Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 203: 108047, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142929

RESUMO

Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.


Assuntos
Trypanosomatina , Animais , Humanos , Trypanosomatina/genética , Insetos/parasitologia
2.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731602

RESUMO

Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.


Assuntos
Engenharia Metabólica , Plantas , Metabolismo Secundário , Plantas/metabolismo , Engenharia Metabólica/métodos , Biologia Sintética/métodos
3.
BMC Plant Biol ; 23(1): 234, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138221

RESUMO

In this study, the ecological conditions of the natural habitat of Lemna minuta Kunth in Morocco were investigated, and the impact of five synthetic growth media (Murashige-Skoog (MS), Schenk-Hildebrand (SH), Hoagland medium (HM), 10X Algal Assay Procedure (AAP), and Swedish Standard Institute medium (SIS)) on the morphophysiological and biochemical parameters was analysed. The morphophysiological parameters included root length, frond surface area, and fresh weight, while the biochemical parameters included photosynthetic pigments, carbohydrates, and protein content. The study was conducted in vitro in two phases: an uncontrolled aeration system (Phase I) and a controlled aeration system (Phase II).The results showed that the pH, conductivity, salinity, and ammonium levels in the natural habitat were within the optimal range for duckweed growth. The measured orthophosphate concentrations were higher compared to previous observations, while the recorded chemical oxygen demand values were low. The study also revealed a significant effect of the culture medium composition on the morphophysiological and biochemical parameters of the duckweed. The fresh weight biomass, relative growth rate in fronds, relative growth rate in surface area, root length, protein content, carbohydrates, chlorophyll (a), chlorophyll (b), total chlorophyll, carotenoids, and the chlorophyll (a/b) ratio were all affected by the culture medium.The most accurate regression models described the growth index GI(F) based on time and in vitro culture conditions in both phases. In Phase I, the best models for MS, SIS, AAP, and SH media were linear, weighted quadratic, cubic, and weighted cubic, respectively. In Phase II, the best models for all growth media were linear. The time coefficients (in days) for Phase II were 0.321, 0.547, 1.232, 1.470, and 0.306 for AAP, HM, MS, SH, and SIS, respectively.Comparing the morphophysiological and biochemical parameters of fronds from different media and analysing the regression model results showed that the SH and MS media were the best among the tested media for the in vitro culture of L. minuta in controlled aeration conditions. However, further research is needed to develop new synthetic media that best promote the growth and maintenance of this duckweed in long-term culture.


Assuntos
Araceae , Ecossistema , Clorofila/metabolismo , Clorofila A/metabolismo , Carboidratos , Proteínas/metabolismo , Plantas/metabolismo , Proliferação de Células
4.
Phytochem Rev ; : 1-16, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37359710

RESUMO

Chimaphila umbellata has been studied for almost two centuries now, with the first paper exploring the phytochemistry of the plant published in 1860. Almost all contemporary studies focus on the biotechnological advances of C. umbellata including its utilization as a natural alternative in the cosmetic, food, biofuel, and healthcare industry, with a special focus on its therapeutic uses. This literature review critically investigates the significance and applications of secondary metabolites extracted from the plant and presses on the biotechnological approaches to improve its utilization. C. umbellata is home to many industrially and medicinally important phytochemicals, the majority of which belong to phenolics, sterols, and triterpenoids. Other important compounds include 5-hydroxymethylfurfural, isohomoarbutin, and methyl salicylate (the only essential oil of the plant). Chimaphilin is the characteristic phytochemical of the plant. This review focuses on the phytochemistry of C. umbellata and digs into their chemical structures and attributes. It further discusses the challenges of working with C. umbellata including its alarming conservation status, problems with in-vitro cultivation, and research and development issues. This review concludes with recommendations based on biotechnology, bioinformatics, and their crucial interface.

5.
Planta ; 253(2): 29, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423117

RESUMO

MAIN CONCLUSION: Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.


Assuntos
Alternaria , Raízes de Plantas , Silício , Sorghum , Alternaria/efeitos dos fármacos , Fenilalanina Amônia-Liase , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/microbiologia , Silício/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/enzimologia , Sorghum/microbiologia
6.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299095

RESUMO

The influence of cultivation on the expression pattern of canine adipose-derived mesenchymal stem cells (cAD-MSCs) surface markers, contributing to, among others, the promotion of growth, proliferation, differentiation and immunomodulatory mechanisms of an excellent therapeutic, is still unknown. To fill the gap, we investigated CD90, CD44, CD73, CD29, CD271, CD105, CD45 and CD14 patterns of expression at the protein level with flow cytometry and mRNA level using a real-time polymerase chain reaction array. Gentle variations of expression occurred during cultivation, along with increased CD90, CD44 and CD29 expression, low and decreasing CD271 and CD73 expression and a decrease of initially high CD105. As expected, CD45 and CD14 were not expressed by cAD-MSCs. Interestingly, we discovered a significant decrease of CD73 expression, compared to early (P1-P3) to late (P4-P6) passages, although the CD73 gene expression was found to be stable. The percentage of positive cells was found to be higher for all positive markers up to P4. As CD73's one important feature is a modulation from a pro-inflammatory environment to an anti-inflammatory milieu, the expression of CD73 in our conditions indicate the need to consider the time cells spend in vitro before being transplanted into patients, since it could impact their favourable therapeutical properties.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Cães , Feminino , Perfilação da Expressão Gênica , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/citologia
7.
Molecules ; 26(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641432

RESUMO

Micropropagation of rare Veronica caucasica M. Bieb. was achieved by successful in vitro cultivation of mono-nodal segments on MS medium supplemented with 1.0 mg L-1 6-benzylaminopurine (BA) and then transferring the regenerated plants on hormone free basal MS medium for root development. In vitro multiplicated plants were successively acclimated in a growth chamber and a greenhouse with 92% survival. The number of plastid pigments and the total phenolics content in in vitro cultivated and ex vitro adapted plants were unchanged, and no accumulation of reactive oxygen species (ROS) was detected by staining with 3-3'-diaminobenzidine (DAB) and 2',7'-dichlorofluorescein diacetate (DCF-DA). Nuclear Magnetic Resonance (NMR) fingerprinting allowed for the identification of the major alterations in metabolome of V. caucasica plants during the process of ex situ conservation. Iridoid glucosides such as verproside, aucubin and catalpol were characteristic for in vitro cultivated plants, while in ex vitro acclimated plants phenolic acid-protocatechuic acid and caffeic acid appeared dominant. The successful initiation of in vitro and ex vitro cultures is an alternative biotechnological approach for the preservation of V. caucasica and would allow for further studies of the biosynthetic potential of the species and the selection of lines with a high content of pharmaceutically valuable molecules and nutraceuticals.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Fenóis/análise , Veronica/crescimento & desenvolvimento , Veronica/metabolismo , Técnicas In Vitro , Pigmentos Biológicos/metabolismo , Plastídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Exp Parasitol ; 217: 107966, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32781094

RESUMO

Toxoplasma gondii has long been considered a ubiquitous parasite possessing the capacity of infecting virtually all warm-blooded animals globally. Occasionally, this parasite can also infect cold-blooded animals such as fish if their body temperature reaches 37 °C. However, we are currently lacking an understanding of key details such as the minimum temperature required for T. gondii invasion and proliferation in these cold-blooded animals and their cells. Here, we performed in vitro T. gondii infection experiments with rat embryo fibroblasts (REF cells), grouper (Epinephelus coioides) splenocytes (GS cells) and zebra fish (Danio rerio) hepatocytes (ZFL cells), at 27 °C, 30 °C, 32 °C, 35 °C and 37 °C, respectively. We found that T. gondii tachyzoites could penetrate REF, GS nd ZFL cells at 27 °C but clear inhibition of multiplication was observed. Intriguingly, the intracellular tachyzoites retained the ability to infect mice after 12 days of incubation in GS cells cultured at 27 °C as demonstrated by bioassay. At 30 °C, 32 °C and 35 °C, we observed that the mammalian cells (REF cells) and fish cells (GS and ZFL cells) could support T. gondii invasion and replication, which showed a temperature-dependent relationship in infection and proliferation rates. Our data demonstrated that the minimum temperature for T. gondii invasion and replication was 27 °C and 30 °C respectively, which indicated that temperature should be a key factor for T. gondii invasion and proliferation in host cells. This suggests that temperature-dependent infection determines the differences in the capability of T. gondii to infect cold- and warm-blooded vertebrates.


Assuntos
Bass/parasitologia , Fibroblastos/parasitologia , Hepatócitos/parasitologia , Temperatura , Toxoplasma/fisiologia , Peixe-Zebra/parasitologia , Animais , Bioensaio , Temperatura Corporal , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Baço/citologia , Baço/parasitologia , Toxoplasma/crescimento & desenvolvimento
9.
J Invertebr Pathol ; 174: 107420, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32522660

RESUMO

Microsporidia are obligate intracellular parasites and cannot be cultured in vitro, which limits the use of current genetic engineering technologies on this pathogen. We isolated sporoplasms of Nosema bombycis to attempt to culture the pathogen in vitro. Cell-free medium was designed and successfully maintained the sporoplasms for 5 days. The sporoplasms were able to absorb ATP from the medium and DNA replicated during cultivation, although there was not a significant change in morphology and number of sporoplasms. Our study provides a strategy for in vitro cultivation and genetic manipulation of microsporidia. .


Assuntos
Engenharia Genética/métodos , Nosema/crescimento & desenvolvimento , Técnicas Microbiológicas/métodos
10.
Proc Natl Acad Sci U S A ; 114(6): 1365-1370, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28123064

RESUMO

Mesenchymal stromal cells (MSCs) have recently been shown to play important roles in mammalian host defenses against intracellular pathogens, but the molecular mechanism still needs to be clarified. We confirmed that human MSCs (hMSCs) prestimulated with IFN-γ showed a significant and dose-dependent ability to inhibit the growth of two types of Toxoplasma gondii [type I RH strain with green fluorescent proteins (RH/GFP) or type II PLK strain with red fluorescent proteins (PLK/RED)]. However, in contrast to previous reports, the anti-T. gondii activity of hMSCs was not mediated by indoleamine 2,3-dioxygenase (IDO). Genome-wide RNA sequencing (RNA-seq) analysis revealed that IFN-γ increased the expression of the p65 family of human guanylate-binding proteins (hGBPs) in hMSCs, especially hGBP1. To analyze the functional role of hGBPs, stable knockdowns of hGBP1, -2, and -5 in hMSCs were established using a lentiviral transfection system. hGBP1 knockdown in hMSCs resulted in a significant loss of the anti-T. gondii host defense property, compared with hMSCs infected with nontargeted control sequences. hGBP2 and -5 knockdowns had no effect. Moreover, the hGBP1 accumulation on the parasitophorous vacuole (PV) membranes of IFN-γ-stimulated hMSCs might protect against T. gondii infection. Taken together, our results suggest that hGBP1 plays a pivotal role in anti-T. gondii protection of hMSCs and may shed new light on clarifying the mechanism of host defense properties of hMSCs.


Assuntos
Proteínas de Ligação ao GTP/imunologia , Células-Tronco Mesenquimais/imunologia , Toxoplasma/imunologia , Vacúolos/imunologia , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/parasitologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Células HeLa , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Humanos , Interferon gama/imunologia , Interferon gama/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/parasitologia , Camundongos , Interferência de RNA , Toxoplasma/genética , Toxoplasma/fisiologia , Vacúolos/efeitos dos fármacos , Vacúolos/parasitologia
11.
Parasitol Res ; 119(12): 4185-4195, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33033848

RESUMO

Leishmania spp. parasites have a complex biological cycle presenting basically two different morphological stages, the amastigote and promastigote forms. In vitro cultivation allows a more complete study of the biological aspects of these parasites, indicating better conditions for infection, immunoassay tests, drug evaluations, and vaccines. Thus, we evaluated the three most used culture media for Leishmania spp., Grace's insect cell culture medium (Grace's), liver infusion tryptose (LIT), and Schneider's insect medium (Schneider's), without supplementation or supplemented with fetal calf serum (FCS) and bovine serum albumin (Albumin) to evaluate the growth, viability, and infectivity of the L. infantum promastigotes. It was observed that promastigote forms have a better growth in LIT and Schneider's with or without FCS when compared to that in Grace's. The supplementation with albumin promoted greater viability of the parasites independent of the medium. For in vitro infection of J774.A1 macrophages using light microscopy and flow cytometry analyses, FCS-supplemented LIT and Grace's promoted higher percentage of infected macrophages and parasite load compared with Schneider's media. Taken together, our results demonstrated that the supplementation of LIT culture medium with FCS is the most suitable strategy to cultivate Leishmania infantum parasites enabling the maintenance of growth and infective parasites for research uses.


Assuntos
Leishmania infantum/efeitos dos fármacos , Leishmania infantum/crescimento & desenvolvimento , Fígado/enzimologia , Parasitologia/métodos , Animais , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Leishmania infantum/fisiologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Compostos Orgânicos/análise , Compostos Orgânicos/farmacologia
12.
Malar J ; 17(1): 283, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081913

RESUMO

BACKGROUND: Although the use of induced blood stage malaria infection has proven to be a valuable tool for testing the efficacy of vaccines and drugs against Plasmodium falciparum, a limiting factor has been the availability of Good Manufacturing Practice (GMP)-compliant defined P. falciparum strains for in vivo use. The aim of this study was to develop a cost-effective method for the large-scale production of P. falciparum cell banks suitable for use in clinical trials. METHODS: Genetically-attenuated parasites (GAP) were produced by targeted deletion of the gene encoding the knob associated histidine rich protein (kahrp) from P. falciparum strain 3D7. A GAP master cell bank (MCB) was manufactured by culturing parasites in an FDA approved single use, closed system sterile plastic bioreactor. All components used to manufacture the MCB were screened to comply with standards appropriate for in vivo use. The cryopreserved MCB was subjected to extensive testing to ensure GMP compliance for a phase 1 investigational product. RESULTS: Two hundred vials of the GAP MCB were successfully manufactured. At harvest, the GAP MCB had a parasitaemia of 6.3%, with 96% of parasites at ring stage. Testing confirmed that all release criteria were met (sterility, absence of viral contaminants and endotoxins, parasite viability following cryopreservation, identity and anti-malarial drug sensitivity of parasites). CONCLUSION: Large-scale in vitro culture of P. falciparum parasites using a wave bioreactor can be achieved under GMP-compliant conditions. This provides a cost-effective methodology for the production of malaria parasites suitable for administration in clinical trials.


Assuntos
Reatores Biológicos/parasitologia , Técnicas de Cultura de Células/métodos , Microrganismos Geneticamente Modificados , Plasmodium falciparum , Antimaláricos/uso terapêutico , Bancos de Espécimes Biológicos , Ensaios Clínicos como Assunto , Malária/tratamento farmacológico , Vacinas Antimaláricas/imunologia
13.
Parasitol Res ; 116(8): 2231-2237, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28616635

RESUMO

Angiostrongylus cantonensis (A. cantonensis), a parasitic nematode, is the important neurotropic pathogen which causes human angiostrongyliasis. It has a complex life-cycle and severe parasite-host interaction in contrast to free-living nematode. Establishment of a well-suited life-cycle and in vitro cultivation of A. cantonensis in the laboratory will be one of the key techniques to elucidate the mechanism of parasite-host interaction. However, the low survival and growth rate of worms is still to be the problem. We optimized the known life-cycle of A. cantonensis in the laboratory, showing that small in size, easy to breed, and high compatibility of Biomphalaria straminea precede the common snails as an intermediate host of A. cantonensis. Furthermore, the egg hatching rate in Ham's F-12 medium reached approximately 80% using the eggs of mature female adult worms. We also demonstrated that the survival of larvae could be sustained for more than 30 days by in vitro cultivation of L1 larvae in DMEM with mixed antibiotics (100 units/mL of penicillin G potassium, 50 µg/mL of streptomycin sulfate, and 0.5 µg/mL of amphotericin B) and L3, L4, and L5 larvae in Waymouth's medium with 20% fetal calf serum and mixed antibiotics. Infective L1 and L3 larvae kept high infective rate to the snail and rat after cultivation in these media, respectively. It will provide the basis for studying on genetic manipulations for functional genes, new drug screening, and the mechanism of parasite-host interaction of parasitic nematodes.


Assuntos
Angiostrongylus cantonensis/crescimento & desenvolvimento , Animais , Meios de Cultura , Feminino , Interações Hospedeiro-Parasita , Larva/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Masculino , Ratos , Ratos Sprague-Dawley , Caramujos/parasitologia , Infecções por Strongylida/parasitologia
15.
Parasitol Res ; 115(11): 4405-4416, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27515372

RESUMO

Parts of the natural life cycle of Echinococcus granulosus can be retraced in vitro such as the development of protoscoleces into semiadult worms with three or more proglottids, or the redifferentiation of in vitro cultured protoscoleces into metacestode-like cystic structures. Most in vitro generated samples share-at the microscopical level-high similarities with those naturally grown, but developmental differences have also been documented, such as missing egg production in in vitro grown adults or unusual bladder/vesicle formation in protoscoleces cultured into the metacestode direction. The aim of the present study was to explore how far different in vitro generated stage-specific materials/structures match the natural situation on the transcriptome level, based on testing five exemplarily chosen different genes: the frizzled receptor eg-fz4 (posterior marker), the FGF receptor-like factor eg-fgfrl (anterior association), the cell differentiation protein eg-rcd1 (part of the CCR4-NOT complex, a key regulator of eukaryotic gene expression), the rapidly accelerated fibrosarcoma serin/threonin kinase eg-braf (part of the MAPK pathway involved, e.g., in EGF signaling) and the co-smad eg-smadD (downstream factor of TGFß/BMP2/activin signaling). These genes-tested via qPCR-were selected such as to allow a discussion on their potential role in the development of E. granulosus into the adult stage. Thus, testing took place with three ex vivo isolated samples, namely (i) egg-containing adult worms, (ii) invaginated protoscoleces, and (iii) protoscolex-free germinal layer tissue. Respective data were compared (a) with in vitro generated metacestode-like microcysts developed from protoscolices, and (b) different development stages of protoscoleces in vitro cultured toward adult maturation. As a finding, only eg-smadD and partially eg-fz4 showed high expression similarities between ex vivo harvested and in vitro cultured E. granulosus, thus suggesting a putative role in adult maturation. Conclusively, the fact of using "only" five genes did not allow answering the question if ex vivo and in vitro materials are similar on the transcriptome level. Another experimental restriction arises from different growth conditions of the in vitro cultured materials, and comparing these to the ex vivo harvested ones. Future experiments may solve the problems by using fully standardized E. granulosus sample collection and fully standardized culture conditions.


Assuntos
Echinococcus granulosus/genética , Genes de Helmintos , Animais , Doenças do Cão/parasitologia , Cães , Equinococose/parasitologia , Equinococose/veterinária , Echinococcus , Echinococcus granulosus/crescimento & desenvolvimento , Echinococcus granulosus/isolamento & purificação , Perfilação da Expressão Gênica , Estágios do Ciclo de Vida , Masculino , Ovinos , Doenças dos Ovinos/parasitologia
16.
Plant Physiol Biochem ; 214: 108884, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38945096

RESUMO

The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.

17.
Front Nutr ; 11: 1315555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385010

RESUMO

The cultivation of meat using in vitro grown animal stem cells offers a promising solution to pressing global concerns around climate change, ethical considerations, and public health. However, cultivated meat introduces an unprecedented necessity: the generation of mass scales of cellular biomaterial, achieved by fostering cell proliferation within bioreactors. Existing methods for in vitro cell proliferation encounter substantial challenges in terms of both scalability and economic viability. Within this perspective, we discuss the current landscape of cell proliferation optimization, focusing on approaches pertinent to cellular agriculture. We examine the mechanisms governing proliferation rates, while also addressing intrinsic and conditional rate limitations. Furthermore, we expound upon prospective strategies that could lead to a significant enhancement of the overall scalability and cost-efficiency of the cell proliferation phase within the cultivated meat production process. By exploring knowledge from basic cell cycle studies, pathological contexts and tissue engineering, we may identify innovative solutions toward optimizing cell expansion.

18.
J Parasitol ; 110(3): 210-217, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38811020

RESUMO

Alveolar echinococcosis is considered to be one of the most potentially lethal parasitic zoonotic diseases. However, the molecular mechanisms by which Echinococcus multilocularis interacts with hosts are poorly understood, hindering the prevention and treatment of this disease. Due to the great advantages of cell culture systems for molecular research, numerous attempts have been made to establish primary cell cultures for E. multilocularis. In this study we developed a simple, rapid, and economical method that allows E. multilocularis metacestode tissue blocks to generate daughter vesicles without the continuous presence of host feeder cells in a regular medium. We performed anaerobic, hypoxic (1% O2), normoxic, and semi-anaerobic (in sealed tubes) cultures and found that E. multilocularis metacestode tissues can produce daughter vesicles only in the sealed tubes after 4 wk of incubation. The daughter vesicles cultivated in this system were remarkably enlarged under anaerobic conditions after 8 days of culture, whereas vesicles cultured under hypoxic (1% O2) and normoxic conditions showed only a mild increase in volume. Our in vitro cultivated vesicles showed strong viability and could be used to test antiparasitic drugs, isolate primary cells, and infect animals.


Assuntos
Echinococcus multilocularis , Animais , Echinococcus multilocularis/crescimento & desenvolvimento , Equinococose/parasitologia , Camundongos , Anaerobiose , Técnicas de Cultura de Células
19.
Mycologia ; 116(1): 213-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38085557

RESUMO

Despite significant research on early and late leaf spot diseases of peanut, in vitro study of the respective causal agents, Passalora arachidicola and Nothopassalora personata, has been limited due to cultural challenges that make growth of these fungi difficult to quantify with traditional methods. Studies were conducted to evaluate the practicality of image analysis to assess radial growth and tissue volume by correlating these assessments to dry mass. Image analysis was also used to estimate radial growth rates for these fungi over time. Tissue area and volume were significantly correlated to dry mass for P. arachidicola in two separate experiments, and for N. personata when medium had been removed from tissues prior to dry mass assessments. Tissue area densities were the same for P. arachidicola and Pseudocercospora smilacicola, evaluated as a nonstromatal cercosporoid comparison, whereas tissue volume densities were greater for P. archidicola and N. personata than P. smilacicola. A quadratic relationship was observed between radial growth and incubation time for all isolates evaluated. Growth rates of P. arachidicola isolates were 2 to 4 times faster than N. personata during the first week of incubation and slowed over time. Growth rates of NP18R, a phenotype variant of N. personata, increased after neighboring colonies met and was nearly 2.5 times faster than the fastest rates observed for P. arachidicola. These experiments demonstrate that when fungal tissues are observable, image analysis is a useful assessment tool for P. arachidicola and N. personata. Care should be taken to monitor fungal phenotypic changes in these species because phenotype degeneration can affect growth rates.


Assuntos
Arachis , Ascomicetos , Arachis/microbiologia , Ascomicetos/crescimento & desenvolvimento
20.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794425

RESUMO

Plant cryobanks play a significant role in modern science and breeding. They contribute to the recovery of lost species, the emergence of new plant varieties, and help preserve and explore the diversity of the plant world. The IPPRAS Cryobank collection is constantly supplemented with new samples, while, at the same time, the stored samples are being monitored. In order to test seed germination, seeds of Allium and Veratrum species were thawed. Rare Allium species seeds, such as A. nutans, A. schoenoprasum, and A. victorialis were stored in liquid nitrogen for 17, 19, and 30 years, respectively. Long-term cryopreservation decreased germination rates for A. nutans from 96.55 to 50.00%, for A. schoenoprasum from 72.00 to 62.75%, and for A. victorialis from 90.00 to 83.05%. Seeds of a rare medicinal species, Veratrum lobelianum, were stored in liquid nitrogen for 18 years; the seed germination rate during this storage period has been significantly decreased from 75.00 to 14.81%. V. nigrum seeds were also collected and frozen in liquid nitrogen for 3 days. Short-term cryopreservation did not result in a statistically significant change in germination rates (from 79.71 to 82.69%). The seeds of an endangered ornamental species, Cypripedium calceolus, were collected and kept frozen for 3 days. After cryopreservation, the seeds were planted on three different media, as follows: ½ MS, MS with 10% coconut milk, and BM1. On ½ MS medium, 24.98% seeds formed protocorms, while on MS medium with 10% coconut milk, this number was 10.02%, and on BM1 medium, it was 15.02%, respectively; however, after 2.5 months, all of the protocorms died. Thus, it appears that the existing protocol for seed cryopreservation of C. calceolus needs further improvement. The size, weight, and free water content (WC) of six previously cryopreserved Stipa species and three Allium species were measured. For all the Allium and Stipa species studied, we found no correlation between seed size, WC, and cryotolerance. We also found no correlation between the life form, which reflects the water requirement of the species, and cryotolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA