Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 715: 149957, 2024 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688057

RESUMO

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.


Assuntos
Domínio Catalítico , Clostridioides difficile , Endopeptidases , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/metabolismo , Endopeptidases/genética , Modelos Moleculares , Hexosaminidases/química , Hexosaminidases/genética , Hexosaminidases/metabolismo , Mutagênese , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos
2.
Virus Genes ; 60(2): 235-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349448

RESUMO

Hepatitis B virus (HBV) vaccine is composed of the purified hepatitis B surface antigen (HBsAg) that is produced by recombinant DNA technology. The neutralizing antibodies induced by vaccination target mainly the "a" determinant, aa124-147, of the outer viral envelope (HBsAg). In the present work, we demonstrate a case study for vaccinated patient that is infected with a vaccine escape HBV strain (Eg200). Characterization of the isolate Eg200 showed that it belongs to the genotype D and an uncommon sub-genotype in Egypt; D9. The DNA sequence encoding HBsAg was sequenced. Mutational analysis of the HBsAg showed a double mutation in the "a" determinant of this HBV isolate; T125M and P127T. However, such substitutions were found to be conserved to the detected serotype, ayw3, of Eg200 isolate. This case report indicates that continuous characterization of breakthrough vaccine escape strains of HBV is essential to develop the immunization strategies against HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Antígenos de Superfície da Hepatite B/genética , Anticorpos Anti-Hepatite B , Vacinas contra Hepatite B/genética , Mutação , DNA Viral/genética
3.
Acta Haematol ; 147(5): 604-611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402867

RESUMO

INTRODUCTION: Targeting the B-cell receptor pathway via ibrutinib, a specific inhibitor of Bruton's tyrosine kinase, has shown marked clinical efficacy in treatment of patients with chronic lymphocytic leukemia (CLL), thus becoming a preferred first line option independent of risk factors. However, acquired resistance to ibrutinib poses a major clinical problem and requires the development of novel treatment combinations to increase efficacy and counteract resistance development and clinical relapse rates. CASE PRESENTATION: In this study, we performed exome and transcriptome analyses of an ibrutinib resistant CLL patient in order to investigate genes and expression patterns associated with ibrutinib resistance. Here, we provide evidence that ibrutinib resistance can be attributed to aberrant mammalian target of rapamycin (MTOR) signaling. CONCLUSION: Thus, our study proposes that combined use of MTOR inhibitors with ibrutinib could be a possible option to overcome therapy resistance in ibrutinib treated patients.


Assuntos
Adenina , Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Piperidinas , Inibidores de Proteínas Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adenina/análogos & derivados , Piperidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/uso terapêutico , Masculino , Pirazóis/uso terapêutico , Pirazóis/farmacologia
4.
Future Oncol ; : 1-10, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229786

RESUMO

Somatic KIT activating mutations drive most gastrointestinal stromal tumors (GISTs). Disease progression eventually develops with first-line imatinib, commonly due to KIT secondary mutations, and different kinase inhibitors have various levels of treatment efficacy dependent on specific acquired resistance mutations. Ripretinib is a broad-spectrum switch-control KIT/PDGFRA tyrosine kinase inhibitor for patients with advanced GIST who received prior treatment with three or more kinase inhibitors, including imatinib. Exploratory baseline circulating tumor DNA analysis from the second-line INTRIGUE trial determined that patients with advanced GIST previously treated with imatinib harboring primary KIT exon 11 mutations and secondary resistance mutations restricted to KIT exons 17/18 had greater clinical benefit with ripretinib versus sunitinib. We describe the rationale and design of INSIGHT (NCT05734105), an ongoing Phase III open-label study of ripretinib versus sunitinib in patients with advanced GIST previously treated with imatinib exclusively harboring KIT exon 11 + 17/18 mutations detected by circulating tumor DNA.Clinical Trial Registration: NCT05734105 (ClinicalTrials.gov).


Gastrointestinal stromal tumor (GIST) is rare, but it is the most common mesenchymal tumor (a type of tumor that develops from cells which give rise to soft tissues) of the gastrointestinal tract. The primary treatment for advanced GIST is medication that targets the abnormal mechanisms in cancer cells in order to block tumor growth and spread. Ripretinib is an inhibitor of a protein known as KIT, which is a member of the tyrosine kinase protein family and is involved in the growth of GIST. In a Phase III clinical trial called INTRIGUE, the effects of ripretinib and another receptor tyrosine kinase inhibitor, sunitinib, were compared in patients with advanced GIST previously treated with the drug imatinib. An exploratory analysis from the INTRIGUE trial that characterized baseline circulating tumor DNA in the blood showed a greater clinical benefit with ripretinib versus sunitinib in patients with gene mutations solely occurring in KIT exon 11 + 17 and/or 18 (exon 11 + 17/18). This article describes the rationale and design for a Phase III clinical trial called INSIGHT that will evaluate the benefit of ripretinib compared with sunitinib in patients with advanced GIST whose tumors have mutations in KIT exon 11 and KIT exon 17 and/or 18. Patients will receive ripretinib or sunitinib in 6-week cycles, and investigators will assess survival without cancer progression as the primary outcome, and overall survival, and response of the tumor to these two drugs as secondary outcomes.

5.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125682

RESUMO

Brassinosteroids (BRs) are an essential group of plant hormones regulating numerous aspects of plant growth, development, and stress responses. BRI1, along with its co-receptor BAK1, are involved in brassinosteroid sensing and early events in the BR signal transduction cascade. Mutational analysis of a particular gene is a powerful strategy for investigating its biochemical role. Molecular genetic studies, predominantly in Arabidopsis thaliana, but progressively in numerous other plants, have identified many mutants of the BRI1 gene and its orthologs to gain insight into its structure and function. So far, the plant kingdom has identified up to 40 bri1 alleles in Arabidopsis and up to 30 bri1 orthologs in different plants. These alleles exhibit phenotypes that are identical in terms of development and growth. Here, we have summarized bri1 alleles in Arabidopsis and its orthologs present in various plants including monocots and dicots. We have discussed the possible mechanism responsible for the specific allele. Finally, we have briefly debated the importance of these alleles in the research field and the agronomically valuable traits they offer to improve plant varieties.


Assuntos
Alelos , Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Transdução de Sinais/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Clin Microbiol ; 61(8): e0184222, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37428072

RESUMO

Identification and analysis of clinically relevant strains of bacteria increasingly relies on whole-genome sequencing. The downstream bioinformatics steps necessary for calling variants from short-read sequences are well-established but seldom validated against haploid genomes. We devised an in silico workflow to introduce single nucleotide polymorphisms (SNP) and indels into bacterial reference genomes, and computationally generate sequencing reads based on the mutated genomes. We then applied the method to Mycobacterium tuberculosis H37Rv, Staphylococcus aureus NCTC 8325, and Klebsiella pneumoniae HS11286, and used the synthetic reads as truth sets for evaluating several popular variant callers. Insertions proved especially challenging for most variant callers to correctly identify, relative to deletions and single nucleotide polymorphisms. With adequate read depth, however, variant callers that use high quality soft-clipped reads and base mismatches to perform local realignment consistently had the highest precision and recall in identifying insertions and deletions ranging from1 to 50 bp. The remaining variant callers had lower recall values associated with identification of insertions greater than 20 bp.


Assuntos
Biologia Computacional , Software , Humanos , Biologia Computacional/métodos , Sequenciamento Completo do Genoma , Genoma , Polimorfismo de Nucleotídeo Único , Bactérias , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
7.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32743637

RESUMO

Progress in technology and algorithms throughout the past decade has transformed the field of protein design and engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze the effects of mutations for a variety of properties, comprising ligand binding, protein-protein and protein-nucleic acid interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools face and provide our perspectives on the further development of readily applicable methods to guide protein engineering efforts.


Assuntos
Biologia Computacional , Mutação , Engenharia de Proteínas , Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
8.
Mol Syst Biol ; 18(2): e9816, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35156763

RESUMO

The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it "computes" expression remains poorly understood. To dissect its function, we carried out a comprehensive structure-function analysis in Drosophila. First, we performed a genome-wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture. We then measured synthetic promoters' activities of ~3,000 mutational variants with and without an external stimulus (hormonal activation), at large scale and with high accuracy using robotics and a dual luciferase reporter assay. We observed a strong impact on activity of the different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, nucleosome positioning, and flanking sequences. A linear combination of the individual motif features largely accounts for the combinatorial effects on core promoter activity. These findings shed new light on the quantitative assessment of gene expression in metazoans.


Assuntos
Biologia Computacional , Drosophila , Animais , Drosophila/genética , Genoma , Regiões Promotoras Genéticas
9.
Vox Sang ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157225

RESUMO

BACKGROUND AND OBJECTIVES: An important requirement for a hepatitis B surface antigen (HBsAg) screening assay is reliable detection of HBsAg mutant forms, especially in blood donation. Here we investigate and describe the case of an isolated false-negative result of commercial serology HBsAg screening assay of a blood donor. MATERIALS AND METHODS: The current donation was routinely tested for HBsAg and hepatitis B virus (HBV) DNA in the mini-pool mode nucleic acid testing (MP-NAT of six samples), and further evaluated by individual donation ID-NAT. Finally, it was quantified and sequenced. All previous donations were found to have negative HBsAg and HBV DNA, as also the subsequent sample taken 3 months after the marked donation. RESULTS: The current donation of the 53-year-old unvaccinated female with 14 previous donations was initially HBsAg negative and HBV DNA (MP-NAT) positive. Further testing showed HBsAg positive using other HBV serological assays, antibodies to HBV core antigen immunoglobulin M positive and HBV DNA ID-NAT positive, and contained 200 IU/mL of HBV DNA. The implicated donation carried genotype D strains, subtype ayw2 (F83S, V96A, V190A, L193S, I195T, L213S, F220L). The mutations in three positions, namely amino acids T118A, P120T, and P127T, were proven subsequently. CONCLUSION: This unique mutation combination near the target epitope of one of the immunoassay monoclonals is a possible cause of the reduced analytical sensitivity of the serology assay.

10.
Eur J Neurol ; 30(7): 1861-1870, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36943150

RESUMO

BACKGROUND AND PURPOSE: Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is an adult-onset leukoencephalopathy caused by mutations in CSF1R. The present study aimed to explore the broader genetic spectrum of CSF1R-related leukoencephalopathy in association with clinical and imaging features. METHODS: Mutational analysis of CSF1R was performed for 100 consecutive patients with adult-onset leukoencephalopathy. Sequence and copy number variation (CNV) analyses of CSF1R were performed. The genomic ranges of the deletions were determined by long-read sequencing. Ligand-dependent autophosphorylation of CSF1R was examined in cells expressing the CSF1R mutants identified in this study. RESULTS: CSF1R mutations were identified in 15 patients, accounting for 15% of the adult-onset leukoencephalopathy cases. Seven novel and five previously reported CSF1R mutations were identified. The novel mutations, including three missense and one in-frame 3 bp deletion, were located in the tyrosine kinase domain (TKD) of CSF1R. Functional assays revealed that none of the novel mutations in the TKD showed autophosphorylation of CSF1R. Two partial deletions of CSF1R were identified that resulted in lack of the C-terminal region, including the distal TKD, in two patients. Various clinical features including cognitive impairment, psychiatric symptoms and gait disturbance were observed. Various degrees of the white matter lesions and corpus callosum abnormalities on magnetic resonance imaging and characteristic calcifications on computed tomography were observed as imaging features. CONCLUSIONS: Our results highlight the importance of examining the CNV of CSF1R even when Sanger or exome sequencing reveals no CSF1R mutations. Genetic examination of sequences and CNV analyses of CSF1R are recommended for an accurate diagnosis of CSF1R-related leukoencephalopathy.


Assuntos
Leucoencefalopatias , Mutação de Sentido Incorreto , Receptores de Fator Estimulador de Colônias , Adulto , Humanos , Variações do Número de Cópias de DNA , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Mutação , Receptores de Fator Estimulador de Colônias/genética
11.
Proteins ; 90(3): 824-834, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761442

RESUMO

The coronavirus disease 2019 (COVID-19) has affected the lives of millions of people around the world. In an effort to develop therapeutic interventions and control the pandemic, scientists have isolated several neutralizing antibodies against SARS-CoV-2 from the vaccinated and convalescent individuals. These antibodies can be explored further to understand SARS-CoV-2 specific antigen-antibody interactions and biophysical parameters related to binding affinity, which can be utilized to engineer more potent antibodies for current and emerging SARS-CoV-2 variants. In the present study, we have analyzed the interface between spike protein of SARS-CoV-2 and neutralizing antibodies in terms of amino acid residue propensity, pair preference, and atomic interaction energy. We observed that Tyr residues containing contacts are highly preferred and energetically favorable at the interface of spike protein-antibody complexes. We have also developed a regression model to relate the experimental binding affinity for antibodies using structural features, which showed a correlation of 0.93. Moreover, several mutations at the spike protein-antibody interface were identified, which may lead to immune escape (epitope residues) and improved affinity (paratope residues) in current/emerging variants. Overall, the work provides insights into spike protein-antibody interactions, structural parameters related to binding affinity and mutational effects on binding affinity change, which can be helpful to develop better therapeutics against COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/química , Sítios de Ligação de Anticorpos , Epitopos/química , Epitopos/imunologia , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química
12.
Biochem J ; 478(14): 2843-2869, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34195804

RESUMO

The interaction of insect-selective scorpion depressant ß-toxins (LqhIT2 and Lqh-dprIT3 from Leiurus quinquestriatus hebraeus) with the Blattella germanica sodium channel, BgNav1-1a, was investigated using site-directed mutagenesis, electrophysiological analyses, and structural modeling. Focusing on the pharmacologically defined binding site-4 of scorpion ß-toxins at the voltage-sensing domain II (VSD-II), we found that charge neutralization of D802 in VSD-II greatly enhanced the channel sensitivity to Lqh-dprIT3. This was consistent with the high sensitivity of the splice variant BgNav2-1, bearing G802, to Lqh-dprIT3, and low sensitivity of BgNav2-1 mutant, G802D, to the toxin. Further mutational and electrophysiological analyses revealed that the sensitivity of the WT = D802E < D802G < D802A < D802K channel mutants to Lqh-dprIT3 correlated with the depolarizing shifts of activation in toxin-free channels. However, the sensitivity of single mutants involving IIS4 basic residues (K4E = WT << R1E < R2E < R3E) or double mutants (D802K = K4E/D802K = R3E/D802K > R2E/D802K > R1E/D802K > WT) did not correlate with the activation shifts. Using the cryo-EM structure of the Periplaneta americana channel, NavPaS, as a template and the crystal structure of LqhIT2, we constructed structural models of LqhIT2 and Lqh-dprIT3-c in complex with BgNav1-1a. These models along with the mutational analysis suggest that depressant toxins approach the salt-bridge between R1 and D802 at VSD-II to form contacts with linkers IIS1-S2, IIS3-S4, IIIP5-P1 and IIIP2-S6. Elimination of this salt-bridge enables deeper penetration of the toxin into a VSD-II gorge to form new contacts with the channel, leading to increased channel sensitivity to Lqh-dprIT3.


Assuntos
Neópteros/metabolismo , Venenos de Escorpião/metabolismo , Escorpiões/metabolismo , Canais de Sódio/metabolismo , Animais , Sítios de Ligação/genética , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutação , Neópteros/genética , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp/métodos , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Venenos de Escorpião/química , Venenos de Escorpião/genética , Escorpiões/genética , Canais de Sódio/química , Canais de Sódio/genética , Xenopus
13.
Hereditas ; 159(1): 28, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821062

RESUMO

BACKGROUND: Hereditary angioedema (HAE) is a rare disease characterized by recurrent attacks of severe swellings of the skin and submucosa. More than 900 variants of the SERPING1 gene associated with HAE have been identified. However, only approximately 50 variants have been identified in the Chinese population. This study aimed to update the mutational spectrum in Chinese HAE patients and provide evidence for the accurate diagnosis of HAE. METHODS: A total of 97 unrelated HAE patients were enrolled in the study. Sanger sequencing and multiple ligation-dependent probe amplification analysis were used to identify the variants in the SERPING1 gene. The variants were reviewed in a number of databases, including the Human Gene Mutation Database (HGMD) ( http://www.hgmd.cf.ac.uk/ ) and the Leiden Open Variation Database (LOVD, https://databases.lovd.nl/shared/variants/SERPING1 ). The American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) criteria was used to determine the pathogenicity of the variants. RESULTS: Of the 97 patients, 76 different variants were identified in 90 of them and no disease-causing variants were identified in the remaining 7 patients. Among the 76 variants, 35 variants were novel and submitted to ClinVar. Missense and in-frame variants were the most common variants (36.8%), followed by frameshift (28.9%), nonsense (14.5%), splice site (13.2%) variants, and gross deletions/duplications (6.6%). CONCLUSIONS: Our findings broaden the mutational spectrum of SERPING1 and provide evidence for accurate diagnosis and predictive genetic counseling.


Assuntos
Angioedemas Hereditários , Proteína Inibidora do Complemento C1 , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/epidemiologia , Angioedemas Hereditários/genética , Povo Asiático/genética , China/epidemiologia , Proteína Inibidora do Complemento C1/genética , Humanos , Mutação
14.
Eur Arch Otorhinolaryngol ; 279(8): 3769-3783, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35267084

RESUMO

Salivary gland tumors are diagnostically challenging owing to the morphological diversity within any tumor type and overlapping histomorphology and immunohistochemistry amongst different tumours. In past two decades, rapid progress has been made in the field of understanding the pathogenesis of these tumours with the discovery of many tumour specific translocations and rearrangements. This includes CRTC1-MAML2 and CRTC-MAML2 in mucoepidermoid carcinoma, MYBNFIB and MYBL1-NFIB fusions in adenoid cystic carcinoma, PLAG1 and HMGA2 in pleomorphic adenoma, ETV6-NTRK3 in secretory carcinoma, NR4A3 rearrangements in acinic cell carcinoma, PRKD1 mutations in polymorphous adenocarcinoma and EWSR1-ATF1 in clear cell carcinoma. This review is a lens for progress made till date in the molecular pathology of salivary gland tumours with a special focus on their role as diagnostic tools and implications on clinical management of the patient as prognostic and predictive markers.


Assuntos
Adenoma Pleomorfo , Carcinoma de Células Acinares , Carcinoma , Neoplasias das Glândulas Salivares , Adenoma Pleomorfo/diagnóstico , Adenoma Pleomorfo/genética , Adenoma Pleomorfo/patologia , Biomarcadores Tumorais/genética , Carcinoma/patologia , Carcinoma de Células Acinares/patologia , Humanos , Patologia Molecular , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia
15.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232579

RESUMO

The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. GmSHMT08 is the soybean gene underlying soybean cyst nematode (SCN) resistance at the Rhg4 locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.


Assuntos
Cistos , Nematoides , Animais , Carbono , Glicina/metabolismo , Glicina Hidroximetiltransferase/química , Glioxilatos , Heme , Metionina/genética , Nematoides/genética , Doenças das Plantas/genética , Proteômica , Purinas , Fosfato de Piridoxal/metabolismo , Serina/genética , Glycine max/metabolismo , Tetra-Hidrofolatos/genética , Tetra-Hidrofolatos/metabolismo , Transcriptoma
16.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566161

RESUMO

PSD95-PDZ3, the third PDZ domain of the post-synaptic density-95 protein (MW 11 kDa), undergoes a peculiar three-state thermal denaturation (N ↔ In ↔ D) and is amyloidogenic. PSD95-PDZ3 in the intermediate state (I) is reversibly oligomerized (RO: Reversible oligomerization). We previously reported a point mutation (F340A) that inhibits both ROs and amyloidogenesis and constructed the PDZ3-F340A variant. Here, we "reverse engineered" PDZ3-F340A for inducing high-temperature RO and amyloidogenesis. We produced three variants (R309L, E310L, and N326L), where we individually mutated hydrophilic residues exposed at the surface of the monomeric PDZ3-F340A but buried in the tetrameric crystal structure to a hydrophobic leucine. Differential scanning calorimetry indicated that two of the designed variants (PDZ3-F340A/R309L and E310L) denatured according to the two-state model. On the other hand, PDZ3-F340A/N326L denatured according to a three-state model and produced high-temperature ROs. The secondary structures of PDZ3-F340A/N326L and PDZ3-wt in the RO state were unfolded according to circular dichroism and differential scanning calorimetry. Furthermore, PDZ3-F340A/N326L was amyloidogenic as assessed by Thioflavin T fluorescence. Altogether, these results demonstrate that a single amino acid mutation can trigger the formation of high-temperature RO and concurrent amyloidogenesis.


Assuntos
Domínios PDZ , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Proteína 4 Homóloga a Disks-Large , Desnaturação Proteica , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio , Temperatura , Termodinâmica
17.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807283

RESUMO

Obesity is a chronic disease with increasing cases among children and adolescents. Melanocortin 4 receptor (MC4R) is a G protein-coupled transporter involved in solute transport, enabling it to maintain cellular homeostasis. MC4R mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity. A number of mutations have been reported in MC4R that are responsible for causing obesity and related complications. Delineating these mutations and analyzing their effect on MC4R's structure will help in the clinical intervention of the disease condition as well as designing potential drugs against it. Sequence-based pathogenicity and structure-based protein stability analyses were conducted on naturally occurring variants. We used computational tools to analyze the conservation of these mutations on MC4R's structure to map the structural variations. Detailed structural analyses were carried out for the active site mutations (i.e., D122N, D126Y, and S188L) and their influence on the binding of calcium and the agonist or antagonist. We performed molecular dynamics (MD) simulations of the wild-type and selected mutations to delineate the conformational changes, which provided us with possible reasons for MC4R's instability in these mutations. This study provides insight into the potential direction toward understanding the molecular basis of MC4R dysfunction in disease progression and obesity.


Assuntos
Obesidade , Receptor Tipo 4 de Melanocortina , Adolescente , Sequência de Aminoácidos , Criança , Humanos , Mutação , Obesidade/genética , Obesidade/metabolismo , Conformação Proteica , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética , Relação Estrutura-Atividade
18.
Beijing Da Xue Xue Bao Yi Xue Ban ; 54(5): 884-895, 2022 Oct 18.
Artigo em Zh | MEDLINE | ID: mdl-36241231

RESUMO

OBJECTIVE: KRAS gene is one of the most common mutations of proto-oncogenes in human tumors, G12V is one of the most common mutation types for KRAS. It's challenging to chemically acquire the targeted drug for this mutation. Recent studies reported that this mutation peptides can form a neoepitope for T cell recognition. Our study aims to clone the T cell receptor (TCR) which specifically recognizes the neoepitope for KRAS G12V mutation and constructs TCR engineered T cells (TCR-T), and to investigate if TCR-Ts have strong antitumor response ability. METHODS: In this study, tumor infiltrating lymphocytes were obtained from one colorectal cancer patient carrying KRAS G12V mutation. Tumor-reactive TCR was obtained by single-cell RT-5' rapid-amplification of cDNA ends PCR analysis and introduced into peripheral blood lymphocytes to generate TCR-Ts. RESULTS: We obtained a high-affinity TCR sequence that specifically recognized the HLA-A*11:01-restricted KRAS G12V8-16 epitope: KVA11-01. KVA11-01 TCR-T could significantly kill various tumor cells such as PANC-1, SW480 and HeLa (overexpressing HLA-A*11:01 and KRAS G12V), and secreting high levels of interferon-γ (IFN-γ). Non-specific killing experiments suggested KVA11-01 specifically recognized tumor cells expressing both mutant KRAS G12V and HLA-A*11:01. In vivo assay, tumor inhibition experiments demonstrated that infusion of approximately 1E7 KVA11-01 TCR-T could significantly inhibit the growth of subcuta-neously transplanted tumors of PANC-1 and HeLa (overexpressing HLA-A*11:01 and KRAS G12V) cells in nude mice. No destruction of the morphologies of the liver, spleen and brain were observed. We also found that KVA11-01 TCR-T could significantly infiltrate into tumor tissue and had a better homing ability. CONCLUSION: KVA11-01 TCR-T cells can effectively target a variety of malignant tumor cells carrying KRAS G12V mutation through in vitro and in vivo assay. KVA11-01 TCR-T cells have excellent biological activity, high specificity of target antigen and homing ability into solid tumor tissue. KVA11-01 TCR-T is expected to be an effective treatment for patients with KRAS G12V mutant solid malignancies.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , DNA Complementar , Epitopos , Antígenos HLA-A , Humanos , Interferon gama , Camundongos , Camundongos Nus , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos T/genética
19.
J Biol Chem ; 295(41): 14053-14064, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32763972

RESUMO

The membrane-bound, long form of MGAT4D, termed MGAT4D-L, inhibits MGAT1 activity in transfected cells and reduces the generation of complex N-glycans. MGAT1 is the GlcNAc-transferase that initiates complex and hybrid N-glycan synthesis. We show here that Drosophila MGAT1 was also inhibited by MGAT4D-L in S2 cells. In mammalian cells, expression of MGAT4D-L causes the substrate of MGAT1 (Man5GlcNAc2Asn) to accumulate on glycoproteins, a change that is detected by the lectin Galanthus nivalis agglutinin (GNA). Using GNA binding as an assay for the inhibition of MGAT1 in MGAT4D-L transfectants, we performed site-directed mutagenesis to determine requirements for MGAT1 inhibition. Deletion of 25 amino acids (aa) from the C terminus inactivated MGAT4D-L, but deletion of 20 aa did not. Conversion of the five key amino acids (PSLFQ) to Ala, or deletion of PSLFQ in the context of full-length MGAT4D-L, also inactivated MGAT1 inhibitory activity. Nevertheless, mutant, inactive MGAT4D-L interacted with MGAT1 in co-immuno-precipitation experiments. The PSLFQ sequence also occurs in MGAT4A and MGAT4B GlcNAc-transferases. However, neither inhibited MGAT1 in transfected CHO cells. MGAT4D-L inhibitory activity could be partially transferred by attaching PSLFQ or the 25-aa C terminus of MGAT4D-L to the C terminus of MGAT1. Mutation of each amino acid in PSLFQ to Ala identified both Leu and Phe as independently essential for MGAT4D-L activity. Thus, replacement of either Leu-395 or Phe-396 with Ala led to inactivation of MGAT4D-L inhibitory activity. These findings provide new insights into the mechanism of inhibition of MGAT1 by MGAT4D-L, and for the development of small molecule inhibitors of MGAT1.


Assuntos
Proteínas de Drosophila , Inibidores Enzimáticos/metabolismo , Proteínas de Membrana , N-Acetilglucosaminiltransferases , Mutação Puntual , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HL-60 , Humanos , Lectinas de Ligação a Manose/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Lectinas de Plantas/química , Polissacarídeos/biossíntese , Polissacarídeos/genética , Ligação Proteica , Domínios Proteicos , Deleção de Sequência
20.
Proteins ; 89(4): 389-398, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33210300

RESUMO

Coronaviruses are responsible for several epidemics, including the 2002 SARS, 2012 MERS, and COVID-19. The emergence of recent COVID-19 pandemic due to SARS-CoV-2 virus in December 2019 has resulted in considerable research efforts to design antiviral drugs and other therapeutics against coronaviruses. In this context, it is crucial to understand the biophysical and structural features of the major proteins that are involved in virus-host interactions. In the current study, we have compared spike proteins from three strains of coronaviruses NL63, SARS-CoV, and SARS-CoV, known to bind human angiotensin-converting enzyme 2 (ACE2), in terms of sequence/structure conservation, hydrophobic cluster formation and importance of binding site residues. The study reveals that the severity of coronavirus strains correlates positively with the interaction area, surrounding hydrophobicity and interaction energy and inversely correlate with the flexibility of the binding interface. Also, we identify the conserved residues in the binding interface of spike proteins in all three strains. The systematic point mutations show that these conserved residues in the respective strains are evolutionarily favored at their respective positions. The similarities and differences in the spike proteins of the three viruses indicated in this study may help researchers to deeply understand the structural behavior, binding site properties and etiology of ACE2 binding, accelerating the screening of potential lead molecules and the development/repurposing of therapeutic drugs.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Coronavirus Humano NL63 , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus/química , Antivirais/farmacologia , Infecções por Coronavirus/virologia , Análise Mutacional de DNA , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Estatísticos , Mutação , Ligação Proteica , Conformação Proteica , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA