Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.819
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 36: 43-71, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29144838

RESUMO

Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.


Assuntos
Infecções por HTLV-I/imunologia , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Animais , Suscetibilidade a Doenças , Infecções por HTLV-I/complicações , Infecções por HTLV-I/epidemiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Imunidade Celular , Interferon Tipo I/metabolismo , Leucemia-Linfoma de Células T do Adulto/etiologia , Leucemia-Linfoma de Células T do Adulto/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/imunologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Latência Viral/imunologia
2.
Proc Natl Acad Sci U S A ; 121(13): e2309925121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502701

RESUMO

Human retroviruses are derived from simian ones through cross-species transmission. These retroviruses are associated with little pathogenicity in their natural hosts, but in humans, HIV causes AIDS, and human T-cell leukemia virus type 1 (HTLV-1) induces adult T-cell leukemia-lymphoma (ATL). We analyzed the proviral sequences of HTLV-1, HTLV-2, and simian T-cell leukemia virus type 1 (STLV-1) from Japanese macaques (Macaca fuscata) and found that APOBEC3G (A3G) frequently generates G-to-A mutations in the HTLV-1 provirus, whereas such mutations are rare in the HTLV-2 and STLV-1 proviruses. Therefore, we investigated the mechanism of how HTLV-2 is resistant to human A3G (hA3G). HTLV-1, HTLV-2, and STLV-1 encode the so-called antisense proteins, HTLV-1 bZIP factor (HBZ), Antisense protein of HTLV-2 (APH-2), and STLV-1 bZIP factor (SBZ), respectively. APH-2 efficiently inhibits the deaminase activity of both hA3G and simian A3G (sA3G). HBZ and SBZ strongly suppress sA3G activity but only weakly inhibit hA3G, suggesting that HTLV-1 is incompletely adapted to humans. Unexpectedly, hA3G augments the activation of the transforming growth factor (TGF)-ß/Smad pathway by HBZ, and this activation is associated with ATL cell proliferation by up-regulating BATF3/IRF4 and MYC. In contrast, the combination of APH-2 and hA3G, or the combination of SBZ and sA3G, does not enhance the TGF-ß/Smad pathway. Thus, HTLV-1 is vulnerable to hA3G but utilizes it to promote the proliferation of infected cells via the activation of the TGF-ß/Smad pathway. Antisense factors in each virus, differently adapted to control host cellular functions through A3G, seem to dictate the pathogenesis.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Humanos , Linhagem Celular , Virulência , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T do Adulto/genética , Provírus/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Desaminase APOBEC-3G/genética
3.
RNA ; 30(8): 967-976, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38684316

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is the only oncogenic human retrovirus discovered to date. All retroviruses are believed to use a host cell tRNA to prime reverse transcription (RT). In HTLV-1, the primer-binding site (PBS) in the genomic RNA is complementary to the 3' 18 nucleotides (nt) of human tRNAPro The human genome encodes 20 cytoplasmic tRNAPro genes representing seven isodecoders, all of which share the same 3' 18 nt sequence but vary elsewhere. Whether all tRNAPro isodecoders are used to prime RT in cells is unknown. A previous study showed that a 3' 18 nt tRNAPro-derived fragment (tRFPro) is packaged into HTLV-1 particles and can serve as an RT primer in vitro. The role of this tRNA fragment in the viral life cycle is unclear. In retroviruses, N1-methylation of the tRNA primer at position A58 (m1A) is essential for successful plus-strand transfer. Using primer-extension assays performed in chronically HTLV-1-infected cells, we found that A58 of tRNAPro is m1A-modified, implying that full-length tRNAPro is capable of facilitating successful plus-strand transfer. Analysis of HTLV-1 RT primer extension products indicated that full-length tRNAPro is likely to be the primer. To determine which tRNAPro isodecoder is used as the RT primer, we sequenced the minus-strand strong-stop RT product containing the intact tRNA primer and established that HTLV-1 primes RT using a specific tRNAPro UGG isodecoder. Further studies are required to understand how this primer is annealed to the highly structured HTLV-1 PBS and to investigate the role of tRFPro in the viral life cycle.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , RNA de Transferência de Prolina , Transcrição Reversa , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(31): e2216127120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487091

RESUMO

Retroviruses and their host have coevolved in a delicate balance between viral replication and survival of the infected cell. In this equilibrium, restriction factors expressed by infected cells control different steps of retroviral replication such as entry, uncoating, nuclear import, expression, or budding. Here, we describe a mechanism of restriction against human T cell leukemia virus type 1 (HTLV-1) by the helicase-like transcription factor (HLTF). We show that RNA and protein levels of HLTF are reduced in primary T cells of HTLV-1-infected subjects, suggesting a clinical relevance. We further demonstrate that the viral oncogene Tax represses HLTF transcription via the Enhancer of zeste homolog 2 methyltransferase of the Polycomb repressive complex 2. The Tax protein also directly interacts with HLTF and induces its proteasomal degradation. RNA interference and gene transduction in HTLV-1-infected T cells derived from patients indicate that HLTF is a restriction factor. Restoring the normal levels of HLTF expression induces the dispersal of the Golgi apparatus and overproduction of secretory granules. By synergizing with Tax-mediated NF-κB activation, physiologically relevant levels of HLTF intensify the autophagic flux. Increased vesicular trafficking leads to an enlargement of the lysosomes and the production of large vacuoles containing viral particles. HLTF induction in HTLV-1-infected cells significantly increases the percentage of defective virions. In conclusion, HLTF-mediated activation of the autophagic flux blunts the infectious replication cycle of HTLV-1, revealing an original mode of viral restriction.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia de Células T , Humanos , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Linfócitos T/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a DNA
5.
J Virol ; 98(2): e0186223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294250

RESUMO

The primary mode of infection by human T-cell leukemia virus type 1 (HTLV-1) is cell-to-cell transmission during contact between infected cells and target cells. Cell-free HTLV-1 infections are known to be less efficient than infections with other retroviruses, and transmission of free HTLV-1 is considered not to occur in vivo. However, it has been demonstrated that cell-free HTLV-1 virions can infect primary lymphocytes and dendritic cells in vitro, and that virions embedded in biofilms on cell membranes can contribute to transmission. The establishment of an efficient cell-free HTLV-1 infection model would be a useful tool for analyzing the replication process of HTLV-1 and the clonal expansion of infected cells. We first succeeded in obtaining supernatants with high-titer cell-free HTLV-1 using a highly efficient virus-producing cell line. The HTLV-1 virions retained the structural characteristics of retroviruses. Using this cell-free infection model, we confirmed that a variety of cell lines and primary cultured cells can be infected with HTLV-1 and demonstrated that the provirus was randomly integrated into all chromosomes in the target cells. The provirus-integrated cell lines were HTLV-1-productive. Furthermore, we demonstrated for the first time that cell-free HTLV-1 is infectious in vivo using a humanized mouse model. These results indicate that this cell-free infection model recapitulates the HTLV-1 life cycle, including entry, reverse transcription, integration into the host genome, viral replication, and secondary infection. The new cell-free HTLV-1 infection model is promising as a practical resource for studying HTLV-1 infection.IMPORTANCECo-culture of infected and target cells is frequently used for studying HTLV-1 infection. Although this method efficiently infects HTLV-1, the cell mixture is complex, and it is extremely difficult to distinguish donor infected cells from target cells. In contrast, cell-free HTLV-1 infection models allow for more strict experimental conditions. In this study, we established a novel and efficient cell-free HTLV-1 infection model. Using this model, we successfully evaluated the infectivity titers of cell-free HTLV-1 as proviral loads (copies per 100 cells) in various cell lines, primary cultured cells, and a humanized mouse model. Interestingly, the HTLV-1-associated viral biofilms played an important role in enhancing the infectivity of the cell-free infection model. This cell-free HTLV-1 infection model reproduces the replication cycle of HTLV-1 and provides a simple, powerful, and alternative tool for researching HTLV-1 infection.


Assuntos
Sistema Livre de Células , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Animais , Humanos , Camundongos , Infecções por HTLV-I/transmissão , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Linfócitos/virologia , Provírus/genética , Provírus/metabolismo , Replicação Viral , Sistema Livre de Células/virologia , Linhagem Celular , Células Cultivadas , Internalização do Vírus , Transcrição Reversa , Biofilmes , Integração Viral
6.
J Virol ; 98(2): e0162323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193692

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus responsible for adult T-cell leukemia/lymphoma, a severe and fatal CD4+ T-cell malignancy. Additionally, HTLV-1 can lead to a chronic progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis. Unfortunately, the prognosis for HTLV-1-related diseases is generally poor, and effective treatment options are limited. In this study, we designed and synthesized a codon optimized HTLV-1 envelope (Env) mRNA encapsulated in a lipid nanoparticle (LNP) and evaluated its efficacy as a vaccine candidate in an established rabbit model of HTLV-1 infection and persistence. Immunization regimens included a prime/boost protocol using Env mRNA-LNP or control green fluorescent protein (GFP) mRNA-LNP. After immunization, rabbits were challenged by intravenous injection with irradiated HTLV-1 producing cells. Three rabbits were partially protected and three rabbits were completely protected against HTLV-1 challenge. These rabbits were then rechallenged 15 weeks later, and two rabbits maintained sterilizing immunity. In Env mRNA-LNP immunized rabbits, proviral load and viral gene expression were significantly lower. After viral challenge in the Env mRNA-LNP vaccinated rabbits, an increase in both CD4+/IFN-γ+ and CD8+/IFN-γ+ T-cells was detected when stimulating with overlapping Env peptides. Env mRNA-LNP elicited a detectable anti-Env antibody response after prime/boost vaccination in all animals and significantly higher levels of neutralizing antibody activity. Neutralizing antibody activity was correlated with a reduction in proviral load. These findings hold promise for the development of preventive strategies and therapeutic interventions against HTLV-1 infection and its associated diseases.IMPORTANCEmRNA vaccine technology has proven to be a viable approach for effectively triggering immune responses that protect against or limit viral infections and disease. In our study, we synthesized a codon optimized human T-cell leukemia virus type 1 (HTLV-1) envelope (Env) mRNA that can be delivered in a lipid nanoparticle (LNP) vaccine approach. The HTLV-1 Env mRNA-LNP produced protective immune responses against viral challenge in a preclinical rabbit model. HTLV-1 is primarily transmitted through direct cell-to-cell contact, and the protection offered by mRNA vaccines in our rabbit model could have significant implications for optimizing the development of other viral vaccine candidates. This is particularly important in addressing the challenge of enhancing protection against infections that rely on cell-to-cell transmission.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Vacinas Virais , Vacinas de mRNA , Animais , Humanos , Coelhos , Anticorpos Neutralizantes , Formação de Anticorpos , Códon , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Leucemia de Células T , Vacinas de mRNA/imunologia , Doenças Neurodegenerativas , RNA Mensageiro/genética , Vacinas Virais/imunologia
7.
J Virol ; : e0040524, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874362

RESUMO

Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions. Here, we report that the viral oncoprotein Tax represses FBXW7 activity, resulting in the stabilization of activated Notch intracellular domain, c-MYC, Cyclin E, and myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1). Mechanistically, we demonstrate that Tax directly binds to FBXW7 in the nucleus, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 substrates. In support of the nuclear role of Tax, a non-degradable form of the nuclear factor kappa B subunit 2 (NFκB2/p100) was found to delocalize Tax to the cytoplasm, thereby preventing Tax interactions with FBXW7 and Tax-mediated inhibition of FBXW7. Finally, we characterize a Tax mutant that is unable to interact with FBXW7, unable to block FBXW7 tumor suppressor functions, and unable to effectively transform fibroblasts. These results demonstrate that HTLV-I Tax can inhibit FBXW7 functions without genetic mutations to promote an oncogenic state. These results suggest that Tax-mediated inhibition of FBXW7 is likely critical during the early stages of the cellular transformation process. IMPORTANCE: F-box and WD repeat domain containing 7 (FBXW7), a critical tumor suppressor of human cancers, is frequently mutated or epigenetically suppressed. Loss of FBXW7 functions is associated with stabilization and increased expression of oncogenic factors such as Cyclin E, c-Myc, Mcl-1, mTOR, Jun, and Notch. In this study, we demonstrate that the human retrovirus human T-cell leukemia virus type 1 oncoprotein Tax directly interacts with FBXW7, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 cellular substrates. We further demonstrate that a Tax mutant unable to interact with and inactivate FBXW7 loses its ability to transform primary fibroblasts. Collectively, our results describe a novel mechanism used by a human tumor virus to promote cellular transformation.

8.
Rev Med Virol ; 34(4): e2567, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937135

RESUMO

Human T-lymphotropic virus type-1 (HTLV-1) was the first discovered human oncogenic retrovirus, the etiological agent of two serious diseases have been identified as adult T-cell leukaemia/lymphoma malignancy and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a debilitating chronic neuro-myelopathy. Despite more than 40 years of molecular, histopathological and immunological studies on HTLV-1-associated diseases, the virulence and pathogenicity of this virus are yet to be clarified. The reason why the majority of HTLV-1-infected individuals (∼95%) remain asymptomatic carriers is still unclear. The deterioration of the immune system towards oncogenicity and autoimmunity makes HTLV-1 a natural probe for the study of malignancy and neuro-inflammatory diseases. Additionally, its slow worldwide spreading has prompted public health authorities and researchers, as urged by the WHO, to focus on eradicating HTLV-1. In contrast, neither an effective therapy nor a protective vaccine has been introduced. This comprehensive review focused on the most relevant studies of the neuro-inflammatory propensity of HTLV-1-induced HAM/TSP. Such an emphasis on the virus-host interactions in the HAM/TSP pathogenesis will be critically discussed epigenetically. The findings may shed light on future research venues in designing and developing proper HTLV-1 therapeutics.


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Humanos , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Paraparesia Espástica Tropical/virologia , Paraparesia Espástica Tropical/imunologia , Infecções por HTLV-I/virologia , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/complicações , Interações Hospedeiro-Patógeno/imunologia , Animais , Interações entre Hospedeiro e Microrganismos/imunologia
9.
Rev Med Virol ; 34(1): e2493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38078693

RESUMO

The role of numerous risk factors, including consumption of alcohol, smoking, having diet high in fat and sugar and many other items, on caner progression cannot be denied. Viral diseases are one these factors, and they can initiate some signalling pathways causing cancer. For example, they can be effective on providing oxygen and nutrients by inducing VEGF expression. In this review article, we summarised the mechanisms of angiogenesis and VEGF expression in cancerous tissues which are infected with oncoviruses (Epstein-Barr virus, Human papillomavirus infection, Human T-lymphotropic virus, Kaposi's sarcoma-associated herpesvirus, Hepatitis B and hepatitis C virus).


Assuntos
Infecções por Vírus Epstein-Barr , Fator A de Crescimento do Endotélio Vascular , Humanos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Herpesvirus Humano 8/genética , Neoplasias/etiologia , Fator A de Crescimento do Endotélio Vascular/genética , Viroses/complicações
10.
Mol Ther ; 32(7): 2328-2339, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734900

RESUMO

Human T cell leukemia/T-lymphotropic virus type 1 (HTLV-1) infection occurs by cell-to-cell transmission and can induce fatal adult T cell leukemia. Vaccine development is critical for the control of HTLV-1 transmission. However, determining whether vaccine-induced anti-Env antibodies can prevent cell-to-cell HTLV-1 transmission is challenging. Here, we examined the protective efficacy of a vaccine inducing anti-Env antibodies against HTLV-1 challenge in cynomolgus macaques. Eight of 10 vaccinated macaques produced anti-HTLV-1 neutralizing antibodies (NAbs) and were protected from an intravenous challenge with 108 HTLV-1-producing cells. In contrast, the 2 vaccinated macaques without NAb induction and 10 unvaccinated controls showed HTLV-1 infection with detectable proviral load after challenge. Five of the eight protected macaques were administered with an anti-CD8 monoclonal antibody, but proviruses remained undetectable and no increase in anti-HTLV-1 antibodies was observed even after CD8+ cell depletion in three of them. Analysis of Env-specific T cell responses did not suggest involvement of vaccine-induced Env-specific T cell responses in the protection. These results indicate that anti-Env antibody induction by vaccination can result in functionally sterile HTLV-1 protection, implying the rationale for strategies aimed at anti-Env antibody induction in prophylactic HTLV-1 vaccine development.


Assuntos
Anticorpos Neutralizantes , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Vacinação , Animais , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/prevenção & controle , Anticorpos Neutralizantes/imunologia , Humanos , Macaca fascicularis , Carga Viral , Linfócitos T CD8-Positivos/imunologia , Produtos do Gene env/imunologia , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Modelos Animais de Doenças
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210364

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. HTLV-1 exerts its oncogenic functions by interacting with signaling pathways involved in cell proliferation and transformation. Dysregulation of the Hippo/YAP pathway is associated with multiple cancers, including virus-induced malignancies. In the present study, we observe that expression of YAP, which is the key effector of Hippo signaling, is elevated in ATL cells by the action of the HTLV-1 Tax protein. YAP transcriptional activity is remarkably enhanced in HTLV-1-infected cells and ATL patients. In addition, Tax activates the YAP protein via a mechanism involving the NF-κB/p65 pathway. As a mechanism for this cross talk between the Hippo and NF-κB pathways, we found that p65 abrogates the interaction between YAP and LATS1, leading to suppression of YAP phosphorylation, inhibition of ubiquitination-dependent degradation of YAP, and YAP nuclear accumulation. Finally, knockdown of YAP suppresses the proliferation of ATL cells in vitro and tumor formation in ATL-engrafted mice. Taken together, our results suggest that p65-induced YAP activation is essential for ATL pathogenesis and implicate YAP as a potential therapeutic target for ATL treatment.


Assuntos
Carcinogênese , Proteínas de Ciclo Celular/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Produtos do Gene tax/metabolismo , Humanos , Células Jurkat , Fosforilação , Ubiquitinação , Regulação para Cima
12.
Cancer Sci ; 115(1): 310-320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950425

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) establishes chronic infection in humans and induces a T-cell malignancy called adult T-cell leukemia-lymphoma (ATL) and several inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Persistent HTLV-1 infection is established under the pressure of host immunity, and therefore the immune response against HTLV-1 is thought to reflect the status of the disease it causes. Indeed, it is known that cellular immunity against viral antigens is suppressed in ATL patients compared to HAM/TSP patients. In this study, we show that profiling the humoral immunity to several HTLV-1 antigens, such as Gag, Env, and Tax, and measuring proviral load are useful tools for classifying disease status and predicting disease development. Using targeted sequencing, we found that several carriers whom this profiling method predicted to be at high risk for developing ATL indeed harbored driver mutations of ATL. The clonality of HTLV-1-infected cells in those carriers was still polyclonal; it is consistent with an early stage of leukemogenesis. Furthermore, this study revealed significance of anti-Gag proteins to predict high risk group in HTLV-1 carriers. Consistent with this finding, anti-Gag cytotoxic T lymphocytes (CTLs) were increased in patients who received hematopoietic stem cell transplantation and achieved remission state, indicating the significance of anti-Gag CTLs for disease control. Our findings suggest that our strategy that combines anti-HTLV-1 antibodies and proviral load may be useful for prediction of the development of HTLV-1-associated diseases.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Paraparesia Espástica Tropical , Adulto , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Provírus/genética , Biomarcadores , Carga Viral
13.
Retrovirology ; 21(1): 5, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424561

RESUMO

Human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV) have replicative and latent stages of infection. The status of the viruses is dependent on the cells that harbour them and on different events that change the transcriptional and post-transcriptional events. Non-coding (nc)RNAs are key factors in the regulation of retrovirus replication cycles. Notably, micro (mi)RNAs and long non-coding (lnc)RNAs are important regulators that can induce switches between active transcription-replication and latency of retroviruses and have important impacts on their pathogenesis. Here, we review the functions of miRNAs and lncRNAs in the context of HIV and HTLV. We describe how specific miRNAs and lncRNAs are involved in the regulation of the viruses' transcription, post-transcriptional regulation and latency. We further discuss treatment strategies using ncRNAs for HIV and HTLV long remission, reactivation or possible cure.


Assuntos
Infecções por HIV , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , HIV , Regulação da Expressão Gênica , RNA não Traduzido/genética , Deltaretrovirus , Retroviridae/genética
14.
J Neurovirol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653958

RESUMO

Human T-lymphotropic virus type 1 (HTLV-1) is classically associated with the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), although the mechanisms of this neurological disorder remain unclear. In addition, some patients who develop "minor" neurological signs that do not meet diagnostic criteria for HAM/TSP are classified as asymptomatic carriers. This study aims to demonstrate the neurological symptoms of Brazilian patients living with HTLV-1 classified as not-HAM.TSP. This observational study evaluated patients treated in an HTLV reference center in Bahia, Brazil, between February 2022 and July 2023. The data were obtained through the analysis of medical records and neurological consultation. Those individuals classified as HAM/ TSP were excluded from this study. 74 patients were submitted to a careful neurological evaluation: 23 HAM/TSP, 22 were classified with intermediate syndrome (IS), and 29 were oligosymptomatic. Self-reported symptoms were significantly more common in the IS group, including urinary symptoms such as nocturia, urgency, incontinence, dysuria, weakness, paresthesia, lumbar pain, xerostomia, and xerophthalmia. Physical examination findings consistent with reduced vibratory and tactile sensitivity were more common in the IS group (p = 0.017 and p = 0.013). Alterations in the V and VIII cranial nerves were present in both groups. HTLV-1 can lead to the development of important neurological signs and symptoms in apparently asymptomatic individuals. This data highlights the need for more research into the neurological aspects of HTLV-1 infection and emphasizes the importance of early diagnosis, treatment, and support for individuals living with this virus.

15.
Vox Sang ; 119(3): 257-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38223953

RESUMO

BACKGROUND AND OBJECTIVES: Serological HTLV-1/2 screening is mandatory for blood donor candidates in Brazil. Our objective was to analyse HTLV test results in blood donors submitted for screening and confirmatory assays in a Brazilian blood bank. MATERIALS AND METHODS: Retrospective analysis (2017-2022) results of chemiluminescence immunoassays and confirmatory tests for HTLV-1/2 in reactive donors were performed. During the analysed period, three sets of assays were used: (1) Architect rHTLV-I/II + HTLV Blot 2.4 (Western blot [WB]); (2) Alinity s HTLV I/II Reagent Kit + INNO-line immunoassay (LIA) HTLV I/II Score (LIA); (3) Alinity + WB. RESULTS: The analysed period comprised a total of 1,557,333 donations. The mean percentage of HTLV reactive donors using the Architect assay was 0.14%. With the change to the Alinity assay, that percentage dropped 2.3-fold (0.06%). The reactivity rate in the confirmatory tests (1064 samples) ranged from 13.5% to 30.2%, whereas 58.3%-85.9% of samples were non-reactive. The highest rates of positive (30.2%) and indeterminate (11.5%) results were seen using LIA. Considering all analysed samples, those with signal/cut-off ratio (S/CO) >50 were positive in confirmatory tests (positive predictive value, PPV = 100%), whereas samples with S/CO ≤6 are very unlikely to be truly positive (PPV = 0). CONCLUSION: The use of the Alinity assay reduced the frequency of false-positive results. Confirmatory tests are important to identify true HTLV infection in blood donors, because more than 58% of initially reactive individuals are confirmed as seronegative. Categorizing S/CO values is useful for assessing the likelihood of true HTLV-1/2 infection.


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Doadores de Sangue , Estudos Retrospectivos , Vírus Linfotrópico T Tipo 2 Humano , Western Blotting , Linfócitos T
16.
Virus Genes ; 60(2): 117-125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273115

RESUMO

Human T-cell lymphotropic virus type 1 (HTLV-1) is linked to two debilitating diseases, adult T-cell leukemia/lymphoma (ATLL) and HTLV-1 associated myelopathy tropical spastic paraparesis (HAM/TSP), which are prevalent in various parts of the world, including the Alborz province in Iran. Understanding the prevalence and evolutionary relationships of HTLV-1 infections in these endemic areas is of utmost importance. In the realm of phylogenetic studies, long terminal repeat (LTR) region of HTLV-1 stands out as highly conserved, yet more variable compared to other gene segments. Consequently, it is the primary focus for phylogenetic analyses. Additionally, trans-activator of transcription (Tax), an oncoprotein, holds a pivotal role in the regulation of gene expression. This cross-sectional study delved into the phylogenetic analysis of HTLV-1 among individuals in Alborz province of Iran. To confirm infection, we amplified partial sequence LTR (PLTR) and HTLV-1 bZIP factor (PHBZ). For phylogenetic analysis, we sequenced the full sequence LTR (FLTR) and full Tax sequence (FTax). The FLTR and FTax sequences underwent analysis using BioEdit, and phylogenetic trees were constructed using MEGA-X software. Out of the roughly 15,000 annual blood donors in Alborz, 19 samples tested positive for HTLV-1, indicating a 0.13% HTLV-1 positivity rate among blood donors. Furthermore, the HTLV-1 virus prevalent in the Alborz province belongs to subtype A (cosmopolitan) subgroup A. The findings revealed that while mutations were observed in both the LTR and Tax genes, they were not significant enough to bring about fundamental alterations. Despite positive selection detected in three Alborz isolates, it has not led to mutations affecting Tax function and virulence.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Adulto , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Filogenia , Irã (Geográfico)/epidemiologia , Estudos Transversais , Paraparesia Espástica Tropical/epidemiologia
17.
BMC Infect Dis ; 24(1): 652, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943078

RESUMO

BACKGROUND: Human T-cell lymphotropic virus type 1 (HTLV-1), also denominated Human T-cell leukemia virus-1, induces immune activation and secretion of proinflammatory cytokines, especially in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Regulatory T lymphocytes (Tregs) may control of inflammation through the production of regulatory cytokines, including IL10 and TGF-ß. In this study we determined the frequencies of CD4 + and CD8 + Tregs in a HAM/TSP population, compared to asymptomatic carriers and uninfected individuals, as well as investigated the profiles of regulatory and inflammatory cytokines. METHODS: Asymptomatic HTLV-1 carriers and HAM/TSP patients were matched by sex and age. The frequencies of IL10- and/or TGF-ß-producing Tregs were quantified by flow cytometry. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify HTLV-1 proviral load and the mRNA expression of cytokines and cellular receptors in peripheral blood mononuclear cells. RESULTS: Total frequencies of CD4 + Tregs, as well as the IL10-producing CD4 + and CD8 + Treg subsets, were statistically higher in patients with HAM/TSP compared to asymptomatic HTLV-1-infected individuals. In addition, a positive correlation was found between the frequency of CD4 + IL10 + Tregs and proviral load in the HAM/TSP patients evaluated. A positive correlation was also observed between gene expression of proinflammatory versus regulatory cytokines only in HAM / TSP group. CONCLUSIONS: A higher frequencies of IL10-producing Tregs were identified in patients with HAM/TSP. Imbalanced production of IL10 in relation to TGF-ß may contribute to the increased inflammatory response characteristically seen in HAM/TSP patients.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Interleucina-10 , Paraparesia Espástica Tropical , Linfócitos T Reguladores , Fator de Crescimento Transformador beta , Humanos , Linfócitos T Reguladores/imunologia , Masculino , Feminino , Paraparesia Espástica Tropical/imunologia , Paraparesia Espástica Tropical/virologia , Interleucina-10/imunologia , Interleucina-10/genética , Pessoa de Meia-Idade , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Fator de Crescimento Transformador beta/metabolismo , Adulto , Carga Viral , Idoso , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/virologia , Portador Sadio/imunologia , Portador Sadio/virologia
18.
BMC Infect Dis ; 24(1): 96, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233756

RESUMO

BACKGROUND: Whether human T-lymphotropic virus type 1 (HTLV-1) carriers can develop sufficient humoral immunity after coronavirus disease 2019 (COVID-19) vaccination is unknown. METHODS: To investigate humoral immunity after COVID-19 vaccination in HTLV-1 carriers, a multicenter, prospective observational cohort study was conducted at five institutions in southwestern Japan, an endemic area for HTLV-1. HTLV-1 carriers and HTLV-1-negative controls were enrolled for this study from January to December 2022. During this period, the third dose of the COVID-19 vaccine was actively administered. HTLV-1 carriers were enrolled during outpatient visits, while HTLV-1-negative controls included health care workers and patients treated by participating institutions for diabetes, hypertension, or dyslipidemia. The main outcome was the effect of HTLV-1 infection on the plasma anti-COVID-19 spike IgG (IgG-S) titers after the third dose, assessed by multivariate linear regression with other clinical factors. RESULTS: We analyzed 181 cases (90 HTLV-1 carriers, 91 HTLV-1-negative controls) after receiving the third dose. HTLV-1 carriers were older (median age 67.0 vs. 45.0 years, p < 0.001) and more frequently had diabetes, hypertension, or dyslipidemia than did HTLV-1-negative controls (60.0% vs. 27.5%, p < 0.001). After the third dose, the IgG-S titers decreased over time in both carriers and controls. Multivariate linear regression in the entire cohort showed that time since the third dose, age, and HTLV-1 infection negatively influenced IgG-S titers. After adjusting for confounders such as age, or presence of diabetes, hypertension, or dyslipidemia between carriers and controls using the overlap weighting propensity score method, and performing weighted regression analysis in the entire cohort, both time since the third dose and HTLV-1 infection negatively influenced IgG-S titers. CONCLUSIONS: The humoral immunity after the third vaccination dose is impaired in HTLV-1 carriers; thus, customized vaccination schedules may be necessary for them.


Assuntos
COVID-19 , Diabetes Mellitus , Dislipidemias , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Hipertensão , Humanos , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade Humoral , Estudos Prospectivos , Vacinação , Imunoglobulina G , Anticorpos Antivirais
19.
Brain ; 146(8): 3181-3191, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093965

RESUMO

Some carriers of human T-cell leukaemia virus type 1 (HTLV-1), a retrovirus that primarily infects CD4+ T cells and causes lifelong infection, develop HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Current treatments for HAM/TSP are insufficient with problematic long-term side effects. This study evaluated the long-term safety and efficacy of the anti-CCR4 antibody mogamulizumab in patients with HAM/TSP over a 4-year period. We conducted an open-label, extended long-term study (UMIN trial number: UMIN000019942) of a phase 1-2a trial with mogamulizumab for HAM/TSP (UMIN000012655). The study participants were patients with corticosteroid-resistant HAM/TSP who could walk 10 m with or without assistive tools. Mogamulizumab was administered at 0.01, 0.03, 0.1 or 0.3 mg/kg at intervals of ≥8 weeks (0.01 and 0.03 mg/kg) or ≥12 weeks (0.1 and 0.3 mg/kg). HTLV-1 proviral load, CSF inflammatory markers and clinical symptoms were summarized by descriptive statistics. Missing observations were imputed using the last-observation-carried-forward method. As a post hoc analysis, we evaluated the therapeutic effect of mogamulizumab on gait function by comparing it with contemporary control data from a HAM/TSP patient registry. Of the 21 participants in the phase 1-2a, 18 (86%) enrolled in the long-term study and 15 (71%) continued repeated doses of mogamulizumab for 4 years. The median dose was 0.1 mg/kg after 4 years. Seventeen of 21 participants (81%) experienced grade 1-2 skin-related adverse events. Observed grade 3 drug-related adverse effects included three cases of lymphopenia and one case each of microscopic polyangiitis, elevated levels of aspartate aminotransferase, and neutropenia. Four of 21 participants (19%) developed neutralizing antibodies. After 4 years, the peripheral blood proviral load and the number of infected cells in CSF decreased by 60.7% and 66.3%, respectively. Neopterin and CXCL10 CSF concentrations decreased by 37.0% and 31.0%, respectively. Among the 18 participants, spasticity and Osame Motor Disability Score (OMDS) improved in 17 (94%) and four (22%), respectively. However, 10 m walking time worsened by 7.3% on average. Comparison with the contemporary control group demonstrated that mogamulizumab inhibited OMDS progression (P = 0.02). The results of the study suggest that mogamulizumab has long-term safety and inhibitory effects on lower limb motor disability progression in corticosteroid-treated patients with HAM/TSP. This will provide a basis for the application of mogamulizumab in HAM/TSP treatment.


Assuntos
Pessoas com Deficiência , Vírus Linfotrópico T Tipo 1 Humano , Transtornos Motores , Paraparesia Espástica Tropical , Humanos , Paraparesia Espástica Tropical/tratamento farmacológico
20.
Mol Ther ; 31(7): 2266-2285, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934299

RESUMO

The human T cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that persists as a provirus in the genome of infected cells and can lead to adult T cell leukemia (ATL). Worldwide, more than 10 million people are infected and approximately 5% of these individuals will develop ATL, a highly aggressive cancer that is currently incurable. In the last years, genome editing tools have emerged as promising antiviral agents. In this proof-of-concept study, we use substrate-linked directed evolution (SLiDE) to engineer Cre-derived site-specific recombinases to excise the HTLV-1 proviral genome from infected cells. We identified a conserved loxP-like sequence (loxHTLV) present in the long terminal repeats of the majority of virus isolates. After 181 cycles of SLiDE, we isolated a designer-recombinase (designated RecHTLV), which efficiently recombines the loxHTLV sequence in bacteria and human cells with high specificity. Expression of RecHTLV in human Jurkat T cells resulted in antiviral activity when challenged with an HTLV-1 infection. Moreover, expression of RecHTLV in chronically infected SP cells led to the excision of HTLV-1 proviral DNA. Our data suggest that recombinase-mediated excision of the HTLV-1 provirus represents a promising approach to reduce proviral load in HTLV-1-infected individuals, potentially preventing the development of HTLV-1-associated diseases.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Adulto , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Paraparesia Espástica Tropical/tratamento farmacológico , Paraparesia Espástica Tropical/genética , Provírus/genética , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA