RESUMO
Emerging contaminants (EC) distributed on surfaces in the environment can be oxidized by gas phase species (top-down) or by oxidants generated by the underlying substrate (bottom-up). One class of EC is the neonicotinoid (NN) pesticides that are widely distributed in air, water, and on plant and soil surfaces as well as on airborne dust and building materials. This study investigates the OH oxidation of the systemic NN pesticide acetamiprid (ACM) at room temperature. ACM on particles and as thin films on solid substrates were oxidized by OH radicals either from the gas phase or from an underlying TiO2 or NaNO2 substrate, and for comparison, in the aqueous phase. The site of OH attack is both the secondary >CH2 group as well as the primary -CH3 group attached to the tertiary amine nitrogen, with the latter dominating. In the case of top-down oxidation of ACM by gas phase OH radicals, addition to the -CN group also occurs. Major products are carbonyls and alcohols, but in the presence of sufficient water, their hydrolyzed products dominate. Kinetics measurements show ACM is more reactive toward gas phase OH radicals than other NN nitroguanidines, with an atmospheric lifetime of a few days. Bottom-up oxidation of ACM on TiO2 exposed to sunlight outdoors (temperatures were above 30 °C) was also shown to occur and is likely to be competitive with top-down oxidation. These findings highlight the different potential oxidation processes for EC and provide key data for assessing their environmental fates and toxicologies.
RESUMO
Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.
RESUMO
The remediation of emerging contaminants presents a pressing environmental challenge, necessitating innovative approaches for effective mitigation. This review article delves into the untapped potential of soil microbial communities in the bioremediation of emerging contaminants. Bioremediation, while a promising method, often proves time-consuming and requires a deep comprehension of microbial intricacies for enhancement. Given the challenges presented by the inability to culture many of these microorganisms, conventional methods are inadequate for achieving this goal. While omics-based methods provide an innovative approach to understanding the fundamental aspects, processes, and connections among microorganisms that are essential for improving bioremediation strategies. By exploring the latest advancements in omics technologies, this review aims to shed light on how these approaches can unlock the hidden capabilities of soil microbial communities, paving the way for more efficient and sustainable remediation solutions.
Assuntos
Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Microbiota , Bactérias/metabolismo , Bactérias/genéticaRESUMO
Nanofiltration (NF) technology is pivotal for ensuring a sustainable and reliable supply of clean water. To address the critical need for advanced thin-film composite (TFC) polyamide (PA) membranes with exceptional permselectivity and fouling resistance for emerging contaminant purification, we introduce a novel high-performance NF membrane. This membrane features a selective polypiperazine (PIP) layer functionalized with amino-containing quaternary ammonium compounds (QACs) through an in situ interfacial polycondensation reaction. Our investigation demonstrated that precise QAC functionalization enabled the construction of the selective PA layer with increased surface area, enhanced microporosity, stronger electronegativity, and reduced thickness compared to the control PIP membrane. As a result, the QAC NF membrane exhibited an approximately 51% increase in water permeance compared to the control PIP membrane, while achieving superior retention capabilities for divalent salts (>99%) and emerging organic contaminants (>90%). Furthermore, the incorporation of QACs into the PIP selective layer was proved to be effective in mitigating mineral scaling by allowing selective passage of scale-forming cations, while simultaneously exhibiting strong antimicrobial properties to combat biofouling. The in situ QAC incorporation strategy presented in this study provides valuable guidelines for the fit-for-purpose design of the selective PA layer, which is crucial for the development of high-performance NF membranes for efficient water purification.
Assuntos
Incrustação Biológica , Filtração , Membranas Artificiais , Purificação da Água , Purificação da Água/métodos , Sulfato de Cálcio/química , Nylons/químicaRESUMO
Ensuring water quality and safety requires the effective detection of emerging contaminants, which present significant risks to both human health and the environment. Field deployable low-cost sensors provide solutions to detect contaminants at their source and enable large-scale water quality monitoring and management. Unfortunately, the availability and utilization of such sensors remain limited. This Perspective examines current sensing technologies for detecting emerging contaminants and analyzes critical barriers, such as high costs, lack of reliability, difficulties in implementation in real-world settings, and lack of stakeholder involvement in sensor design. These technical and nontechnical barriers severely hinder progression from proof-of-concepts and negatively impact user experience factors such as ease-of-use and actionability using sensing data, ultimately affecting successful translation and widespread adoption of these technologies. We provide examples of specific sensing systems and explore key strategies to address the remaining scientific challenges that must be overcome to translate these technologies into the field such as improving sensitivity, selectivity, robustness, and performance in real-world water environments. Other critical aspects such as tailoring research to meet end-users' requirements, integrating cost considerations and consumer needs into the early prototype design, establishing standardized evaluation and validation protocols, fostering academia-industry collaborations, maximizing data value by establishing data sharing initiatives, and promoting workforce development are also discussed. The Perspective describes a set of guidelines for the development, translation, and implementation of water quality sensors to swiftly and accurately detect, analyze, track, and manage contamination.
Assuntos
Tecnologia , Qualidade da Água , Humanos , Reprodutibilidade dos TestesRESUMO
Per- and polyfluoroalkyl substances (PFAS) enter the marine food web, accumulate in organisms, and potentially have adverse effects on predators and consumers of seafood. However, evaluations of PFAS in meso-to-apex predators, like sharks, are scarce. This study investigated PFAS occurrence in five shark species from two marine ecosystems with contrasting relative human population densities, the New York Bight (NYB) and the coastal waters of The Bahamas archipelago. The total detected PFAS (∑PFAS) concentrations in muscle tissue ranged from 1.10 to 58.5 ng g-1 wet weight, and perfluorocarboxylic acids (PFCAs) were dominant. Fewer PFAS were detected in Caribbean reef sharks (Carcharhinus perezi) from The Bahamas, and concentrations of those detected were, on average, â¼79% lower than in the NYB sharks. In the NYB, ∑PFAS concentrations followed: common thresher (Alopias vulpinus) > shortfin mako (Isurus oxyrinchus) > sandbar (Carcharhinus plumbeus) > smooth dogfish (Mustelus canis). PFAS precursors/intermediates, such as 2H,2H,3H,3H-perfluorodecanoic acid and perfluorooctanesulfonamide, were only detected in the NYB sharks, suggesting higher ambient concentrations and diversity of PFAS sources in this region. Ultralong-chain PFAS (C ≥ 10) were positively correlated with nitrogen isotope values (δ15N) and total mercury in some species. Our results provide some of the first baseline information on PFAS concentrations in shark species from the northwest Atlantic Ocean, and correlations between PFAS, stable isotopes, and mercury further contextualize the drivers of PFAS occurrence.
Assuntos
Tubarões , Poluentes Químicos da Água , Animais , Tubarões/metabolismo , Monitoramento Ambiental , Bahamas , Fluorocarbonos/análise , New York , Cadeia AlimentarRESUMO
When chemical pollutants enter the environment, they can undergo diverse transformation processes, forming a wide range of transformation products (TPs), some of them benign and others more harmful than their precursors. To date, the majority of TPs remain largely unrecognized and unregulated, particularly as TPs are generally not part of routine chemical risk or hazard assessment. Since many TPs formed from oxidative processes are more polar than their precursors, they may be especially relevant in the context of persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances, which are two new hazard classes that have recently been established on a European level. We highlight herein that as a result, TPs deserve more attention in research, chemicals regulation, and chemicals management. This perspective summarizes the main challenges preventing a better integration of TPs in these areas: (1) the lack of reliable high-throughput TP identification methods, (2) uncertainties in TP prediction, (3) inadequately considered TP formation during (advanced) water treatment, and (4) insufficient integration and harmonization of TPs in most regulatory frameworks. A way forward to tackle these challenges and integrate TPs into chemical management is proposed.
Assuntos
Poluentes Ambientais , Medição de RiscoRESUMO
Drinking water constituents were compared using more than six million measurements (USEPA data) to prioritize and risk-rank regulated and unregulated chemicals and classes of chemicals. Hazard indexes were utilized for hazard- and risk-based chemicals, along with observed (nondetects = 0) and censored (nondetects = method detection limit/2) data methods. Chemicals (n = 139) were risk-ranked based on population exposed, resulting in the highest rankings for inorganic compounds (IOCs) and disinfection byproducts (DBPs), followed by semivolatile organic compounds (SOCs), nonvolatile organic compounds (NVOCs), and volatile organic compounds (VOCs) for observed data. The top 50 risk-ranked chemicals included 15 that were unregulated, with at least one chemical from each chemical class (chromium-6 [#1, IOC], chlorate and NDMA [#11 and 12, DBP], 1,4-dioxane [#25, SOC], PFOS, PFOA, PFHxS [#42, 44, and 49, NVOC], and 1,2,3-trichloropropane [#48, VOC]). These results suggest that numerous unregulated chemicals are of higher exposure risk or hazard in US drinking water than many regulated chemicals. These methods could be applied following each Unregulated Contaminant Monitoring Rule (UCMR) data collection phase and compared to retrospective data that highlight what chemicals potentially pose the highest exposure risk or hazard among US drinking water, which could inform regulators, utilities, and researchers alike.
RESUMO
Current knowledge about the fate and transport behaviors of per- and polyfluoroalkyl substances (PFASs) in urban stormwater biofilter facilities is very limited. C5-14,16 perfluoroalkyl carboxylic acids [perfluorinated carboxylic acids (PFCAs)], C4,8,10 perfluoroalkanesulfonic acids (PFSAs), methyl-perfluorooctane sulfonamide acetic acid (MeFOSAA, a PFSA precursor), and unknown C6-8 PFCA and perfluorooctanesulfonic acid precursors were frequently found in bioretention media and forebay sediments at Σ35PFAS concentrations of <0.03-19 and 0.064-16 µg/kg-DW, respectively. Unknown C6-8 PFCA precursor concentrations were up to ten times higher than the corresponding PFCAs, especially at forebays and biofilters' top layer. No significant trend could be attributed to PFAS and precursor concentrations versus depth of filter media, though PFAS concentrations were 2-3 times higher in the upper layers on average (significant difference between the upper (0-5 cm) and deepest (35-50 cm) layer). PFASs had a similar spatial concentration distribution in each filter media (no clear difference between short- and long-chain PFASs). Commercial land use and organic matter were important factors explaining the concentration variations among the biofilters and between the sampling depths, respectively. Given the comparable PFAS accumulations in deeper and superficial layers and possible increased mobility after precursor biotransformation, designing shallow-depth, nonamended sand biofilters or maintaining only the top layer may be insufficient for stormwater PFAS management.
Assuntos
Filtração , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Monitoramento AmbientalRESUMO
Despite their ubiquitous use, information regarding the presence of quaternary ammonium compounds (QACs) in various microenvironments remains scarce and only a small subset of QACs has been monitored using targeted chemical analysis. In this study, a total of 111 dust samples were collected from homes and various public settings in South China during the COVID-19 pandemic and were analyzed for traditional and emerging QACs using high-resolution mass spectrometry. The total traditional QAC concentrations in residential dust (∑traditional QAC, sum of 18 traditional QACs) ranged from 13.8 to 150 µg/g with a median concentration of 42.2 µg/g. Twenty-eight emerging QACs were identified in these samples, and the composition of ∑emerging QAC (sum of emerging QACs) to ∑QAC (sum of traditional and emerging QACs) ranged from 19 to 42% across various microenvironments, indicating the widespread existence of emerging QACs in indoor environments. Additionally, dust samples from cinemas exhibited higher ∑QAC concentrations compared to homes (medians 65.9 µg/g vs 58.3 µg/g, respectively), indicating heavier emission sources of QACs in these places. Interestingly, significantly higher ∑QAC concentrations were observed in dust from the rooms with carpets than those without (medians 65.6 µg/g vs 32.6 µg/g, p < 0.05, respectively). Overall, this study sheds light on the ubiquitous occurrence of QACs in indoor environments in South China.
RESUMO
With increasing water scarcity, many utilities are considering the potable reuse of wastewater as a source of drinking water. However, not all chemicals are removed in conventional wastewater treatment, and disinfection byproducts (DBPs) can form from these contaminants when disinfectants are applied during or after reuse treatment, especially if applied upstream of advanced treatment processes to control biofouling. We investigated the chlorination of seven priority emerging contaminants (17ß-estradiol, estrone, 17α-ethinylestradiol, bisphenol A (BPA), diclofenac, p-nonylphenol, and triclosan) in ultrapure water, and we also investigated the impact of chlorination on real samples from different treatment stages of an advanced reuse plant to evaluate the role of chlorination on the associated cytotoxicity and estrogenicity. Many DBPs were tentatively identified via liquid chromatography (LC)- and gas chromatography (GC)-high resolution mass spectrometry, including 28 not previously reported. These encompassed chlorinated, brominated, and oxidized analogs of the parent compounds as well as smaller halogenated molecules. Chlorinated BPA was the least cytotoxic of the DBPs formed but was highly estrogenic, whereas chlorinated hormones were highly cytotoxic. Estrogenicity decreased by â¼4-6 orders of magnitude for 17ß-estradiol and estrone following chlorination but increased 2 orders of magnitude for diclofenac. Estrogenicity of chlorinated BPA and p-nonylphenol were â¼50% of the natural/synthetic hormones. Potential seasonal differences in estrogen activity of unreacted vs reacted advanced wastewater treatment field samples were observed.
Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Águas Residuárias , Estrona , Diclofenaco/análise , Poluentes Químicos da Água/análise , Desinfetantes/análise , Desinfetantes/química , Estrogênios , Água Potável/análise , Água Potável/química , Estradiol , Purificação da Água/métodosRESUMO
Identifying transformed emerging contaminants in complex environmental compartments is a challenging but meaningful task. Substituted para-phenylenediamine quinones (PPD-quinones) are emerging contaminants originating from rubber antioxidants and have been proven to be toxic to the aquatic species, especially salmonids. The emergence of multiple PPD-quinones in various environmental matrices and evidence of their specific hazards underscore the need to understand their environmental occurrences. Here, we introduce a fragmentation pattern-based nontargeted screening strategy combining full MS/All ion fragmentation/neutral loss-ddMS2 scans to identify potential unknown PPD-quinones in different environmental matrices. Using diagnostic fragments of m/z 170.0600, 139.0502, and characteristic neutral losses of 199.0633, 138.0429 Da, six known and three novel PPD-quinones were recognized in air particulates, surface soil, and tire tissue. Their specific structures were confirmed, and their environmental concentration and composition profiles were clarified with self-synthesized standards. N-(1-methylheptyl)-N'-phenyl-1,4-benzenediamine quinone (8PPD-Q) and N,N'-di(1,3-dimethylbutyl)-p-phenylenediamine quinone (66PD-Q) were identified and quantified for the first time, with their median concentrations found to be 0.02-0.21 µg·g-1 in tire tissue, 0.40-2.76 pg·m-3 in air particles, and 0.23-1.02 ng·g-1 in surface soil. This work provides new evidence for the presence of unknown PPD-quinones in the environment, showcasing a potential strategy for screening emerging transformed contaminants in the environment.
Assuntos
Fenilenodiaminas , Quinonas , Fenilenodiaminas/química , Benzoquinonas , SoloRESUMO
Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63-98%), and MCCPs dominated the total CP load (42-68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.
Assuntos
Poluentes Orgânicos Persistentes , Animais , Noruega , Poluentes Orgânicos Persistentes/metabolismo , Hidrocarbonetos Clorados/metabolismo , Parafina/metabolismo , Mamíferos/metabolismo , Monitoramento Ambiental , Retardadores de Chama/metabolismo , Dieta , Bifenilos Policlorados/metabolismoRESUMO
Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.
Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Compostos Orgânicos/análiseRESUMO
Organic light-emitting materials (OLEMs) are emerging contaminants in the environment and have been detected in various environment samples. However, limited information is available regarding their contamination within the human body. Here, we developed a novel QuEChERS (quick, easy, cheap, effective, rugged, and safe) method coupled with triple quadrupole/high-resolution mass spectrometry to determine OLEMs in breast milk samples, employing both target and suspect screening strategies. Our analysis uncovered the presence of seven out of the 39 targeted OLEMs in breast milk samples, comprising five liquid crystal monomers and two OLEMs commonly used in organic light-emitting diode displays. The cumulative concentrations of the seven OLEMs in each breast milk sample ranged from ND to 1.67 × 103 ng/g lipid weight, with a mean and median concentration of 78.76 and 0.71 ng/g lipid weight, respectively, which were higher compared to that of typical organic pollutants such as polychlorinated biphenyls and polybrominated diphenyl ethers. We calculated the estimated daily intake (EDI) rates of OLEMs for infants aged 0-12 months, and the mean EDI rates during lactation were estimated to range from 30.37 to 54.89 ng/kg bw/day. Employing a suspect screening approach, we additionally identified 66 potential OLEMs, and two of them, cholesteryl hydrogen phthalate and cholesteryl benzoate, were further confirmed using pure reference standards. These two substances belong to cholesteric liquid crystal materials and raise concerns about potential endocrine-disrupting effects, as indicated by in silico predictive models. Overall, our present study established a robust method for the identification of OLEMs in breast milk samples, shedding light on their presence in the human body. These findings indicate human exposure to OLEMs that should be further investigated, including their health risks.
Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Lactente , Feminino , Humanos , Leite Humano/química , Poluentes Ambientais/análise , Bifenilos Policlorados/análise , Espectrometria de Massas , LipídeosRESUMO
According to green analytical chemistry principles, the use of agricultural byproducts as sorbent phases is an interesting topic due to their lignocellulosic origin, as they are biodegradable and inexpensive. To the best of our knowledge, this is the first study in which avocado seed and avocado seed activated carbon are proposed as sustainable sorbents for solid-phase microextraction technologies, which were used to assess the proof of concept. Rotating disk sorptive extraction (RDSE) was used as a model technology and ibuprofen (Ibu) and 1-hydroxy-ibuprofen (1-OH-Ibu) as representative analytes. It was found that activated carbon (AC) prepared at 600 °C with an impregnation ratio (raw material/activating agent (ZnCl2), w/w) of 1:1.2 had better extraction efficiency than other ACs obtained at different temperatures, impregnation ratios, and activating agents (K2CO3). Characterization revealed several differences between natural avocado seed, biochar prepared at 600 °C, and selected AC since the typical functional groups of the natural starting material begin to disappear with pyrolysis and increasing the surface area and pore volume, suggesting that the main interactions between analytes and the sorbent material are pore filling and π-π stacking. By using this AC as the sorbent phase, the optimal extraction conditions in RDSE were as follows: the use of 50 mg of sorbent in the disk, 30 mL of sample volume, pH 4, 90 min of extraction time at a rotation velocity of the disk of 2000 rpm, and methanol as the elution solvent. The extracts were analyzed via gas chromatography coupled to mass spectrometry (GC-MS). The method provided limits of detection of 0.23 and 0.07 µg L-1 and recoveries of 81% and 91% for Ibu and 1-OH-Ibu, respectively. When comparing the extraction efficiency of the selected activated carbon with those provided by Oasis® HLB and C18 in RDSE, nonsignificant differences were observed, indicating that avocado seed activated carbon is a suitable alternative to these commercial materials.
Assuntos
Carvão Vegetal , Persea , Ibuprofeno , Solventes/química , Tecnologia , Extração em Fase Sólida/métodosRESUMO
Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34-5.1), 2.1 (0.49-5.1), and 1.5 (0.20-5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.
Assuntos
Fluorocarbonos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Fluorocarbonos/análise , Íons , Estudos Retrospectivos , Espectrometria de Massas em Tandem/métodosRESUMO
Melamine caused acute nephrotoxicity in a past food adulteration incident, but it is unclear whether and how widespread ambient exposure to melamine and related compounds might affect pediatric kidney health. We assessed cross-sectional associations between childhood exposure to melamine and its derivatives and biomarkers of kidney injury and health and explored potential heterogeneity by sex suggested by sex-dependent differences in renal physiology. We measured melamine and its derivatives ammeline, ammelide, and cyanuric acid (CYA) in spot urine samples collected from 192 children from an urban site (Seattle, WA) and 187 children from a rural site (Yakima, WA) aged 4-8 years in the Global Alliance to Prevent Prematurity and Stillbirth (GAPPS) Study. In addition, biomarkers of kidney injury were measured in the same urine samples, including albumin, total protein, KIM-1, NAG, NGAL, and EGF. We utilized linear regressions to examine associations between individual chemical exposures and kidney biomarkers. Interaction terms examined association modification by sex, as well as potential interactions between melamine and CYA. Despite comparable exposures, girls had higher levels of many kidney injury biomarkers compared to boys. A ten-fold higher melamine concentration was associated with a 18% (95% CI: 5.6%, 31%) higher EGF in the full sample, while ten-fold higher melamine was associated with a 76% (14.1%, 173%) higher KIM-1 in boys but not in girls (-10.1% (-40.6%, 36.1%), interaction p = 0.026). Melamine exhibited significant negative interactions with CYA in association with total protein and NAG that appeared to be specific to girls. Our results suggest possible associations between melamine exposure and markers of kidney injury that may be more pronounced in boys. These findings provide novel insights into melamine and related derivative compound health effects at low levels of exposure in children and emphasize the role of sex in mediating the relationship between nephrotoxicant exposure and kidney injury.
Assuntos
Biomarcadores , Exposição Ambiental , Triazinas , Humanos , Triazinas/urina , Triazinas/toxicidade , Feminino , Masculino , Criança , Pré-Escolar , Biomarcadores/urina , Rim/efeitos dos fármacos , Estudos Transversais , Poluentes Ambientais/urina , Poluentes Ambientais/toxicidadeRESUMO
Rapid global urbanization and population growth have ignited an alarming surge in emerging contaminants in water bodies, posing health risks, even at trace concentrations. To address this challenge, novel water treatment and reuse technologies are required as current treatment systems are associated with high costs and energy requirements. These drawbacks provide additional incentives for the application of cost-effective and sustainable biomass-derived activated carbon, which possesses high surface area and low toxicity. Herein, we synthesized microporous activated carbon (MAC) and its magnetic derivative (m-MAC) from tannic acid to decaffeinate contaminated aqueous solutions. Detailed characterization using SEM, BET, and PXRD revealed a very high surface area (>1800 m2/g) and a highly porous, amorphous, heterogeneous sponge-like structure. Physicochemical and thermal analyses using XPS, TGA, and EDS confirmed thermal stability, unique surface moieties, and homogeneous elemental distribution. High absorption performance (>96 %) and adsorption capacity (287 and 394 mg/g) were recorded for m-MAC and MAC, respectively. Mechanistic studies showed that the sorption of caffeine is in tandem with multilayer and chemisorptive mechanisms, considering the models' correlation and error coefficients. π-π stacking and hydrogen bonding were among the interactions that could facilitate MAC-Caffeine and m-MAC-Caffeine bonding interactions. Regeneration and reusability experiments revealed adsorption efficiency ranging from 90.5 to 98.4 % for MAC and 88.6-93.7 % for m-MAC for five cycles. Our findings suggest that MAC and its magnetic derivative are effective for caffeine removal, and potentially other organic contaminants with the possibility of developing commercially viable and cost-effective water polishing tools.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Adsorção , Cinética , Purificação da Água/métodos , Cafeína/química , Porosidade , Carvão Vegetal/química , Reciclagem/métodos , Carbono/químicaRESUMO
Soil microbiomes drive many soil processes and maintain the ecological functions of terrestrial ecosystems. Microplastics (MPs, size < 5 mm) are pervasive emerging contaminants worldwide. However, how MPs affect soil microbial activity has not been well elucidated. This review article first highlights the effects of MPs on overall soil microbial activities represented by three soil enzymes, i.e., catalase, dehydrogenase, and fluorescein diacetate hydrolase (FDAse), and explores the underlying mechanisms and influencing factors. Abundant evidence confirms that MPs can change soil microbial activities. However, existing results vary greatly from inhibition to promotion and non-significance, depending on polymer type, degradability, dose, size, shape, additive, and aging degree of the target MPs, soil physicochemical and biological properties, and exposure conditions, such as exposure time, temperature, and agricultural practices (e.g., planting, fertilization, soil amendment, and pesticide application). MPs can directly affect microbial activities by acting as carbon sources, releasing additives and pollutants, and shaping microbial communities via plastisphere effects. Smaller MPs (e.g., nanoplastics, 1 to < 1000 nm) can also damage microbial cells through penetration. Indirectly, MPs can change soil attributes, fertility, the toxicity of co-existing pollutants, and the performance of soil fauna and plants, thus regulating soil microbiomes and their activities. In conclusion, MPs can regulate soil microbial activities and consequently pose cascading consequences for ecosystem functioning.