Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 47(11): 936-949, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691784

RESUMO

Interleukin 12 (IL-12) family cytokines are secreted proteins that regulate immune responses. Each family member is a heterodimer and nature uses shared building blocks to assemble the functionally distinct IL-12 cytokines. In recent years we have gained insights into the molecular principles and cellular regulation of IL-12 family biogenesis. For each of the family members, generally one subunit depends on its partner to acquire its native structure and be secreted from immune cells. If unpaired, molecular chaperones retain these subunits in cells. This allows cells to regulate and control secretion of the highly potent IL-12 family cytokines. Molecular insights gained into IL-12 family biogenesis, structure, and function now allow us to engineer IL-12 family cytokines to develop novel immunotherapeutic approaches.


Assuntos
Citocinas , Interleucina-12 , Interleucina-12/química , Interleucina-12/metabolismo , Interleucina-23/química , Interleucina-23/metabolismo , Chaperonas Moleculares/metabolismo
2.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36052695

RESUMO

Stomata are epidermal pores that control gas exchange between plants and the atmosphere. In Arabidopsis, the ERECTA family (ERECTAf) receptors, including ERECTA, ERECTA-LIKE 1 (ERL1) and ERL2, redundantly play pivotal roles in enforcing the 'one-cell-spacing' rule. Accumulating evidence has demonstrated that the functional specificities of receptors are likely associated with their differential subcellular dynamics. The endoplasmic reticulum (ER)-resident chaperone complex SDF2-ERdj3B-BiP functions in many aspects of plant development. We employed pharmacological treatments combined with cell biological and biochemical approaches to demonstrate that the abundance of ERECTA was reduced in the erdj3b-1 mutant, but the localization and dynamics of ERECTA were not noticeably affected. By contrast, the erdj3b mutation caused the retention of ERL1/ERL2 in the ER. Furthermore, we found that the function of SDF2-ERdj3B-BiP is implicated with the distinct roles of ERECTAf receptors. Our findings establish that the ERECTAf receptor-mediated signaling in stomatal development is ensured by the activities of the ER quality control system, which preferentially maintains the protein abundance of ERECTA and proper subcellular dynamics of ERL1/ERL2, prior to the receptors reaching their destination - the plasma membrane - to execute their functions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de Superfície Celular/genética
3.
New Phytol ; 240(4): 1449-1466, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37598305

RESUMO

N-linked protein glycosylation is a conserved and essential modification mediating protein processing and quality control in the endoplasmic reticulum (ER), but how this contributes to the infection cycle of phytopathogenic fungi is largely unknown. In this study, we discovered that inhibition of protein N-glycosylation severely affected vegetative growth, hyphal tip development, conidial germination, appressorium formation, and, ultimately, the ability of the maize (Zea mays) anthracnose pathogen Colletotrichum graminicola to infect its host. Quantitative proteomics analysis showed that N-glycosylation can coordinate protein O-glycosylation, glycosylphosphatidylinositol anchor modification, and endoplasmic reticulum quality control (ERQC) by directly targeting the proteins from the corresponding pathway in the ER. We performed a functional study of the N-glycosylation pathway-related protein CgALG3 and of the ERQC pathway-related protein CgCNX1, which demonstrated that N-glycosylation of ER chaperone proteins is essential for effector stability, secretion, and pathogenicity of C. graminicola. Our study provides concrete evidence for the regulation of effector protein stability and secretion by N-glycosylation.


Assuntos
Colletotrichum , Zea mays , Glicosilação , Zea mays/microbiologia , Retículo Endoplasmático , Doenças das Plantas/microbiologia
4.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409101

RESUMO

N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.


Assuntos
Chaperonas Moleculares , Processamento de Proteína Pós-Traducional , Dissulfetos/química , Glicosilação , Humanos , Chaperonas Moleculares/metabolismo , Domínios Proteicos
5.
Cell Mol Life Sci ; 77(7): 1421-1434, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31728576

RESUMO

Transthyretin amyloidosis (ATTR) is a progressive life-threatening disease characterized by the deposition of transthyretin (TTR) amyloid fibrils. Several pathogenic variants have been shown to destabilize TTR tetramers, leading to aggregation of misfolded TTR fibrils. However, factors that underlie the differential age of disease onset amongst amyloidogenic TTR variants remain elusive. Here, we examined the biological properties of various TTR mutations and found that the cellular secretory pattern of the wild-type (WT) TTR was similar to those of the late-onset mutant (Ala97Ser, p. Ala117Ser), stable mutant (Thr119Met, p. Thr139Met), early-onset mutant (Val30Met, p. Val50Met), but not in the unstable mutant (Asp18Gly, p. Asp38Gly). Cytotoxicity assays revealed their toxicities in the order of Val30Met > Ala97Ser > WT > Thr119Met in neuroblastoma cells. Surprisingly, while early-onset amyloidogenic TTR monomers (M-TTRs) are retained by the endoplasmic reticulum quality control (ERQC), late-onset amyloidogenic M-TTRs can be secreted extracellularly. Treatment of thapsigargin (Tg) to activate the unfolded protein response (UPR) alleviates Ala97Ser M-TTR secretion. Interestingly, Ala97Ser TTR overexpression in Drosophila causes late-onset fast neurodegeneration and a relatively short lifespan, recapitulating human disease progression. Our study demonstrates that the escape of TTR monomers from the ERQC may underlie late-onset amyloidogenesis in patients and suggests that targeting ERQC could mitigate late-onset ATTR.


Assuntos
Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Proteínas Mutantes/metabolismo , Mutação/genética , Degeneração Neural/patologia , Pré-Albumina/genética , Neuropatias Amiloides Familiares/complicações , Animais , Morte Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Drosophila , Células HEK293 , Humanos , Locomoção , Longevidade , Degeneração Neural/complicações
6.
Cell Mol Life Sci ; 75(24): 4495-4509, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30066085

RESUMO

Misfolded F508del-CFTR, the main molecular cause of the recessive disorder cystic fibrosis, is recognized by the endoplasmic reticulum (ER) quality control (ERQC) resulting in its retention and early degradation. The ERQC mechanisms rely mainly on molecular chaperones and on sorting motifs, whose presence and exposure determine CFTR retention or exit through the secretory pathway. Arginine-framed tripeptides (AFTs) are ER retention motifs shown to modulate CFTR retention. However, the interactions and regulatory pathways involved in this process are still largely unknown. Here, we used proteomic interaction profiling and global bioinformatic analysis to identify factors that interact differentially with F508del-CFTR and F508del-CFTR without AFTs (F508del-4RK-CFTR) as putative regulators of this specific ERQC checkpoint. Using LC-MS/MS, we identified kinesin family member C1 (KIFC1) as a stronger interactor with F508del-CFTR versus F508del-4RK-CFTR. We further validated this interaction showing that decreasing KIFC1 levels or activity stabilizes the immature form of F508del-CFTR by reducing its degradation. We conclude that the current approach is able to identify novel putative therapeutic targets that can be ultimately used to the benefit of CF patients.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cinesinas/metabolismo , Mapas de Interação de Proteínas , Proteômica/métodos , Sequência de Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação para Baixo , Células HEK293 , Humanos , Cinesinas/genética , Mutação , Dobramento de Proteína , Mapeamento de Interação de Proteínas/métodos , Proteólise
7.
Cell Mol Life Sci ; 74(1): 39-55, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699454

RESUMO

CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.


Assuntos
Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Dobramento de Proteína , Animais , Membrana Celular/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Endocitose , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Deleção de Sequência
8.
Arch Toxicol ; 92(4): 1421-1434, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29435600

RESUMO

Unfolded protein response (UPR) and endoplasmic reticulum (ER)-phagy are essential for cell homeostasis. Quantum dots (QDs), which have been widely used for biomedical applications, can accumulate in the kidney tissues and may cause renal dysfunction. However, the molecular mechanism of QDs-induced nephrotoxicity is still obscure. The present study was aimed to elucidate the role and mechanism of UPR and ER-phagy in QDs-induced nephrotoxicity. Herein, human embyronic kidney (HEK) cells were exposed to 15, 30, 45, and 60 nM cadmium telluride (CdTe)-QDs for 12 and 24 h. And CdTe-QDs (30-60 nM) inhibited the HEK cell viability. The clathrin-dependent endocytosis was determined as the main pathway of CdTe-QDs cellular uptake. Within cells, CdTe-QDs disrupted ER ultrastructure and induced UPR and FAM134B-dependent ER-phagy. Blocking UPR with inhibitors or siRNA rescued the FAM134B-dependent ER-phagy, which was triggered by CdTe-QDs. Moreover, suppression of UPR or FAM134B-dependent ER-phagy restored the cell vability. In vivo, mice were intravenously injected with 8 and 16 nmol/kg body weight CdTe-QDs for 24 h. Kidney was shown as one of highest distributed organs of CdTe-QDs, resulting in renal dysfunction, as well as UPR and FAM134B-dependent ER-phagy in it. Thus, for the first time, we demonstrated that ER-phagy can be triggered by nanomaterials both in vitro and in vivo. In addition, blocking of UPR and ER-phagy showed protective effects against CdTe-QDs-induced toxicity in kideny cells. Notably, a secreted alkaline phosphatase reporter gene system has been developed as a sensitive and rapid method for evaluating the ER quality under the exposure of nanomaterials.


Assuntos
Compostos de Cádmio/toxicidade , Endocitose , Retículo Endoplasmático/efeitos dos fármacos , Rim/efeitos dos fármacos , Pontos Quânticos/toxicidade , Telúrio/toxicidade , Resposta a Proteínas não Dobradas , Animais , Compostos de Cádmio/administração & dosagem , Linhagem Celular , Retículo Endoplasmático/ultraestrutura , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/metabolismo , Telúrio/administração & dosagem
9.
Biochim Biophys Acta ; 1833(12): 3368-3374, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140206

RESUMO

UDP-Glucose:glycoprotein glucosyltransferase (UGGT) is a central component of the endoplasmic reticulum (ER) glycoprotein-folding quality control system, which prevents the exit of partially folded species. UGGT activity can be regulated by the accumulation of misfolded proteins in the ER, a stimulus that triggers a complex signaling pathway known as unfolded protein response (UPR) which is closely associated with inflammation and disease. In this work, we investigated the effect of progesterone (P4) on the expression and activity of UGGT in a mouse hybridoma. We detected the expression of two UGGT isoforms, UGGT1 and UGGT2, and demonstrated that both isoforms are active in these cells. Interestingly, the expression of each isoform is regulated by high physiological P4 concentrations. This work provides the first evidence of a hormonal regulation of UGGT isoform expression and activity, which might influence the glycoprotein quality control mechanism. These findings could contribute to the study of pathologies triggered by the accumulation of misfolded proteins.


Assuntos
Glicoproteínas/química , Glicoproteínas/metabolismo , Hexosiltransferases/metabolismo , Progesterona/farmacologia , Dobramento de Proteína , Animais , Inativação Gênica/efeitos dos fármacos , Glucosiltransferases , Isoenzimas/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo
10.
Front Mol Biosci ; 11: 1346259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756530

RESUMO

Introduction: The CH1 domain of IgG antibodies controls assembly and secretion, mediated by the molecular chaperone BiP via the endoplasmic reticulum protein quality control (ERQC) mechanism. However, it is not clear whether the variable domains are necessary for this process. Methods: Here, we generated IgG1 antibodies in which the V domain (VH and/or VL) was either removed or replaced, and then assessed expression, assembly, and secretion in HEK293 cells. Results: All Ig variants formed a covalent linkage between the Cγ1 and Cκ, were successfully secreted in an assembled form. Replacement of the cognate Vκ with a non-secretory pseudo Vκ (ψVκ) hindered secretion of individual or assembled secretion of neither heavy chains (HCs) nor light chains (LCs). The ψLC (ψVκ-Cκ) exhibited a less folded structure compared to the wild type (wt) LC, as evidenced by enhanced stable binding to the molecular chaperone BiP and susceptibility to proteolytic degradation. Molecular dynamics simulation demonstrated dramatic alterations in overall structure of ψFab (Fd-ψLC) from wt Fab. Discussion: These findings suggest that V domains do not initiate HC:LC assembly and secretion; instead, the critical factor governing IgG assembly and secretion is the CH-CL pairing. Additionally, the structural integrity of the VL domain is crucial for IgG secretion. These data offer valuable insight into the design of bioactive molecules based on an IgG backbone.

11.
Environ Sci Pollut Res Int ; 31(18): 26510-26526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446297

RESUMO

Vanadium (V) plays a crucial role in normal cells, but excess V causes multi-organ toxicity, including neurotoxicity. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a dynamic structure between endoplasmic reticulum (ER) and mitochondria that mediates ER quality control (ERQC). To explore the effects of excess V on MAM and ERQC in the brain, 72 ducks were randomly divided into two groups: the control group (basal diet) and the V group (30 mg V/kg basal diet). On days 22 and 44, brain tissues were collected for histomorphological observation and determination of trace element contents. In addition, the mRNA and protein levels of MAM and ERQC-related factors in the brain were analyzed. Results show that excessive V causes the imbalance of trace elements, the integrity disruption of MAM, rupture of ER and autophagosomes formation. Moreover, it inhibits IP3R and VDAC1 co-localization, down-regulates the expression levels of MAM-related factors, but up-regulates the expression levels of ERQC and autophagy related factors. Together, results indicate that V exposure causes disruption of MAM and activates ERQC, which is further causing autophagy.


Assuntos
Encéfalo , Patos , Retículo Endoplasmático , Mitocôndrias , Vanádio , Animais , Encéfalo/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Vanádio/toxicidade , Mitocôndrias/efeitos dos fármacos , Autofagia/efeitos dos fármacos
12.
Front Mol Biosci ; 9: 910709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720120

RESUMO

Yeasts are widely used and established production hosts for biopharmaceuticals. Despite of tremendous advances on creating human-type N-glycosylation, N-glycosylated biopharmaceuticals manufactured with yeasts are missing on the market. The N-linked glycans fulfill several purposes. They are essential for the properties of the final protein product for example modulating half-lives or interactions with cellular components. Still, while the protein is being formed in the endoplasmic reticulum, specific glycan intermediates play crucial roles in the folding of or disposal of proteins which failed to fold. Despite of this intricate interplay between glycan intermediates and the cellular machinery, many of the glycoengineering approaches are based on modifications of the N-glycan processing steps in the endoplasmic reticulum (ER). These N-glycans deviate from the canonical structures required for interactions with the lectins of the ER quality control system. In this review we provide a concise overview on the N-glycan biosynthesis, glycan-dependent protein folding and quality control systems and the wide array glycoengineering approaches. Furthermore, we discuss how the current glycoengineering approaches partially or fully by-pass glycan-dependent protein folding mechanisms or create structures that mimic the glycan epitope required for ER associated protein degradation.

13.
Front Plant Sci ; 12: 755447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868142

RESUMO

The endoplasmic reticulum (ER) is the organelle where one third of the proteins of a cell are synthetized. Several of these proteins participate in the signaling and response of cells, tissues, or from the organism to the environment. To secure the proper synthesis and folding of these proteins, or the disposal of unfolded or misfolded proteins, the ER has different mechanisms that interact and regulate each other. These mechanisms are known as the ER quality control (ERQC), ER-associated degradation (ERAD) and the unfolded protein response (UPR), all three participants of the maintenance of ER protein homeostasis or proteostasis. Given the importance of the client proteins of these ER mechanisms in the plant response to the environment, it is expected that changes or alterations on their components have an impact on the plant response to environmental cues or stresses. In this mini review, we focus on the impact of the alteration of components of ERQC, ERAD and UPR in the plant response to abiotic stresses such as drought, heat, osmotic, salt and irradiation. Also, we summarize findings from recent publications looking for a connection between these processes and their possible client(s) proteins. From this, we observed that a clear connection has been established between the ERAD and UPR mechanisms, but evidence that connects ERQC components to these both processes or their possible client(s) proteins is still lacking. As a proposal, we suggest the use of proteomics approaches to uncover the identity of these proteins and their connection with ER proteostasis.

14.
Biochim Biophys Acta Gen Subj ; 1864(12): 129709, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32858085

RESUMO

BACKGROUND: In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the "folding sensor" by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed. METHODS: We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate. RESULTS: HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase. CONCLUSIONS: HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition. GENERAL SIGNIFICANCE: Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control.


Assuntos
Glucosiltransferases/metabolismo , Polissacarídeos/metabolismo , Redobramento de Proteína , Ribonucleases/metabolismo , Glicosilação , Humanos , Manose/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Especificidade por Substrato
15.
Pharmaceuticals (Basel) ; 13(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331485

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene decrease the structural stability and function of the CFTR protein, resulting in cystic fibrosis. Recently, the effect of CFTR-targeting combination therapy has dramatically increased, and it is expected that add-on drugs that modulate the CFTR surrounding environment will further enhance their effectiveness. Various interacting proteins have been implicated in the structural stability of CFTR and, among them, molecules involved in CFTR ubiquitylation are promising therapeutic targets as regulators of CFTR degradation. This review focuses on the ubiquitylation mechanism that contributes to the stability of mutant CFTR at the endoplasmic reticulum (ER) and post-ER compartments and discusses the possibility as a pharmacological target for cystic fibrosis (CF).

16.
Cells ; 8(4)2019 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31014000

RESUMO

The most common cystic fibrosis-causing mutation (F508del, present in ~85% of CF patients) leads to CFTR misfolding, which is recognized by the endoplasmic reticulum (ER) quality control (ERQC), resulting in ER retention and early degradation. It is known that CFTR exit from the ER is mediated by specific retention/sorting signals that include four arginine-framed tripeptide (AFT) retention motifs and a diacidic (DAD) exit code that controls the interaction with the COPII machinery. Here, we aim at obtaining a global view of the protein interactors that regulate CFTR exit from the ER. We used mass spectrometry-based interaction proteomics and bioinformatics analyses to identify and characterize proteins interacting with selected CFTR peptide motifs or full-length CFTR variants retained or bypassing these ERQC checkpoints. We conclude that these ERQC trafficking checkpoints rely on fundamental players in the secretory pathway, detecting key components of the protein folding machinery associated with the AFT recognition and of the trafficking machinery recognizing the diacidic code. Furthermore, a greater similarity in terms of interacting proteins is observed for variants sharing the same folding defect over those reaching the same cellular location, evidencing that folding status is dominant over ER escape in shaping the CFTR interactome.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Mutação , Dobramento de Proteína , Transporte Proteico , Proteômica , Mucosa Respiratória/metabolismo
17.
Front Microbiol ; 10: 2869, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921048

RESUMO

Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. Recent studies have found that host factors can suppress HBV replication. HBV envelope proteins are reported to be degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway. As a component of the ERAD pathway, suppressor of lin-12-like 1 (SEL1L) was earlier found to be upregulated in the inactive carrier phase of chronic HBV infection relative to that in the immune tolerant phase. However, the role of SEL1L in regulating HBV replication remains largely unknown. In this study, we found the levels of HBV RNA, DNA, and core and envelope proteins to be significantly downregulated by SEL1L overexpression and upregulated by SEL1L silencing in Huh7 cells transiently transfected with an overlength HBV genome. Similar upregulation was observed in HepG2.2.15 cells as well. SEL1L co-localized with HBV surface antigen (HBsAg), which changed its staining pattern. Treatment with an inhibitor of ERAD pathway remarkably increased intracellular S protein. Surprisingly, silencing SEL1L to block the ERAD pathway activated an alternative ER quality control (ERQC)-autophagy pathway, which might account for the increased HBV RNAs and core protein. Together, our results demonstrate that SEL1L is a host restriction factor that exerts anti-HBV effect through ERAD and alternative ERQC-autophagy pathway.

18.
FEBS J ; 285(22): 4146-4164, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30281916

RESUMO

Activating transcription factor 6 alpha (referred to as ATF6 hereafter) is an endoplasmic reticulum (ER)-resident glycoprotein and one of the three sensors of the unfolded protein response (UPR). Upon ER stress, ATF6 is exported to the Golgi complex where it is cleaved by the S1P and S2P proteases thus releasing ATF6 cytosolic fragment and leading to the transcription of ATF6 target genes. In this study, we performed a phenotypic small-interfering RNA (siRNA) screening to better characterize the ER mechanisms involved in ATF6 activation upon ER stress. This revealed that silencing of ER-degradation-enhancing alpha-mannosidase-like protein-1 (EDEM1) increased the bioavailability of ER stress-induced ATF6 export to the Golgi complex through the stabilization of the natively unstable ATF6 protein. Moreover, we characterized a somatic variant of EDEM1 (N198I) found in hepatocellular carcinoma that alters ATF6 signaling and might provide a selective advantage to the transforming cells. Hence, our work confirms the natively unstable nature of ATF6 and links this property to potentially associated pro-oncogenic functions.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Carcinoma Hepatocelular/patologia , Estresse do Retículo Endoplasmático , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Mutação , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/genética , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Células Tumorais Cultivadas
19.
Front Plant Sci ; 9: 1620, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459799

RESUMO

Brassinosteroids (BRs) are essential phytohormones mainly perceived by a single-pass transmembrane receptor-like protein kinase (RLK), BRASSINOSTEROID INSENSITIVE 1 (BRI1). bri1-5 and bri1-9, two distinct mutants with point mutations in the extracellular domain of BRI1, show weak defective phenotypes. Previous studies indicated that bri1-5 and bri1-9 mutated proteins can be recognized and eliminated via an endoplasmic reticulum quality control (ERQC) mechanism. Most of these two proteins, therefore, cannot reach their destination, plasma membrane. Here, we report our functional characterization of bri1-301, another BRI1 mutant protein with an amino acid substitution in the cytoplasmic kinase domain. bri1-301 is a partially functional BR receptor with significantly decreased protein abundance. Interestingly, protein stability and subcellular localization of bri1-301 are temperature-sensitive. At 22°C, an optimal temperature for indoor Arabidopsis growth, bri1-301 shows a weak defective phenotype. At a lower temperature condition such as 18°C, bri1-301 exhibits subtle morphological defects. At a higher temperature condition such as 28°C, on the other hand, bri1-301 displays an extremely severe phenotype reminiscent to that of a null bri1 mutant due to greatly increased bri1-301 internalization and degradation. Our detailed analyses suggest that bri1-301 stability is controlled by ERQC and plasma membrane quality control (PMQC) systems. Since PMQC has not been well studied in plants, bri1-301 can be used as a model mutant for future genetic dissection of this critical process.

20.
Methods Mol Biol ; 1578: 55-59, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220415

RESUMO

Recognition of molecules typical of microbes or aberrant cellular states, termed microbe- or danger-associated molecular patterns (MAMPs/DAMPs), respectively, provides an important step in plant and animal innate immunity. In plants, pattern recognition receptors (PRRs) identified to date are limited to membrane-associated proteins, of which the majority has an extracellular leucine-rich repeat (LRR) or lysine-motif (LysM) domain. These PRRs undergo quality control (QC) in the Endoplasmic Reticulum (ER) that is dependent on Asn (N)-linked glycosylation (Glc3Man9GlcNAc2 conjugation) of their extracellular domain. In Arabidopsis, genetic studies have revealed that a subset of these PRRs require an intact N-glycosylation pathway in the ER for their biogenesis and function. Here, we describe methods for immunoblot-based detection of protein glycosylation states in plants.


Assuntos
Arabidopsis/metabolismo , Receptores de Reconhecimento de Padrão/análise , Receptores de Reconhecimento de Padrão/química , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Immunoblotting , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA