Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.164
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(2): 170-181, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37824084

RESUMO

Stroke, characterized by sudden neurological deficits, is the second leading cause of death worldwide. Although genome-wide association studies (GWAS) have successfully identified many genomic regions associated with ischemic stroke (IS), the genes underlying risk and their regulatory mechanisms remain elusive. Here, we integrate a large-scale GWAS (N = 1 296 908) for IS together with molecular QTLs data, including mRNA, splicing, enhancer RNA (eRNA), and protein expression data from up to 50 tissues (total N = 11 588). We identify 136 genes/eRNA/proteins associated with IS risk across 60 independent genomic regions and find IS risk is most enriched for eQTLs in arterial and brain-related tissues. Focusing on IS-relevant tissues, we prioritize 9 genes/proteins using probabilistic fine-mapping TWAS analyses. In addition, we discover that blood cell traits, particularly reticulocyte cells, have shared genetic contributions with IS using TWAS-based pheWAS and genetic correlation analysis. Lastly, we integrate our findings with a large-scale pharmacological database and identify a secondary bile acid, deoxycholic acid, as a potential therapeutic component. Our work highlights IS risk genes/splicing-sites/enhancer activity/proteins with their phenotypic consequences using relevant tissues as well as identify potential therapeutic candidates for IS.


Assuntos
AVC Isquêmico , Transcriptoma , Humanos , Estudo de Associação Genômica Ampla , AVC Isquêmico/genética , Genômica , Fenótipo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética
2.
Trends Genet ; 39(10): 773-786, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482451

RESUMO

Co-occurrence of diseases decreases patient quality of life, complicates treatment choices, and increases mortality. Analyses of electronic health records present a complex scenario of comorbidity relationships that vary by age, sex, and cohort under study. The study of similarities between diseases using 'omics data, such as genes altered in diseases, gene expression, proteome, and microbiome, are fundamental to uncovering the origin of, and potential treatment for, comorbidities. Recent studies have produced a first generation of genetic interpretations for as much as 46% of the comorbidities described in large cohorts. Integrating different sources of molecular information and using artificial intelligence (AI) methods are promising approaches for the study of comorbidities. They may help to improve the treatment of comorbidities, including the potential repositioning of drugs.


Assuntos
Inteligência Artificial , Qualidade de Vida , Humanos , Comorbidade
3.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39038932

RESUMO

MOTIVATION: Drug repositioning, the identification of new therapeutic uses for existing drugs, is crucial for accelerating drug discovery and reducing development costs. Some methods rely on heterogeneous networks, which may not fully capture the complex relationships between drugs and diseases. However, integrating diverse biological data sources offers promise for discovering new drug-disease associations (DDAs). Previous evidence indicates that the combination of information would be conducive to the discovery of new DDAs. However, the challenge lies in effectively integrating different biological data sources to identify the most effective drugs for a certain disease based on drug-disease coupled mechanisms. RESULTS: In response to this challenge, we present MiRAGE, a novel computational method for drug repositioning. MiRAGE leverages a three-step framework, comprising negative sampling using hard negative mining, classification employing random forest models, and feature selection based on feature importance. We evaluate MiRAGE on multiple benchmark datasets, demonstrating its superiority over state-of-the-art algorithms across various metrics. Notably, MiRAGE consistently outperforms other methods in uncovering novel DDAs. Case studies focusing on Parkinson's disease and schizophrenia showcase MiRAGE's ability to identify top candidate drugs supported by previous studies. Overall, our study underscores MiRAGE's efficacy and versatility as a computational tool for drug repositioning, offering valuable insights for therapeutic discoveries and addressing unmet medical needs.


Assuntos
Algoritmos , Mineração de Dados , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Mineração de Dados/métodos , Humanos , Biologia Computacional/métodos , Esquizofrenia/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Descoberta de Drogas/métodos
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38647153

RESUMO

Computational drug repositioning, which involves identifying new indications for existing drugs, is an increasingly attractive research area due to its advantages in reducing both overall cost and development time. As a result, a growing number of computational drug repositioning methods have emerged. Heterogeneous network-based drug repositioning methods have been shown to outperform other approaches. However, there is a dearth of systematic evaluation studies of these methods, encompassing performance, scalability and usability, as well as a standardized process for evaluating new methods. Additionally, previous studies have only compared several methods, with conflicting results. In this context, we conducted a systematic benchmarking study of 28 heterogeneous network-based drug repositioning methods on 11 existing datasets. We developed a comprehensive framework to evaluate their performance, scalability and usability. Our study revealed that methods such as HGIMC, ITRPCA and BNNR exhibit the best overall performance, as they rely on matrix completion or factorization. HINGRL, MLMC, ITRPCA and HGIMC demonstrate the best performance, while NMFDR, GROBMC and SCPMF display superior scalability. For usability, HGIMC, DRHGCN and BNNR are the top performers. Building on these findings, we developed an online tool called HN-DREP (http://hn-drep.lyhbio.com/) to facilitate researchers in viewing all the detailed evaluation results and selecting the appropriate method. HN-DREP also provides an external drug repositioning prediction service for a specific disease or drug by integrating predictions from all methods. Furthermore, we have released a Snakemake workflow named HN-DRES (https://github.com/lyhbio/HN-DRES) to facilitate benchmarking and support the extension of new methods into the field.


Assuntos
Benchmarking , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Humanos , Biologia Computacional/métodos , Software , Algoritmos
5.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980370

RESUMO

RepurposeDrugs (https://repurposedrugs.org/) is a comprehensive web-portal that combines a unique drug indication database with a machine learning (ML) predictor to discover new drug-indication associations for approved as well as investigational mono and combination therapies. The platform provides detailed information on treatment status, disease indications and clinical trials across 25 indication categories, including neoplasms and cardiovascular conditions. The current version comprises 4314 compounds (approved, terminated or investigational) and 161 drug combinations linked to 1756 indications/conditions, totaling 28 148 drug-disease pairs. By leveraging data on both approved and failed indications, RepurposeDrugs provides ML-based predictions for the approval potential of new drug-disease indications, both for mono- and combinatorial therapies, demonstrating high predictive accuracy in cross-validation. The validity of the ML predictor is validated through a number of real-world case studies, demonstrating its predictive power to accurately identify repurposing candidates with a high likelihood of future approval. To our knowledge, RepurposeDrugs web-portal is the first integrative database and ML-based predictor for interactive exploration and prediction of both single-drug and combination approval likelihood across indications. Given its broad coverage of indication areas and therapeutic options, we expect it accelerates many future drug repurposing projects.


Assuntos
Reposicionamento de Medicamentos , Aprendizado de Máquina , Reposicionamento de Medicamentos/métodos , Humanos , Internet , Quimioterapia Combinada , Bases de Dados de Produtos Farmacêuticos , Bases de Dados Factuais
6.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36445193

RESUMO

Transcriptome signature reversion (TSR) has been extensively proposed and used to discover new indications for existing drugs (i.e. drug repositioning, drug repurposing) for various cancer types. TSR relies on the assumption that a drug that can revert gene expression changes induced by a disease back to original, i.e. healthy, levels is likely to be therapeutically active in treating the disease. Here, we aimed to validate the concept of TSR using the PRISM repurposing data set, which is-as of writing-the largest pharmacogenomic data set. The predictive utility of the TSR approach as it has currently been used appears to be much lower than previously reported and is completely nullified after the drug gene expression signatures are adjusted for the general anti-proliferative downstream effects of drug-induced decreased cell viability. Therefore, TSR mainly relies on generic anti-proliferative drug effects rather than on targeting cancer pathways specifically upregulated in tumor types.


Assuntos
Neoplasias , Transcriptoma , Humanos , Reposicionamento de Medicamentos , Perfilação da Expressão Gênica , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncologia
7.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36562715

RESUMO

As one of the most vital methods in drug development, drug repositioning emphasizes further analysis and research of approved drugs based on the existing large amount of clinical and experimental data to identify new indications of drugs. However, the existing drug repositioning methods didn't achieve enough prediction performance, and these methods do not consider the effectiveness information of drugs, which make it difficult to obtain reliable and valuable results. In this study, we proposed a drug repositioning framework termed DRONet, which make full use of effectiveness comparative relationships (ECR) among drugs as prior information by combining network embedding and ranking learning. We utilized network embedding methods to learn the deep features of drugs from a heterogeneous drug-disease network, and constructed a high-quality drug-indication data set including effectiveness-based drug contrast relationships. The embedding features and ECR of drugs are combined effectively through a designed ranking learning model to prioritize candidate drugs. Comprehensive experiments show that DRONet has higher prediction accuracy (improving 87.4% on Hit@1 and 37.9% on mean reciprocal rank) than state of the art. The case analysis also demonstrates high reliability of predicted results, which has potential to guide clinical drug development.


Assuntos
Biologia Computacional , Reposicionamento de Medicamentos , Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Reprodutibilidade dos Testes , Confiabilidade dos Dados , Algoritmos
8.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38019732

RESUMO

Drug repositioning, the strategy of redirecting existing drugs to new therapeutic purposes, is pivotal in accelerating drug discovery. While many studies have engaged in modeling complex drug-disease associations, they often overlook the relevance between different node embeddings. Consequently, we propose a novel weighted local information augmented graph neural network model, termed DRAGNN, for drug repositioning. Specifically, DRAGNN firstly incorporates a graph attention mechanism to dynamically allocate attention coefficients to drug and disease heterogeneous nodes, enhancing the effectiveness of target node information collection. To prevent excessive embedding of information in a limited vector space, we omit self-node information aggregation, thereby emphasizing valuable heterogeneous and homogeneous information. Additionally, average pooling in neighbor information aggregation is introduced to enhance local information while maintaining simplicity. A multi-layer perceptron is then employed to generate the final association predictions. The model's effectiveness for drug repositioning is supported by a 10-times 10-fold cross-validation on three benchmark datasets. Further validation is provided through analysis of the predicted associations using multiple authoritative data sources, molecular docking experiments and drug-disease network analysis, laying a solid foundation for future drug discovery.


Assuntos
Benchmarking , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Descoberta de Drogas , Redes Neurais de Computação
9.
Hum Genomics ; 18(1): 34, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566255

RESUMO

BACKGROUND: Male-pattern baldness (MPB) is the most common cause of hair loss in men. It can be categorized into three types: type 2 (T2), type 3 (T3), and type 4 (T4), with type 1 (T1) being considered normal. Although various MPB-associated genetic variants have been suggested, a comprehensive study for linking these variants to gene expression regulation has not been performed to the best of our knowledge. RESULTS: In this study, we prioritized MPB-related tissue panels using tissue-specific enrichment analysis and utilized single-tissue panels from genotype-tissue expression version 8, as well as cross-tissue panels from context-specific genetics. Through a transcriptome-wide association study and colocalization analysis, we identified 52, 75, and 144 MPB associations for T2, T3, and T4, respectively. To assess the causality of MPB genes, we performed a conditional and joint analysis, which revealed 10, 11, and 54 putative causality genes for T2, T3, and T4, respectively. Finally, we conducted drug repositioning and identified potential drug candidates that are connected to MPB-associated genes. CONCLUSIONS: Overall, through an integrative analysis of gene expression and genotype data, we have identified robust MPB susceptibility genes that may help uncover the underlying molecular mechanisms and the novel drug candidates that may alleviate MPB.


Assuntos
Alopecia , Transcriptoma , Humanos , Masculino , Transcriptoma/genética , Alopecia/genética , Alopecia/metabolismo , Genótipo , Prognóstico , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença
10.
Circ Res ; 132(10): 1374-1386, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167362

RESUMO

COVID-19 is an infectious disease caused by SARS-CoV-2 leading to the ongoing global pandemic. Infected patients developed a range of respiratory symptoms, including respiratory failure, as well as other extrapulmonary complications. Multiple comorbidities, including hypertension, diabetes, cardiovascular diseases, and chronic kidney diseases, are associated with the severity and increased mortality of COVID-19. SARS-CoV-2 infection also causes a range of cardiovascular complications, including myocarditis, myocardial injury, heart failure, arrhythmias, acute coronary syndrome, and venous thromboembolism. Although a variety of methods have been developed and many clinical trials have been launched for drug repositioning for COVID-19, treatments that consider cardiovascular manifestations and cardiovascular disease comorbidities specifically are limited. In this review, we summarize recent advances in drug repositioning for COVID-19, including experimental drug repositioning, high-throughput drug screening, omics data-based, and network medicine-based computational drug repositioning, with particular attention on those drug treatments that consider cardiovascular manifestations of COVID-19. We discuss prospective opportunities and potential methods for repurposing drugs to treat cardiovascular complications of COVID-19.


Assuntos
COVID-19 , Doenças Cardiovasculares , Miocardite , Humanos , COVID-19/complicações , SARS-CoV-2 , Reposicionamento de Medicamentos , Estudos Prospectivos , Doenças Cardiovasculares/terapia , Miocardite/terapia
11.
BMC Bioinformatics ; 25(1): 196, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769492

RESUMO

BACKGROUND: The identification of drug side effects plays a critical role in drug repositioning and drug screening. While clinical experiments yield accurate and reliable information about drug-related side effects, they are costly and time-consuming. Computational models have emerged as a promising alternative to predict the frequency of drug-side effects. However, earlier research has primarily centered on extracting and utilizing representations of drugs, like molecular structure or interaction graphs, often neglecting the inherent biomedical semantics of drugs and side effects. RESULTS: To address the previously mentioned issue, we introduce a hybrid multi-modal fusion framework (HMMF) for predicting drug side effect frequencies. Considering the wealth of biological and chemical semantic information related to drugs and side effects, incorporating multi-modal information offers additional, complementary semantics. HMMF utilizes various encoders to understand molecular structures, biomedical textual representations, and attribute similarities of both drugs and side effects. It then models drug-side effect interactions using both coarse and fine-grained fusion strategies, effectively integrating these multi-modal features. CONCLUSIONS: HMMF exhibits the ability to successfully detect previously unrecognized potential side effects, demonstrating superior performance over existing state-of-the-art methods across various evaluation metrics, including root mean squared error and area under receiver operating characteristic curve, and shows remarkable performance in cold-start scenarios.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Biologia Computacional/métodos , Humanos , Algoritmos
12.
BMC Bioinformatics ; 25(1): 79, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378479

RESUMO

BACKGROUND: Identification of potential drug-disease associations is important for both the discovery of new indications for drugs and for the reduction of unknown adverse drug reactions. Exploring the potential links between drugs and diseases is crucial for advancing biomedical research and improving healthcare. While advanced computational techniques play a vital role in revealing the connections between drugs and diseases, current research still faces challenges in the process of mining potential relationships between drugs and diseases using heterogeneous network data. RESULTS: In this study, we propose a learning framework for fusing Graph Transformer Networks and multi-aggregate graph convolutional network to learn efficient heterogenous information graph representations for drug-disease association prediction, termed WMAGT. This method extensively harnesses the capabilities of a robust graph transformer, effectively modeling the local and global interactions of nodes by integrating a graph convolutional network and a graph transformer with self-attention mechanisms in its encoder. We first integrate drug-drug, drug-disease, and disease-disease networks to construct heterogeneous information graph. Multi-aggregate graph convolutional network and graph transformer are then used in conjunction with neural collaborative filtering module to integrate information from different domains into highly effective feature representation. CONCLUSIONS: Rigorous cross-validation, ablation studies examined the robustness and effectiveness of the proposed method. Experimental results demonstrate that WMAGT outperforms other state-of-the-art methods in accurate drug-disease association prediction, which is beneficial for drug repositioning and drug safety research.


Assuntos
Pesquisa Biomédica , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Reposicionamento de Medicamentos , Fontes de Energia Elétrica , Aprendizagem
13.
Cancer Sci ; 115(1): 197-210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882467

RESUMO

Genetic mutations in the isocitrate dehydrogenase (IDH) gene that result in a pathological enzymatic activity to produce oncometabolite have been detected in acute myeloid leukemia (AML) patients. While specific inhibitors that target mutant IDH enzymes and normalize intracellular oncometabolite level have been developed, refractoriness and resistance has been reported. Since acquisition of pathological enzymatic activity is accompanied by the abrogation of the crucial WT IDH enzymatic activity in IDH mutant cells, aberrant metabolism in IDH mutant cells can potentially persist even after the normalization of intracellular oncometabolite level. Comparisons of isogenic AML cell lines with and without IDH2 gene mutations revealed two mutually exclusive signalings for growth advantage of IDH2 mutant cells, STAT phosphorylation associated with intracellular oncometabolite level and phospholipid metabolic adaptation. The latter came to light after the oncometabolite normalization and increased the resistance of IDH2 mutant cells to arachidonic acid-mediated apoptosis. The release of this metabolic adaptation by FDA-approved anti-inflammatory drugs targeting the metabolism of arachidonic acid could sensitize IDH2 mutant cells to apoptosis, resulting in their eradication in vitro and in vivo. Our findings will contribute to the development of alternative therapeutic options for IDH2 mutant AML patients who do not tolerate currently available therapies.


Assuntos
Leucemia Mieloide Aguda , Humanos , Ácido Araquidônico/uso terapêutico , Mutação , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Isocitrato Desidrogenase/metabolismo
14.
J Neuroinflammation ; 21(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383441

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common and costly progressive neurodegenerative disease of unclear etiology. A disease-modifying approach that can directly stop or slow its progression remains a major unmet need in the treatment of PD. A clinical pharmacology-based drug repositioning strategy is a useful approach for identifying new drugs for PD. METHODS: We analyzed claims data obtained from the National Health Insurance Service (NHIS), which covers a significant portion of the South Korean population, to investigate the association between antihistamines, a class of drugs commonly used to treat allergic symptoms by blocking H1 receptor, and PD in a real-world setting. Additionally, we validated this model using various animal models of PD such as the 6-hydroxydopmaine (6-OHDA), α-synuclein preformed fibrils (PFF) injection, and Caenorhabditis elegans (C. elegans) models. Finally, whole transcriptome data and Ingenuity Pathway Analysis (IPA) were used to elucidate drug mechanism pathways. RESULTS: We identified fexofenadine as the most promising candidate using National Health Insurance claims data in the real world. In several animal models, including the 6-OHDA, PFF injection, and C. elegans models, fexofenadine ameliorated PD-related pathologies. RNA-seq analysis and the subsequent experiments suggested that fexofenadine is effective in PD via inhibition of peripheral immune cell infiltration into the brain. CONCLUSION: Fexofenadine shows promise for the treatment of PD, identified through clinical data and validated in diverse animal models. This combined clinical and preclinical approach offers valuable insights for developing novel PD therapeutics.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Terfenadina/análogos & derivados , Animais , Doença de Parkinson/patologia , Caenorhabditis elegans/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxidopamina , Modelos Animais de Doenças , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos
15.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35289352

RESUMO

Determining drug indications is a critical part of the drug development process. However, traditional drug discovery is expensive and time-consuming. Drug repositioning aims to find potential indications for existing drugs, which is considered as an important alternative to the traditional drug discovery. In this article, we propose a multi-view learning with matrix completion (MLMC) method to predict the potential associations between drugs and diseases. Specifically, MLMC first learns the comprehensive similarity matrices from five drug similarity matrices and two disease similarity matrices based on the multi-view learning (ML) with Laplacian graph regularization, and updates the drug-disease association matrix simultaneously. Then, we introduce matrix completion (MC) to add some positive entries in original association matrix based on low-rank structure, and re-execute the multi-view learning algorithm for association prediction. At last, the prediction results of the above two operations are integrated as the final output. Evaluated by 10-fold cross-validation and de novo tests, MLMC achieves higher prediction accuracy than the current state-of-the-art methods. Moreover, case studies confirm the ability of our method in novel drug-disease association discovery. The codes of MLMC are available at https://github.com/BioinformaticsCSU/MLMC. Contact: jxwang@mail.csu.edu.cn.


Assuntos
Biologia Computacional , Reposicionamento de Medicamentos , Algoritmos , Biologia Computacional/métodos , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos
16.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35039838

RESUMO

Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug-disease associations. Similar to traditional latent factor models, which directly factorize drug-disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug-disease association network, the drug-drug similarity and disease-disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug-disease association, the drug's and disease's neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug-disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug-disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine).


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Biologia Computacional , Bases de Dados Factuais , Descoberta de Drogas , Redes Neurais de Computação
17.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35238349

RESUMO

Inhibition of host protein functions using established drugs produces a promising antiviral effect with excellent safety profiles, decreased incidence of resistant variants and favorable balance of costs and risks. Genomic methods have produced a large number of robust host factors, providing candidates for identification of antiviral drug targets. However, there is a lack of global perspectives and systematic prioritization of known virus-targeted host proteins (VTHPs) and drug targets. There is also a need for host-directed repositioned antivirals. Here, we integrated 6140 VTHPs and grouped viral infection modes from a new perspective of enriched pathways of VTHPs. Clarifying the superiority of nonessential membrane and hub VTHPs as potential ideal targets for repositioned antivirals, we proposed 543 candidate VTHPs. We then presented a large-scale drug-virus network (DVN) based on matching these VTHPs and drug targets. We predicted possible indications for 703 approved drugs against 35 viruses and explored their potential as broad-spectrum antivirals. In vitro and in vivo tests validated the efficacy of bosutinib, maraviroc and dextromethorphan against human herpesvirus 1 (HHV-1), hepatitis B virus (HBV) and influenza A virus (IAV). Their drug synergy with clinically used antivirals was evaluated and confirmed. The results proved that low-dose dextromethorphan is better than high-dose in both single and combined treatments. This study provides a comprehensive landscape and optimization strategy for druggable VTHPs, constructing an innovative and potent pipeline to discover novel antiviral host proteins and repositioned drugs, which may facilitate their delivery to clinical application in translational medicine to combat fatal and spreading viral infections.


Assuntos
Antivirais , Vírus da Influenza A , Antivirais/farmacologia , Antivirais/uso terapêutico , Dextrometorfano , Humanos , Vírus da Influenza A/genética
18.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34864856

RESUMO

Drug repositioning is proposed to find novel usages for existing drugs. Among many types of drug repositioning approaches, predicting drug-drug interactions (DDIs) helps explore the pharmacological functions of drugs and achieves potential drugs for novel treatments. A number of models have been applied to predict DDIs. The DDI network, which is constructed from the known DDIs, is a common part in many of the existing methods. However, the functions of DDIs are different, and thus integrating them in a single DDI graph may overlook some useful information. We propose a graph convolutional network with multi-kernel (GCNMK) to predict potential DDIs. GCNMK adopts two DDI graph kernels for the graph convolutional layers, namely, increased DDI graph consisting of 'increase'-related DDIs and decreased DDI graph consisting of 'decrease'-related DDIs. The learned drug features are fed into a block with three fully connected layers for the DDI prediction. We compare various types of drug features, whereas the target feature of drugs outperforms all other types of features and their concatenated features. In comparison with three different DDI prediction methods, our proposed GCNMK achieves the best performance in terms of area under receiver operating characteristic curve and area under precision-recall curve. In case studies, we identify the top 20 potential DDIs from all unknown DDIs, and the top 10 potential DDIs from the unknown DDIs among breast, colorectal and lung neoplasms-related drugs. Most of them have evidence to support the existence of their interactions. fangxiang.wu@usask.ca.


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Interações Medicamentosas , Curva ROC
19.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34891172

RESUMO

Identifying new indications for drugs plays an essential role at many phases of drug research and development. Computational methods are regarded as an effective way to associate drugs with new indications. However, most of them complete their tasks by constructing a variety of heterogeneous networks without considering the biological knowledge of drugs and diseases, which are believed to be useful for improving the accuracy of drug repositioning. To this end, a novel heterogeneous information network (HIN) based model, namely HINGRL, is proposed to precisely identify new indications for drugs based on graph representation learning techniques. More specifically, HINGRL first constructs a HIN by integrating drug-disease, drug-protein and protein-disease biological networks with the biological knowledge of drugs and diseases. Then, different representation strategies are applied to learn the features of nodes in the HIN from the topological and biological perspectives. Finally, HINGRL adopts a Random Forest classifier to predict unknown drug-disease associations based on the integrated features of drugs and diseases obtained in the previous step. Experimental results demonstrate that HINGRL achieves the best performance on two real datasets when compared with state-of-the-art models. Besides, our case studies indicate that the simultaneous consideration of network topology and biological knowledge of drugs and diseases allows HINGRL to precisely predict drug-disease associations from a more comprehensive perspective. The promising performance of HINGRL also reveals that the utilization of rich heterogeneous information provides an alternative view for HINGRL to identify novel drug-disease associations especially for new diseases.


Assuntos
Serviços de Informação , Aprendizado de Máquina , Preparações Farmacêuticas , Algoritmos , Biologia Computacional/métodos , Doença , Reposicionamento de Medicamentos/métodos , Humanos , Modelos Teóricos , Redes Neurais de Computação
20.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36125202

RESUMO

Drug repositioning (DR) is a promising strategy to discover new indicators of approved drugs with artificial intelligence techniques, thus improving traditional drug discovery and development. However, most of DR computational methods fall short of taking into account the non-Euclidean nature of biomedical network data. To overcome this problem, a deep learning framework, namely DDAGDL, is proposed to predict drug-drug associations (DDAs) by using geometric deep learning (GDL) over heterogeneous information network (HIN). Incorporating complex biological information into the topological structure of HIN, DDAGDL effectively learns the smoothed representations of drugs and diseases with an attention mechanism. Experiment results demonstrate the superior performance of DDAGDL on three real-world datasets under 10-fold cross-validation when compared with state-of-the-art DR methods in terms of several evaluation metrics. Our case studies and molecular docking experiments indicate that DDAGDL is a promising DR tool that gains new insights into exploiting the geometric prior knowledge for improved efficacy.


Assuntos
Aprendizado Profundo , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Inteligência Artificial , Simulação de Acoplamento Molecular , Serviços de Informação , Algoritmos , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA