, involving chromosome number and structure changes, has been documented in multiple systems. In plants, haploid induction through genome elimination has recently been connected mechanistically to the formation of complex chromosome reorganizations, known collectively as chromoanagenesis. These abnormalities can be triggered by altering the specialized centromeric histone 3, the epigenetic determinant of centromeres, which leads to loss of centromere function and chromosome missegregation. Other historical and recent instances of genomic instability, at the same time, suggest multiple causes. Their study provides a unique opportunity for a synthesis encompassing genome evolution, its response to stress, as well as the possibility of recruiting the connected mechanisms for genome engineering-based plant breeding.


Assuntos
Genoma , Instabilidade Genômica , Haploidia , Animais , Evolução Biológica , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Instabilidade Cromossômica , Segregação de Cromossomos , Cruzamentos Genéticos , Dano ao DNA , Amplificação de Genes , Micronúcleos com Defeito Cromossômico , Plantas/genética , Plantas/metabolismo
5.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258607

RESUMO

Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.


Assuntos
Adaptação Fisiológica , Seleção Genética , Aclimatação , Adaptação Fisiológica/genética , Evolução Biológica , Elementos de DNA Transponíveis , Evolução Molecular , Fenótipo
6.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328739

RESUMO

Chromoanagenesis constitutes a group of events that arise from single cellular events during early development. This particular class of complex rearrangements is a newfound occurrence that may lead to chaotic and complex genomic realignments. By that, chromoanagenesis is thought to be a crucial factor regarding macroevolution of the genome, and consequently is affecting the karyotype revolution together with genomic plasticity. One of chromoanagenesis-type of events is chromothripsis. It is characterised by the breakage of the chromosomal structure and its reassembling in random order and orientation which results in the establishment of derivative forms of chromosomes. Molecular mechanisms that underlie this phenomenon are mostly related to chromosomal sequestration throughout the micronuclei formation process. Chromothripsis is linked both to congenital and cancer diseases, moreover, it might be detected in subjects characterised by a normal phenotype. Chromothripsis, as well as the other chromoanagenetic variations, may be confined to one or more chromosomes, which makes up a non-uniform variety of karyotypes among chromothriptic patients. The detection of chromothripsis is enabled via tools like microarray-based comparative genomic hybridisation, next generation sequencing or authorial protocols aimed for the recognition of structural variations.


Assuntos
Cromotripsia , Hibridização Genômica Comparativa , Rearranjo Gênico , Genoma , Genômica , Humanos
7.
J Cell Mol Med ; 25(8): 4110-4123, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33704908

RESUMO

A crucial mutational mechanism in malignancy is structural variation, in which chromosomal rearrangements alter gene functions that drive cancer progression. Herein, the presence and pattern of structural variations were investigated in twelve prospectively acquired treatment-naïve pancreatic cancers specimens obtained via endoscopic ultrasound (EUS). In many patients, this diagnostic biopsy procedure and specimen is the only opportunity to identify somatic clinically relevant actionable alterations that may impact their care and outcome. Specialized mate pair sequencing (MPseq) provided genome-wide structural variance analysis (SVA) with a view to identifying prognostic markers and possible therapeutic targets. MPseq was successfully performed on all specimens, identifying highly rearranged genomes with complete SVA on all specimens with > 20% tumour content. SVA identified chimeric fusion proteins and potentially immunogenic readthrough transcripts, change of function truncations, gains and losses of key genes linked to tumour progression. Complex localized rearrangements, termed chromoanagenesis, with broad pattern heterogeneity were observed in 10 (83%) specimens, impacting multiple genes with diverse cellular functions that could influence theragnostic evaluation and responsiveness to immunotherapy regimens. This study indicates that genome-wide MPseq can be successfully performed on very limited clinically EUS obtained specimens for chromosomal rearrangement detection and potential theragnostic targets.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/diagnóstico , Aberrações Cromossômicas , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Mutação , Neoplasias Pancreáticas/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/genética , Prognóstico , Transcriptoma
8.
Am J Med Genet A ; 185(8): 2335-2344, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33988290

RESUMO

Chromosomal microarray analyses (CMA) have greatly increased both the yield and diagnostic accuracy of postnatal analysis; it has been used as a first-tier cytogenetic test in patients with intellectual disability, autism spectrum disorder, and multiple congenital abnormalities. During the last 15 years, we performed CMA in approximately 8,000 patients with neurodevelopmental and/or congenital disorders, of which 13 (0.16%) genetically catastrophic complex chromosomal rearrangements were identified. These ultrarare rearrangements showed clustering of breakpoints, characteristic of chromoanagenesis events. Al1 13 complex events display underlying formation mechanisms, originating either by a synchronization of the shattering of clustered chromosome regions in which regional asynchrony of DNA replication may be one of the main causes of disruption. We provide an overview of the copy number profiling in these patients. Although several previous studies have suggested that chromoanagenesis is often a genetic disease source in postnatal diagnostic screening, due to either the challenge of clinical interpretation of these complex rearrangements or the limitation of microarray resolution relative to the small size and complexity of chromogenic induced chromosome abnormalities, bringing further attention and to study its occurrence in the clinical setting is extremely important.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Anormalidades Múltiplas/epidemiologia , Adolescente , Adulto , Brasil/epidemiologia , Criança , Pré-Escolar , Transtornos Cromossômicos/epidemiologia , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/genética , Testes Diagnósticos de Rotina , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
9.
Cytogenet Genome Res ; 160(11-12): 671-679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33535208

RESUMO

Chromoanagenesis, a phenomenon characterized by complex chromosomal rearrangement and reorganization events localized to a limited number of genomic regions, includes the subcategories chromothripsis, chromoanasynthesis, and chromoplexy. Although definitions of these terms are evolving, constitutional chromoanagenesis events have been reported in a limited number of patients with variable phenotypes. We report on 2 cases with complex genomic events characterized by multiple copy number gains and losses confined to a single chromosome region, which are suggestive of constitutional chromoanagenesis. Case 1 is a 43-year-old male with intellectual disability and recently developed generalized tonic-clonic seizures. Chromosomal microarray analysis identified a complex rearrangement involving chromosome region 14q31.1q32.2, consisting of 16 breakpoints ranging in size from 0.2 to 6.2 Mb, with 5 segments of normal copy number present between these alterations. Interestingly, this case represents the oldest known patient with a complex rearrangement indicative of constitutional chromoanagenesis. Case 2 is a 2-year-old female with developmental delay, speech delay, low muscle tone, and seizures. Chromosomal microarray analysis identified a complex rearrangement consisting of 28 breakpoints localized to 18q21.32q23. The size of the copy number alterations ranged from 0.042 to 5.1 Mb, flanked by 12 small segments of normal copy number. These cases add to a growing body of literature demonstrating complex chromosomal rearrangements as a disease mechanism for congenital anomalies.


Assuntos
Aberrações Cromossômicas , Células Germinativas , Adolescente , Adulto , Pré-Escolar , Cromotripsia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
10.
Am J Med Genet A ; 182(11): 2533-2539, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841469

RESUMO

Jacobsen syndrome (MIM #147791) is a rare multisystem genomic disorder involving craniofacial abnormalities, intellectual disability, other neurodevelopmental defects, and terminal truncation of chromosome 11q, typically deleting ~170 to >340 genes. We describe the first case of Jacobsen syndrome caused by congenital chromoanasynthesis, an extreme form of complex chromosomal rearrangement. Six duplications and five deletions occurred on one copy of chromosome 11q with microhomology signatures in the breakpoint junctions, indicating an all-at-once replication-based rearrangement mechanism in a gametocyte or early post-zygotic cell. Eighteen genes were deleted from the Jacobsen region, including KIRREL3, which is associated with intellectual disability.


Assuntos
Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Síndrome da Deleção Distal 11q de Jacobsen/genética , Proteínas de Transporte/genética , Criança , Aberrações Cromossômicas , Cromossomos Humanos Par 11 , Deleção de Genes , Duplicação Gênica , Humanos , Cariotipagem , Masculino , Proteínas de Membrana/genética , Reação em Cadeia da Polimerase , Sequenciamento Completo do Genoma
12.
BMC Cancer ; 18(1): 738, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005627

RESUMO

BACKGROUND: HER2 positive (HER2+) breast cancers involve chromosomal structural alterations that act as oncogenic driver events. METHODS: We interrogated the genomic structure of 18 clinically-defined HER2+ breast tumors through integrated analysis of whole genome and transcriptome sequencing, coupled with clinical information. RESULTS: ERBB2 overexpression in 15 of these tumors was associated with ERBB2 amplification due to chromoanasynthesis with six of them containing single events and the other nine exhibiting multiple events. Two of the more complex cases had adverse clinical outcomes. Chromosomes 8 was commonly involved in the same chromoanasynthesis with 17. In ten cases where chromosome 8 was involved we observed NRG1 fusions (two cases), NRG1 amplification (one case), FGFR1 amplification and ADAM32 or ADAM5 fusions. ERBB3 over-expression was associated with NRG1 fusions and EGFR and ERBB3 expressions were anti-correlated. Of the remaining three cases, one had a small duplication fully encompassing ERBB2 and was accompanied with a pathogenic mutation. CONCLUSION: Chromoanasynthesis involving chromosome 17 can lead to ERBB2 amplifications in HER2+ breast cancer. However, additional large genomic alterations contribute to a high level of genomic complexity, generating the hypothesis that worse outcome could be associated with multiple chromoanasynthetic events.


Assuntos
Neoplasias da Mama/genética , Cromotripsia , Amplificação de Genes , Receptor ErbB-2/genética , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Cromossomos Humanos Par 17 , Estudos de Coortes , Feminino , Humanos , Estadiamento de Neoplasias , Receptor ErbB-2/análise
13.
Clin Genet ; 91(5): 653-660, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27888607

RESUMO

Although complex chromosomal rearrangements were thought to reflect the accumulation of DNA damage over time, recent studies have shown that such rearrangements frequently arise from 'all-at-once' catastrophic cellular events. These events, designated chromothripsis, chromoanasynthesis, and chromoanagenesis, were first documented in the cancer genome and subsequently observed in the germline. These events likely result from micronucleus-mediated chromosomal shattering and subsequent random reassembly of DNA fragments, although several other mechanisms have also been proposed. Typically, only one or a few chromosomes of paternal origin are affected per event. These events can produce intrachromosomal deletions, duplications, inversions, and translocations, as well as interchromosomal translocations. Germline complex rearrangements of autosomes often result in developmental delay and dysmorphic features, whereas X chromosomal rearrangements are usually associated with relatively mild clinical manifestations. The concept of these catastrophic events provides novel insights into the etiology of human genomic disorders. This review introduces the molecular characteristics and phenotypic outcomes of catastrophic cellular events in the germline.


Assuntos
Aberrações Cromossômicas , Cromotripsia , Células Germinativas , Quebras de DNA de Cadeia Dupla , Feminino , Rearranjo Gênico , Genoma Humano , Mutação em Linhagem Germinativa , Humanos , Masculino , Gravidez
14.
Hum Mutat ; 37(7): 661-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26936114

RESUMO

Chromoanagenesis is the process by which a single catastrophic event creates complex rearrangements confined to a single or a few chromosomes. It is usually characterized by the presence of multiple deletions and/or duplications, as well as by copy neutral rearrangements. In contrast, an array CGH screen of patients with developmental anomalies revealed three patients in which a single chromosome carries from 8 to 11 large copy number gains confined to a single chromosome or chromosomal arm, but the absence of deletions. Subsequent fluorescence in situ hybiridization and massive parallel sequencing revealed the duplicons to be clustered together in distinct locations across the altered chromosomes. Breakpoint junction sequences showed both microhomology and non-templated insertions of up to 40 bp. Hence, these patients each demonstrate a single altered chromosome of clustered insertional duplications, no deletions, and breakpoint junction sequences showing microhomology and/or non-templated insertions. These observations are difficult to reconcile with current mechanistic descriptions of chromothripsis and chromoanasynthesis. Therefore, we hypothesize those rearrangements to be of a mechanistically different origin. In addition, we suggest that large untemplated insertional sequences observed at breakpoints are driven by a non-canonical non-homologous end joining mechanism.


Assuntos
Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Hibridização Genômica Comparativa , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise em Microsséries , Análise de Sequência de DNA
15.
Gene ; 933: 148956, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39312981

RESUMO

Chromoanagenesis events consist of complex chromosome rearrangements with multiple breakpoints in one or few chromosomes. Mechanisms of chromoanagenesis are split into three major groups: chromothripsis, chromoanasynthesis and chromoplexy. This study aims to delineate a chromoanagenesis event at the level of chromosome 22 in an individual showing obesity and borderline cognitive performance as major disturbances. The proband and his parents were subjected to conventional karyotyping, CGH array and whole genomic sequencing (WGS). By conventional karyotyping a "de novo" pericentric inversion of chromosome 22 was identified. CGH array identified several imbalances (either deletions or duplications) in the long arm of chromosome 22; the largest is a 4.5 Mb duplication at 22q12.1-22q1.3. The detection of extensive duplications would suggest the occurrence of a chromoanasynthesis event. WGS, in addition to the structural alterations identified by karyotyping and CGH array, revealed two translocations from chromosome 22 to chromosomes 6 and 21 as well as a heterozygous pathogenetic variant of ALMS1 gene; the latter could have contributed to the obesity of our patient. The pericentric inversion induces loss of initial part of TCF20 gene including the 5' regulatory region and the first, noncoding, exon. Heterozygous loss-of-function mutations of TCF20 gene have been found in patients with autism spectrum disorder or intellectual disability, some of them presenting obesity. It is, therefore, possible that disruption of TCF20 gene structure would contribute to a fraction of the patient's phenotype.

16.
Biomedicines ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927378

RESUMO

Examinations of ovarian cancer cells require the ability to identify tumor cells. Array-based comparative genome hybridization (aCGH) on 30 ovarian carcinomas (OC) identified three genomic loci (8q24.23; 17p12; 18q22.3) over- or under-represented in OC. A fluorescence in situ hybridization (FISH) probe of these three loci is intended to identify tumor cells by their signal pattern deviating from a diploid pattern. Human DNA from these three loci is isolated from bacterial artificial chromosomes (BAC), amplified and labeled with fluorescent dyes. After a standard FISH procedure, 71 OC suspensions from primary tumors, three OC cell lines, three lymphocyte suspensions, and one mesenchymal cell line LP-3 are analyzed with a fluorescence microscope. On average, 15% of the lymphocytes deviate from the expected diploid signal pattern, giving a cut-off of 36%. If this value is exceeded, tumor cells are detected. The mesenchymal cell line LP-3 shows only 21% as a negative control. The OC cell lines as positive controls exceed this value at 38%, 67%, and 54%. Of the 71 OC primary cultures, four cases fell below this cut-off as false negatives. In the two-sample t-test, the percentages of conspicuous signal patterns differ significantly.

17.
Mol Cytogenet ; 17(1): 19, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183314

RESUMO

BACKGROUND: Chromoanagenesis is an umbrella term used to describe catastrophic "all at once" cellular events leading to the chaotic reconstruction of chromosomes. It is characterized by numerous rearrangements involving a small number of chromosomes/loci, copy number gains in combination with deletions, reconstruction of chromosomal fragments with improper order/orientation, and preserved heterozygosity in copy number neutral regions. Chromoanagesis is frequently described in association with cancer; however, it has also been described in the germline. The clinical features associated with constitutional chromoanagenesis are typically due to copy number changes and/or disruption of genes or regulatory regions. CASE PRESENTATION: We present an 8-year-old male patient with complex rearrangements of the Y chromosome including a ring Y chromosome, a derivative Y;21 chromosome, and a complex rearranged Y chromosome. These chromosomes were characterized by G-banded chromosome analysis, SNP microarray, interphase FISH, and metaphase FISH. The mechanism(s) by which these rearrangements occurred is unclear; however, it is evocative of chromoanagenesis. CONCLUSION: This case is a novel example of suspected germline chromoanagenesis leading to large copy number changes that are well-tolerated, possibly because only the sex chromosomes are affected.

18.
Biomedicines ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540211

RESUMO

Complex structural chromosome abnormalities such as chromoanagenesis have been reported in acute myeloid leukemia (AML). They are usually not well characterized by conventional genetic methods, and the characterization of chromoanagenesis structural abnormalities from short-read sequencing still presents challenges. Here, we characterized complex structural abnormalities involving chromosomes 2, 3, and 7 in an AML patient using an integrated approach including CRISPR/Cas9-mediated nanopore sequencing, mate pair sequencing (MPseq), and SNP microarray analysis along with cytogenetic methods. SNP microarray analysis revealed chromoanagenesis involving chromosomes 3 and 7, and a pseudotricentric chromosome 7 was revealed by cytogenetic methods. MPseq revealed 138 structural variants (SVs) as putative junctions of complex rearrangements involving chromosomes 2, 3, and 7, which led to 16 novel gene fusions and 33 truncated genes. Thirty CRISPR RNA (crRNA) sequences were designed to map 29 SVs, of which 27 (93.1%) were on-target based on CRISPR/Cas9 crRNA nanopore sequencing. In addition to simple SVs, complex SVs involving over two breakpoints were also revealed. Twenty-one SVs (77.8% of the on-target SVs) were also revealed by MPseq with shared SV breakpoints. Approximately three-quarters of breakpoints were located within genes, especially intronic regions, and one-quarter of breakpoints were intergenic. Alu and LINE repeat elements were frequent among breakpoints. Amplification of the chromosome 7 centromere was also detected by nanopore sequencing. Given the high amplification of the chromosome 7 centromere, extra chromosome 7 centromere sequences (tricentric), and more gains than losses of genomic material, chromoanasynthesis and chromothripsis may be responsible for forming this highly complex structural abnormality. We showed this combination approach's value in characterizing complex structural abnormalities for clinical and research applications. Characterization of these complex structural chromosome abnormalities not only will help understand the molecular mechanisms responsible for the process of chromoanagenesis, but also may identify specific molecular targets and their impact on therapy and overall survival.

19.
HGG Adv ; 5(4): 100352, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257002

RESUMO

The aim of this work was to identify the underlying genetic cause in a four-generation family segregating an unusual phenotype comprising a severe form of skeletal Class II malocclusion with gingival hyperplasia. SNP array identified a copy number gain on chromosome 1 (chr1); however, this chromosomal region did not segregate correctly in the extended family. Exome sequencing also failed to identify a candidate causative variant but highlighted co-segregating genetic markers on chr17 and chr19. Short- and long-read genome sequencing allowed us to pinpoint and characterize at nucleotide-level resolution a chromothripsis-like complex rearrangement (CR) inserted into the chr17 co-segregating region at the KCNJ2-SOX9 locus. The CR involved the gain of five different regions from chr1 that are shuffled, chained, and inserted as a single block (∼828 kb) at chr17q24.3. The inserted sequences contain craniofacial enhancers that are predicted to interact with KCNJ2/KCNJ16 through neo-topologically associating domain (TAD) formation to induce ectopic activation. Our findings suggest that the CR inserted at chr17q24.3 is the cause of the severe skeletal Class II malocclusion with gingival hyperplasia in this family and expands the panoply of phenotypes linked to variation at the KCNJ2-SOX9 locus. In addition, we highlight a previously overlooked potential role for misregulation of the KCNJ2/KCNJ16 genes in the pathomechanism of gingival hyperplasia associated with deletions and other rearrangements of the 17q24.2-q24.3 region (MIM 135400).


Assuntos
Hiperplasia Gengival , Má Oclusão Classe II de Angle , Linhagem , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Feminino , Má Oclusão Classe II de Angle/genética , Masculino , Hiperplasia Gengival/genética , Hiperplasia Gengival/patologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Fenótipo , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição SOX9/genética
20.
J Clin Med ; 12(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373803

RESUMO

INTRODUCTION: Chronic lymphocytic leukemia (CLL), the most common leukemia in Western countries, is a mature B-cell chronic lymphoproliferative disorder characterized by the accumulation of neoplastic CD5+ B lymphocytes, functionally incompetent and usually monoclonal in origin, in bone marrow, lymph nodes and blood. Diagnosis occurs predominantly in elderly patients, with a median age reported between 67 and 72 years. CLL has a heterogeneous clinical course, which can vary from indolent to, less frequently, aggressive forms. Early-stage asymptomatic CLL patients do not require immediate therapeutic intervention, but only observation; treatment is necessary for patients with advanced disease or when "active disease" is observed. The most frequent autoimmune cytopenia (AIC) is autoimmune haemolytic anaemia (AHIA). The main mechanisms underlying the appearance of AIC in CLL are not fully elucidated, the predisposition of patients with CLL to suffering autoimmune complications is variable and autoimmune cytopenia can precede, be concurrent, or follow the diagnosis of CLL. CASE PRESENTATION: A 74-year-old man was admitted to the emergency room following the finding of severe macrocytic anaemia during blood tests performed that same day, in particular the patient showed a profound asthenia dating back several months. The anamnesis was silent and the patient was not taking any medications. The blood examination showed an extremely high White Blood Cell count and findings of AIHA in CLL-type mature B-cell lymphoproliferative neoplasia. Genetic investigations: Conventional karyotyping was performed and it obtained a trisomy 8 and an unbalanced translocation between the short arm of chromosome 6 and the long arm of chromosome 11, concurrent with interstitial deletions in chromosomes 6q and 11q that could not be defined in detail. Molecular cytogenetics (FISH) analyses revealed Ataxia Telangiectasia Mutated (ATM) monoallelic deletion (with loss of ATM on derivative chromosome 11) and retained signals for TP53, 13q14 and centromere 12 FISH probes. TP53 and IGHV were not mutated. Array-CGH confirmed trisomy of the entire chromosome 8 and allowed us to resolve in detail the nature of the unbalanced translocation, revealing multiple regions of genomic losses on chromosomes 6 and 11. DISCUSSION: The present case report is an unusual CLL case with complex karyotype and refinement of all breakpoints at the gene level by the genomic array. From a genetic point of view, the case under study presented several peculiarities. CONCLUSIONS: We report the genetic findings of a CLL patient with abrupt disease onset, so far responding properly to treatments despite the presence of distinct genetic adverse traits including ATM deletion, complex karyotype and chromosome 6q chromoanagenesis event. Our report confirms that interphase FISH alone is not able to provide an overview of the whole genomic landscape in selected CLL cases and that additional techniques are required to reach an appropriate cytogenetic stratification of patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA