Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(5): 1179-1188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148365

RESUMO

A facile and sensitive fluorescent and colorimetric dual-readout assay for detection of acid phosphatase (ACP) was developed via Ce(III) ions-directed aggregation-induced emission (AIE) of glutathione-protected gold nanoclusters (GSH-AuNCs) and oxidase-mimicking activity of Ce(IV) ions. Free Ce(IV) ions exhibited a strong oxidase-mimetic activity, catalytically oxidizing colorless 3,3',5,5'-tetramethylbenzidine (TMB) into its blue product oxTMB in the presence of dissolved O2, thus triggering a remarkable color reaction detected visually. ACP can hydrolyze L-ascorbic acid-2-phosphate (AAP) with the production of ascorbic acid (AA). The AA is able to reduce Ce(IV) ions to Ce(III) ions, thus quenching the oxidase-mimetic activity of Ce(IV) ions. Meanwhile, Ce(III) ions induce AIE of GSH-AuNCs, resulting in the enhancement of the fluorescence signal of GSH-AuNCs. Both the fluorescent and colorimetric dual-mode analysis platforms exhibit a sensitive response to ACP, providing detection limits as low as 0.101 U/L and 0.200 U/L, respectively. Besides, this fabricated dual-mode detection platform holds the potential for analysis of ACP in human serum samples and screening inhibitors for ACP. With good performance and practicability, this study shows promising application in the convenient and reliable determination of ACP activity.


Assuntos
Fosfatase Ácida , Cério , Humanos , Oxirredutases , Colorimetria/métodos , Íons , Limite de Detecção
2.
Mikrochim Acta ; 191(7): 423, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922503

RESUMO

A ratiometric fluorescence sensing strategy has been developed for the determination of Cu2+ and glyphosate with high sensitivity and specificity based on OPD (o-phenylenediamine) and glutathione-stabilized gold nanoclusters (GSH-AuNCs). Water-soluble 1.75-nm size GSH-AuNCs with strong red fluorescence and maximum emission wavelength at 682 nm were synthesized using GSH as the template. OPD was oxidized by Cu2+, which produced the bright yellow fluorescence oxidation product 2,3-diaminophenazine (DAP) with a maximum fluorescence emission peak at 570 nm. When glyphosate existed in the system, the chelation between glyphosate and Cu2+ hindered the formation of DAP and reduced the fluorescence intensity of the system at the wavelength of 570 nm. Meanwhile, the fluorescence intensity at the wavelength of 682 nm remained basically stable. It exhibited a good linear relationship towards Cu2+ and glyphosate in water in the range 1.0-10 µM and 0.050-3.0 µg/mL with a detection limit of 0.547 µM and 0.0028 µg/mL, respectively. The method was also used for the semi-quantitative determination of Cu2+ and glyphosate in water by fluorescence color changes visually detected by the naked eyes in the range 1.0-10 µM and 0.30-3.0 µg/mL, respectively. The sensing strategy showed higher sensitivity, more obvious color changes, and better disturbance performance, satisfying with the detection demands of Cu2+ and glyphosate in environmental water samples. The study provides a reliable detection strategy in the environment safety fields.


Assuntos
Colorimetria , Cobre , Glicina , Glifosato , Ouro , Limite de Detecção , Nanopartículas Metálicas , Fenilenodiaminas , Espectrometria de Fluorescência , Poluentes Químicos da Água , Glicina/análogos & derivados , Glicina/análise , Glicina/química , Cobre/química , Nanopartículas Metálicas/química , Fenilenodiaminas/química , Ouro/química , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise , Colorimetria/métodos , Glutationa/química , Glutationa/análise , Herbicidas/análise , Corantes Fluorescentes/química
3.
Mikrochim Acta ; 190(12): 467, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37955722

RESUMO

A ratiometric-based fluorescence emission system was proposed for the determination of sulfide. It consists of blue emissive graphene quantum dots (GQDs) and self-assembled thiolate-protected gold nanoclusters driven by aluminum ion (Al3+@GSH-AuNCs). The two types of fluorophores are combined to form a ratiometric emission probe. The orange emission of Al3+ @GSH-AuNCs at 624 nm was quenched in the presence of sulfide ion owing to the strong affinity between sulfide and Au(I), while the blue GQDs fluorescence at 470 nm remained unaffected. Interestingly, the Al3+@GSH-AuNCs and GQDs were excited under the same excitation wavelength (335 nm). The response ratios (F470/F624) are linearly proportional to the sulfide concentration within the linear range of 0.02-200 µM under the optimal settings, with a limit of detection (S/N = 3) of 0.0064 µM. The proposed emission probe was applied to detect sulfide ions in tap water and wastewater specimens, with recoveries ranging from 95.3% to 103.3% and RSD% ranging from 2.3% to 3.4%, supporting the proposed method's accuracy.

4.
Talanta ; 180: 144-149, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29332792

RESUMO

Fluorescence nanoprobes are frequently employed to construct sensitive biosensors via turn-on and turn-off strategy. In this paper, a novel strategy for ultrasensitive detection of iodide was firstly constructed based on Ag+ regulated photoluminescence enhancement of gold nanoclusters (AuNCs) as a turn-off nanoplatform. In the presence of Ag+, the fluorescence (FL) intensity of AuNCs can be enhanced obviously. When adding iodide ions (I-) in the Ag+-AuNCs, Ag+ can be pulled down from AuNCs and results in quenching of the fluorescent effectively owing to the combination between Ag+ and I-. Compared with that of I- directly reaction with AuNCs, the introducing of Ag+ shows improved quenching efficiency from 32% to 66% since I- can react with Ag+ as well as AuNCs. Therefore, the platform could be applied to assay Ag+ and I-, on the basis of the FL enhancement and the further FL quenching. The detection ranges and detection limits were 0.2-12µM and 0.06µM for Ag+, 0.001-6µM and 0.3nM for I-, respectively. The new sensing method based on ion regulation to enhance the detection sensitivity can extend to the appliance of other fluorescent materials in biosensing and biomedical field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA