Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Physiol ; 234(2): 1618-1629, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30132862

RESUMO

Accumulating evidence has shown that mammalian target of rapamycin (mTOR) pathway and myeloid-derived suppressor cells (MDSCs) are involved in pathogenesis of inflammatory bowel diseases (IBDs). INK128 is a novel mTOR kinase inhibitor in clinical development. However, the exact roles of MDSCs and INK128 in IBD are unclear. Here, we showed that the INK128 treatment enhanced the resistance of mice to dextran sodium sulfate (DSS)-induced colitis and inhibited the differentiation of MDSCs into macrophages. Moreover, interferon (IFN)-α level was elevated in INK128-treated colitis mice. When stimulated with IFN-α in vitro, MDSCs showed a superior immunosuppression activity. Of note, the regulatory T cells (Tregs) increased but Th1 cells decreased in INK128-treated colitis mice. These results indicate that mTOR inhibitor INK128 attenuates DSS-induced colitis via Treg expansion promoted by MDSCs. Our work provides a new evidence that INK128 is potential to be a therapeutic drug on DSS-induced colitis via regulating MDSCs as well as maintaining Treg expansion.


Assuntos
Benzoxazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Colite/prevenção & controle , Colo/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Comunicação Celular/efeitos dos fármacos , Colite/induzido quimicamente , Colite/enzimologia , Colite/imunologia , Colo/enzimologia , Colo/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/enzimologia , Células Supressoras Mieloides/imunologia , Células RAW 264.7 , Transdução de Sinais , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo
2.
Adv Exp Med Biol ; 854: 709-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427479

RESUMO

Retinal pigment epithelium (RPE) cell migration in response to disease has been reported for age-related macular degeneration, proliferative vitreoretinopathy, and proliferative diabetic retinopathy. The complex molecular process of RPE cell migration is regulated in part by growth factors and cytokines, and activation of the PI3/AKT/mTOR signaling pathway. Rapamycin, an allosteric mTOR inhibitor, has been shown to block only one of the primary downstream mTOR effectors, p70 S6 kinase 1, in many cell types. INK128, a selective mTOR ATP binding site competitor, blocks both p70 S6 kinase 1 and a second primary downstream effector, 4E-BP1. We performed scratch assays using differentiated ARPE-19 and primary porcine RPE cells to assess the effect of mTOR inhibition on cell migration. We found that INK128-mediated blocking of both p70 S6 kinase 1 and 4E-BP1 was much more effective at preventing RPE cell migration than rapamycin-mediated inhibition of p70 S6 kinase 1 alone.


Assuntos
Benzoxazóis/farmacologia , Movimento Celular/efeitos dos fármacos , Pirimidinas/farmacologia , Epitélio Pigmentado da Retina/citologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Immunoblotting , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sirolimo/farmacologia , Suínos , Serina-Treonina Quinases TOR/metabolismo
3.
Biochem Biophys Res Commun ; 468(1-2): 255-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26514724

RESUMO

Existing evidence has shown that mammalian target of rapamycin (mTOR) overactivation is an important contributor of osteosarcoma (OS) progression. Here, we studied the potential anti-OS activity of a potent mTOR kinase inhibitor: INK-128 (MLN0128). We demonstrated that INK-128 induced potent cytotoxic effects against several human OS cell lines (U2OS, MG-63 and SaOs-2), yet same INK-128 treatment was safe (non-cytotoxic) to OB-6 human osteoblastic cells and MLO-Y4 human osteocytic cells. INK-128 induced caspase-dependent apoptosis in OS cells, but not in MLO-Y4/OB-6 cells. The caspase-3 specific inhibitor (z-DVED-fmk) or the pan caspase inhibitor (z-VAD-fmk) dramatically attenuated INK-128-exerted cytotoxicity against OS cells. Molecularly, INK-128 inhibited activation of mTORC1 (S6K1 and S6 phosphorylations) and mTORC2 (AKT Ser-473 phosphorylation), without affecting AKT Thr-308 phosphorylation in U2OS cells. Significantly, AKT inhibition by MK-2206 (an AKT inhibitor), or AKT1/2 stable knockdown by targeted-shRNA, remarkably sensitized INK-128-induced activity in OS cells. In vivo, oral administration of INK-128 potently inhibited U2OS xenograft growth in severe combined immuno-deficient (SCID) mice. mTORC1/2 activation in xenograft tumors was also suppressed with INK-128 administration. In summary, we show that INK-128 exerts potent anti-OS activity in vitro and in vivo. INK-128 might be further investigated as a novel anti-OS agent.


Assuntos
Antineoplásicos/uso terapêutico , Benzoxazóis/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Complexos Multiproteicos/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Pirimidinas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos SCID , Complexos Multiproteicos/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Serina-Treonina Quinases TOR/metabolismo
4.
Tumour Biol ; 36(10): 8177-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25990456

RESUMO

Both mammalian target of rapamycin (mTOR) complexes 1 and 2 (mTORC1/2) are often over-activated in prostate cancer cells and are associated with cancer progression. In the current study, we evaluated the potential anti-prostate cancer activity of INK-128, an ATP-competitive mTORC1/2 dual inhibitor, both in vitro and in vivo. Our results showed that INK-128 exerted potent anti-proliferative activity in established (PC-3 and LNCaP lines) and primary (patient-derived) human prostate cancer cells by inducing cell apoptosis. The latter was evidenced by increase of annexin V percentage, formation of cytoplasmic histone-associated DNA fragments, and cleavage of caspase-3. INK-128-induced prostate cancer cell apoptosis and cytotoxicity were alleviated upon pretreatment of cells with the pan-caspase inhibitor z-VAD-FMK or the specific caspase-3 inhibitor z-DVED-FMK. At the molecular level, INK-18 blocked mTORC1/2 activation in PC-3 cells and LNCaP cells and downregulated mTOR-regulated genes including cyclin D1, hypoxia-inducible factor 1α (HIF-1α), and HIF-2α. ERK-MAPK activation and androgen receptor expression were, however, not affected by INK-128 treatment. In vivo, oral administration of INK-128 significantly inhibited growth of PC-3 xenografts in nude mice. The preclinical results of this study suggest that INK-128 could be further investigated as a promising anti-prostate cancer agent.


Assuntos
Apoptose/efeitos dos fármacos , Benzoxazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Complexos Multiproteicos/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Western Blotting , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Nus , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochem Biophys Res Commun ; 450(2): 973-8, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24971544

RESUMO

Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.


Assuntos
Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Neoplasias Pancreáticas/patologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adulto , Apoptose/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Necrose , Gencitabina
6.
Cancer Lett ; 504: 137-145, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33571541

RESUMO

Medulloblastoma is the most common malignant pediatric brain tumor. Tumors having high levels of c-MYC have the worst clinical prognosis, with only a minority of patients surviving. To address this unmet clinical need, we generated a human neural stem cell model of medulloblastoma that recapitulated the most aggressive subtype phenotypically and by mRNA expression profiling. An in silico analysis of these cells identified mTOR inhibitors as potential therapeutic agents. We hypothesized that the orally bioavailable TORC1/2 kinase inhibitor TAK228 would have activity against MYC-driven medulloblastoma. TAK228 inhibited mTORC1/2, decreased cell growth and caused apoptosis in high-MYC medulloblastoma cell lines. Comprehensive metabolic profiling of medulloblastoma orthotopic xenografts showed upregulation of glutathione compared to matched normal brain. TAK228 suppressed glutathione production. Because glutathione is required to detoxify platinum-containing chemotherapy, we hypothesized that TAK228 would cooperate with carboplatin in medulloblastoma. TAK228 synergized with carboplatin to inhibit cell growth and induce apoptosis and extended survival in orthotopic xenografts of high-MYC medulloblastoma. Brain-penetrant TORC1/2 inhibitors and carboplatin may be an effective combination therapy for high-risk medulloblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Carboplatina/uso terapêutico , Proliferação de Células/fisiologia , Neoplasias Cerebelares/patologia , Glutationa/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Meduloblastoma/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Antineoplásicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/enzimologia , Neoplasias Cerebelares/metabolismo , Feminino , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/enzimologia , Meduloblastoma/metabolismo , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Aging Cell ; 20(2): e13304, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448083

RESUMO

Stem cell transplantation has been generally considered as promising therapeutics in preserving or recovering functions of lost, damaged, or aging tissues. Transplantation of primordial germ cells (PGCs) or oogonia stem cells (OSCs) can reconstitute ovarian functions that yet sustain for only short period of time, limiting potential application of stem cells in preservation of fertility and endocrine function. Here, we show that mTOR inhibition by INK128 extends the follicular and endocrine functions of the reconstituted ovaries in aging and premature aging mice following transplantation of PGCs/OSCs. Follicular development and endocrine functions of the reconstituted ovaries by transplanting PGCs into kidney capsule of the recipient mice were maintained by INK128 treatment for more than 12 weeks, in contrast to the controls for only about 4 weeks without receiving the mTOR inhibitors. Comparatively, rapamycin also can prolong the ovarian functions but for limited time. Furthermore, our data reveal that INK128 promotes mitochondrial function in addition to its known function in suppression of immune response and inflammation. Taken together, germline stem cell transplantation in combination with mTOR inhibition by INK128 improves and extends the reconstituted ovarian and endocrine functions in reproductive aging and premature aging mice.


Assuntos
Senilidade Prematura , Envelhecimento , Benzoxazóis/farmacologia , Células Germinativas/efeitos dos fármacos , Ovário/efeitos dos fármacos , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Feminino , Células Germinativas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Ovário/metabolismo , Ovário/cirurgia , Serina-Treonina Quinases TOR/metabolismo
8.
Neuro Oncol ; 22(4): 563-574, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31841591

RESUMO

BACKGROUND: Pediatric low-grade glioma (pLGG) is the most common childhood brain tumor. Many patients with unresectable or recurrent/refractory tumors have significant lifelong disability. The majority of pLGG have mutations increasing the activity of the Ras/mitogen-activated protein kinase (MAPK) pathway. Activation of mammalian target of rapamycin (mTOR) is also a hallmark of pLGG. We therefore hypothesized that the dual target of rapamycin complexes 1 and 2 (TORC1/2) kinase inhibitor TAK228 would synergize with the mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor trametinib in pLGG. METHODS: We tested TAK228 and trametinib in patient-derived pLGG cell lines harboring drivers of pLGG including BRAFV600E and neurofibromatosis type 1 loss. We measured cell proliferation, pathway inhibition, cell death, and senescence. Synergy was analyzed via MTS assay using the Chou-Talalay method. In vivo, we tested for overall survival and pathway inhibition and performed immunohistochemistry for proliferation and vascularization. We performed a scratch assay and measured angiogenesis protein activation in human umbilical vein endothelial cells (HUVECs). RESULTS: TAK228 synergized with trametinib in pLGG at clinically relevant doses in all tested cell lines, suppressing proliferation, inducing apoptosis, and causing senescence in a cell line-dependent manner. Combination treatment increased median survival by 70% and reduced tumor volume compared with monotreatment and control cohorts. Vascularization of tumors decreased as measured by CD31 and CD34. Combination treatment blocked activation of focal adhesion kinase (FAK) and sarcoma proto-oncogene non-receptor tyrosine kinase (SRC) in HUVEC cells and reduced HUVEC migration compared with each drug alone. CONCLUSIONS: The combination of TAK228 and trametinib synergized to suppress the growth of pLGG. These agents synergized to reduce tumor vascularity and endothelial cell growth and migration by blocking activation of FAK and SRC.


Assuntos
Células Endoteliais , Glioma , Linhagem Celular Tumoral , Proliferação de Células , Criança , Glioma/tratamento farmacológico , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Quinases de Proteína Quinase Ativadas por Mitógeno , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas
9.
Front Pharmacol ; 11: 579298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597869

RESUMO

It's well known that the mammalian target of rapamycin (mTOR) exerts a critical role in the regulator of immune cells and is associated with T cells dysfunction in patients with systemic lupus erythematosus (SLE). Antigen-induced T-cell proliferation via mTORC1 suppressed by Rapamycin has been used to improve SLE primarily. Previously it has showed that INK128, a highly potent, specific orally inhibitor of mTORC1 and mTORC2, significantly attenuates SLE in pristine-induced lupus mice. Herein we compared the cure effects of INK128 and rapamycin on lupus mice. We treated MRL/lpr mice with INK128 or rapamycin at 12 weeks-age. The effect of the two inhibitors on the lupus mice was determined by immunohistochemistry. The effect of the two inhibitors on T cell populations was investigated by flow cytometry. The mTOR signaling was measured by Western Blot. INK128 remarkably alleviated SLE by reducing splenomegaly, renal inflammation and damage, and resuming T-cell dysfunction. The more effective of INK128 on SLE than rapamycin. INK128 effectively suppressed mTORC1 and mTORC2 activity in T cells, but rapamycin just suppressed mTORC1 activity. Thus, our results show that INK128 is can effectively alleviate SLE and be used as one of the potential clinical therapeutic candidates for SLE.

10.
J Photochem Photobiol B ; 213: 112055, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33142217

RESUMO

The range of cellular functions the mechanistic target of rapamycin (mTOR) protein performs makes it an attractive drug target for cancer therapy. However, the cellular localisation and mode of action of second generation inhibitors of mTOR is poorly understood despite the level of attention there is in targeting the mTOR protein. We have therefore studied the properties of the pan-mTOR inhibitor AZD2014, an ideal candidate to study because it is naturally fluorescent, characterising its photochemical properties in solution phase (DMSO, PBS and BSA) and within living cells, where it localises within both the nucleus and the cytoplasm but with different excited state lifetimes of 4.8 (+/- 0.5) and 3.9 (+/- 0.4) ns respectively. We measure the uptake of the inhibitor AZD2014 (7 µM) in monolayer HEK293 cells occurring with a half-life of 1 min but observe complex behaviour for 3D spheroids with the core of the spheroid showing a slower uptake and a slow biphasic behaviour at longer times. From a cellular perspective using fluorescence lifetime imaging microscopy AZD2014 was found to interact directly with GFP-tagged mTORC1 proteins including the downstream target, S6K1. We observe light sensitive behaviour of the cells containing AZD2014 which leads to cell death, in both monolayer and spheroids cells, demonstrating the potential of AZD2014 to act as a possible photodynamic drug under both single photon and multiphoton excitation and discuss its use as a photosensitizer. We also briefly characterise another pan-mTOR inhibitor, INK128.


Assuntos
Antineoplásicos/química , Benzamidas/química , Corantes Fluorescentes/química , Morfolinas/química , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Benzamidas/farmacologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células , Cricetulus , Humanos , Cinética , Microscopia de Fluorescência por Excitação Multifotônica , Morfolinas/farmacologia , Imagem Óptica , Fotoquimioterapia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia
11.
mBio ; 10(1)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782662

RESUMO

Primary effusion lymphoma (PEL) is caused by Kaposi's sarcoma-associated herpesvirus (KSHV). PEL has a highly active mTOR pathway, which makes mTOR a potential therapeutic target. MLN0128 is an ATP-competitive inhibitor of mTOR that has entered clinical trials for solid tumors. Our results demonstrated that MLN0128 has a greater effect on inhibiting proliferation than the allosteric mTOR inhibitor rapamycin. MLN0128 has ∼30 nM 50% inhibitory concentration (IC50) across several PEL cell lines, including PEL that is resistant to conventional chemotherapy. MLN0128 induced apoptosis in PEL, whereas rapamycin induced G1 arrest, consistent with a different mechanism of action. MLN0128 inhibited phosphorylation of mTOR complex 1 and 2 targets, while rapamycin only partially inhibited mTOR complex 1 targets. PEL xenograft mouse models treated with MLN0128 showed reduced effusion volumes in comparison to the vehicle-treated group. Rapamycin-resistant (RR) clones with an IC50 for rapamycin 10 times higher than the parental IC50 emerged consistently after rapamycin exposure as a result of transcriptional adaptation. MLN0128 was nevertheless capable of inducing apoptosis in these RR clones. Our results suggest that MLN0128 might offer a new approach to the treatment of chemotherapy-resistant PEL.IMPORTANCE Primary effusion lymphoma (PEL) is an aggressive and incurable malignancy, which is usually characterized by lymphomatous effusions in body cavities without tumor masses. PEL has no established treatment and a poor prognosis, with a median survival time shorter than 6 months. PEL usually develops in the context of immunosuppression, such as HIV infection or post-organ transplantation. The optimal treatment for PEL has not been established, as PEL is generally resistant to traditional chemotherapy. The molecular drivers for PEL are still unknown; however, PEL displays a constitutively active mammalian target of rapamycin (mTOR) pathway, which is critical for metabolic and cell survival mechanisms. Therefore, the evaluation of novel agents targeting the mTOR pathway could be clinically relevant for the treatment of PEL.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Linfoma de Efusão Primária/tratamento farmacológico , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzoxazóis/administração & dosagem , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Xenoenxertos , Humanos , Concentração Inibidora 50 , Linfoma de Efusão Primária/patologia , Camundongos , Transplante de Neoplasias , Pirimidinas/administração & dosagem , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Resultado do Tratamento
12.
Cancer Lett ; 454: 108-119, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30981761

RESUMO

Treatment of oral squamous cell carcinoma (OSCC) remains a challenge because of the lack of effective early treatment strategies and high incidence of relapse. Here, we showed that combined 4SC-202 (a novel selective class I HDAC inhibitor) and INK128 (a selective mTORC1/C2 inhibitor) treatment exhibited synergistic effects on inhibiting cell growth, sphere-forming ability, subcutaneous tumor formation and ALDH1+ cancer stem cells (CSCs) in OSCC. The initiation of OSCC was significantly inhibited by combined treatment in 4NQO-induced rat model. In addition, upregulated SOX2 was associated with advanced and metastatic tumors in OSCC patients and was responsible for the drug-resistance property of OSCC cells. The inhibitory effect of combined treatment on cell viability and ALDH1+ CSCs were attenuated by SOX2 verexpression. Furthermore, combined treatment can effectively overcome chemoresistance and inhibit the growth of recurrent OSCC in vitro and in vivo. Mechanistically, 4SC-202 and INK128 repressed SOX2 expression through miR-429/miR-1181-mediated mRNA degradation and preventing cap-dependent mRNA translation, respectively. These results suggest that combined class I histone deacetylase and mTORC1/C2 inhibition suppresses the carcinogenesis and recurrence of OSCC by repressing SOX2.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Neoplasias Bucais/tratamento farmacológico , Fatores de Transcrição SOXB1/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Benzoxazóis/administração & dosagem , Benzoxazóis/farmacologia , Carcinogênese , Sinergismo Farmacológico , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Bucais/metabolismo , Recidiva Local de Neoplasia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Distribuição Aleatória , Ratos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Lett ; 400: 110-116, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28450157

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an invasive and treatment-refractory pediatric brain tumor. Primary DIPG tumors harbor a number of mutations including alterations in PTEN, AKT, and PI3K and exhibit activation of mammalian Target of Rapamycin Complex 1 and 2 (mTORC1/2). mTORC1/2 regulate protein translation, cell growth, survival, invasion, and metabolism. Pharmacological inhibition of mTORC1 is minimally effective in DIPG. However, the activity of dual TORC kinase inhibitors has not been examined in this tumor type. Nanomolar levels of the mTORC1/2 inhibitor TAK228 reduced expression of p-AKTS473 and p-S6S240/244 and suppressed the growth of DIPG lines JHH-DIPG1, SF7761, and SU-DIPG-XIII. TAK228 induced apoptosis in DIPG cells and cooperated with radiation to further block proliferation and enhance apoptosis. TAK228 monotherapy inhibited the tumorigenicity of a murine orthotopic model of DIPG, more than doubling median survival (p = 0.0017) versus vehicle. We conclude that dual mTOR inhibition is a promising potential candidate for DIPG treatment.


Assuntos
Benzoxazóis/farmacologia , Neoplasias do Tronco Encefálico/terapia , Quimiorradioterapia , Glioma/terapia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Neoplasias do Tronco Encefálico/enzimologia , Neoplasias do Tronco Encefálico/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta a Droga , Glioma/enzimologia , Glioma/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos NOD , Camundongos SCID , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Neuro Oncol ; 19(10): 1361-1371, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28582547

RESUMO

BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RTs) are deadly pediatric brain tumors driven by LIN28. Mammalian target of rapamycin (mTOR) is activated in many deadly, drug-resistant cancers and governs important cellular functions such as metabolism and survival. LIN28 regulates mTOR in normal cells. We therefore hypothesized that mTOR is activated downstream of LIN28 in AT/RT, and the brain-penetrating mTOR complex 1 and 2 (mTORC1/2) kinase inhibitor TAK228 would reduce AT/RT tumorigenicity. METHODS: Activation of mTOR in AT/RT was determined by measuring pS6 and pAKT (Ser473) by immunohistochemistry on tissue microarray of 18 primary AT/RT tumors. In vitro growth assays (BrdU and MTS), death assays (CC3, c-PARP by western blot), and survival curves of AT/RT orthotopic xenograft models were used to measure the efficacy of TAK228 alone and in combination with cisplatin. RESULTS: Lentiviral short hairpin RNA-mediated knockdown of LIN28A led to decreased mTOR activation. Primary human AT/RT had high levels of pS6 and pAKT (Ser473) in 21% and 87% of tumors by immunohistochemistry. TAK228 slowed cell growth, induced apoptosis in vitro, and nearly doubled median survival of orthotopic xenograft models of AT/RT. TAK228 combined with cisplatin synergistically slowed cell growth and enhanced cisplatin-induced apoptosis. Suppression of AKT sensitized cells to cisplatin-induced apoptosis and forced activation of AKT protected cells. Combined treatment with TAK228 and cisplatin significantly extended survival of orthotopic xenograft models of AT/RT compared with each drug alone. CONCLUSIONS: TAK228 has efficacy in AT/RT as a single agent and synergizes with conventional chemotherapies by sensitizing tumors to cisplatin-induced apoptosis. These results suggest TAK228 may be an effective new treatment for AT/RT.


Assuntos
Antineoplásicos/uso terapêutico , Benzoxazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Tumor Rabdoide/tratamento farmacológico , Teratoma/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Camundongos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Front Microbiol ; 7: 1658, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812353

RESUMO

Infections of Exophiala spp. and Fusarium spp. are often chronic and recalcitrant. Systemic disseminations, which mostly occur in immunocompromised patients, are often refractory to available antifungal therapies. The conserved target of rapamycin (TOR) orchestrates cell growth and proliferation in response to nutrients and growth factors, which are important for pathogenicity and virulence. INK128 is a second-generation ATP-competitive TOR inhibitor, which binds the TOR catalytic domain and selectively inhibits TOR. In the present study, we investigated the in vitro activities of INK128 alone and the interactions of INK128 with conventional antifungal drugs including itraconazole, voriconazole, posaconazole, and amphotericin B against 18 strains of Exophiala spp. and 10 strains of Fusarium spp. via broth microdilution checkerboard technique system adapted from Clinical and Laboratory Standards Institute broth microdilution method M38-A2. INK128 alone was inactive against all isolates tested. However, favorable synergistic effects between INK128 and voriconazole were observed in 61% Exophiala strains and 60% Fusarium strains, despite Fusarium strains exhibited high MIC values (4-8 µg/ml) against voriconazole. In addition, synergistic effects of INK128/itraconazole were shown in 33% Exophiala strains and 30% Fusarium strains, while synergy of INK128/posaconazole were observed in 28% Exophiala strains and 30% Fusarium strains. The effective working ranges of INK128 were 0.125-2 µg/ml and 1-4 µg/ml against Exophiala isolates and Fusarium isolates, respectively. No synergistic effect was observed when INK128 was combined with amphotericin B. No antagonism was observed in all combinations. In conclusion, INK128 could enhance the in vitro antifungal activity of voriconazole, itraconazole and posaconazole against Exophiala spp. and Fusarium spp., suggesting that azoles, especially voriconazole, combined with TOR kinase inhibitor might provide a potential strategy to the treatment of Exophiala and Fusarium infections. However, further investigations are warranted to elucidate the underlying mechanism and to determine possible reliable and safe application in clinical practice.

16.
Cancer Biol Ther ; 16(1): 34-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692620

RESUMO

The colorectal cancer is the leading contributor of cancer-related mortality. Mammalian target of rapamycin (mTOR), existing in 2 complexes (mTORC1/2), is frequently dysregulated and constitutively activated in colorectal cancers. It represents an important drug target. Here we found that INK-128, the novel ATP-competitive kinase inhibitor of mTOR, blocked both mTORC1 and mTORC2 activation in colorectal cancer cells (both primary and transformed cells). The immunoprecipitation results showed that the assembly of mTORC1 (mTOR-Raptor association) and mTORC2 (mTOR-Rictor-Sin1 association) was also disrupted by INK-128. INK-128 inhibited colorectal cancer cell growth and survival, and induced both apoptotic and non-apoptotic cancer cell death. Further, INK-128 showed no effect on Erk/MAPK activation, while MEK/Erk inhibition by MEK-162 enhanced INK-128-induced cytotoxicity in colorectal cancer cells. Meanwhile, INK-128 downregulated Fascin1 (FSCN1)/E-Cadherin expressions and inhibited HT-29 cell in vitro migration. In vivo, daily INK-128 oral administration inhibited HT-29 xenograft growth in mice, which was further enhanced by MEK-162 administration. Finally, we found that INK-128 sensitized 5-fluorouracil-(5-FU)-mediated anti-HT-29 activity in vivo and in vitro. Thus, our preclinical studies strongly suggest that INK-128 might be investigated for colorectal cancer treatment in clinical trials.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Neoplasias Colorretais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzoxazóis/administração & dosagem , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fluoruracila/farmacologia , Células HT29 , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Proteínas dos Microfilamentos/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA