Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338473

RESUMO

A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C-N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C-N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C-O or C-S bond formation under optimized conditions.

2.
Mol Divers ; 27(1): 167-175, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35298765

RESUMO

Glycine derivatives such as ethyl 2-(4-aminophenyl)-2-(phenylamino) acetate is an exciting and essential non-proteinogenic class of amino acids. Herein, we report an efficient and novel route to synthesize glycine derivatives using ethyl glyoxylate, aniline, and its derivatives catalyzed by bismuth salts. In our scheme, mild, non-toxic, and commercially viable reagents were utilized. The synthesized moieties were characterized by ESI-MASS, 1H-NMR, 13C-NMR, and XRD techniques. The target glycine derivatives were successfully obtained with a maximum yield of 87%. Moreover, the reaction is very green as water is the only byproduct.


Assuntos
Bismuto , Glicina , Bismuto/química , Glicina/química , Compostos de Anilina/química , Glioxilatos , Catálise
3.
Beilstein J Org Chem ; 19: 1841-1848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090627

RESUMO

A technique has been proposed for incorporating a heterocyclic component into a glutarimide framework employing a Rh2(esp)2-catalyzed N-H insertion with the involvement of N-Boc-α-diazo glutarimide. The new diazo reagent is more stable, soluble and convenient to prepare than the previously suggested one. The approach permits the application of diverse heterocycles, including both aromatic and saturated NH-substrates. This yields structures that are appealing for generating cereblon ubiquitin-ligase ligands and for potential use in crafting PROTAC molecules.

4.
J Enzyme Inhib Med Chem ; 37(1): 527-530, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35220840

RESUMO

The advent of proteolysis-targeting chimaeras (PROTACs) mandates that new ligands for the recruitment of E3 ligases are discovered. The traditional immunomodulatory drugs (IMiDs) such as thalidomide and its analogues (all based on the phthalimide glutarimide core) bind to Cereblon, the substrate receptor of the CRL4ACRBN E3 ligase. We designed a thalidomide analogue in which the phthalimide moiety was replaced with benzotriazole, using an innovative synthesis strategy. Compared to thalidomide, the resulting "benzotriazolo thalidomide" has a similar binding mode, but improved properties, as revealed in crystallographic analyses, affinity assays and cell culture.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Triazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Ubiquitina-Proteína Ligases/metabolismo
5.
Chem Pharm Bull (Tokyo) ; 67(4): 393-396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930443

RESUMO

In order to develop an efficient organocatalyst for the enantioselective N-H insertion reaction via carbene/carbenoid, the catalytic core of the cinchona alkaloids was investigated. According to our working hypothesis of an eight-membered ring transition state in the N-H insertion reaction, two pairs of enantiomers related to 2-amino-1-phenylethanol were investigated for their chiral inducing potential. Since both (1R,2S)-isomers gave the N-phenyl-1-phenylglycine derivative enriched in the R-form, while their enantiomers gave the S-form, the 2-amino-1-phenylethanol structure is concluded to be the catalytic core of the cinchona alkaloid in the enantioselective N-H insertion reaction via rhodium(II) carbenoid.


Assuntos
Amino Álcoois/química , Alcaloides de Cinchona/química , Álcoois Benzílicos/química , Catálise , Complexos de Coordenação/química , Hidrogênio/química , Nitrogênio/química , Ródio/química , Estereoisomerismo
6.
Molecules ; 24(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739572

RESUMO

New catalysts for important C-N bond formation are highly sought after. In this work, we demonstrate the synthesis and viability of a new class of planar chiral [2.2]paracyclophane-based bisoxazoline (BOX) ligands for the copper-catalyzed N-H insertion of α-diazocarbonyls into anilines. The reaction features a wide substrate scope and moderate to excellent yields, and delivers the valuable products at ambient conditions.


Assuntos
Cobre/química , Compostos Policíclicos/química , Catálise , Ligantes , Estrutura Molecular , Estereoisomerismo
7.
Beilstein J Org Chem ; 12: 1904-1910, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829897

RESUMO

Rh(II)-сatalyzed reactions of aroyldiazomethanes, diazoketoesters and diazodiketones with α,ß-unsaturated δ-aminoesters, in contrast to reactions of diazomalonates and other diazoesters, give rise to the Wolff rearrangement and/or oxidative cleavage of the initially formed N-H-insertion products. These oxidation processes are mediated by Rh(II) catalysts possessing perfluorinated ligands. The formation of pyrrolidine structures, characteristic for catalytic reactions of diazoesters, was not observed in these processes at all.

8.
Eur J Med Chem ; 218: 113352, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774343

RESUMO

Herein we report the synthesis of a set of thirty-four primary sulfonamides generated via formal N-H-insertion of metal carbenes into anilinic amino group of sulfanilamide and its meta-substituted analog. Obtained compounds were tested in vitro as inhibitors of four physiologically significant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Many of the synthesized sulfonamides displayed low nanomolar Ki values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Provided the promising activity profiles of the substances towards tumor-associated hCA IX and XII isozymes, single-concentration MTT test was performed for the entire set. Disappointingly, most of the discovered hCA inhibitors did not significantly suppress the growth of cancer cells either in normoxia or CoCl2 induced hypoxic conditions. The only two compounds exerting profound antiproliferative effect turned out to be modest hCA inhibitors. Their out of the range activity in cells is likely attributive to the presence of Michael acceptor substructure which can potentially act either through the inhibition of Thioredoxin reductases (TrxRs, EC 1.8.1.9) or nonspecific covalent binding to cell proteins.


Assuntos
Aminobenzoatos/farmacologia , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Complexos de Coordenação/farmacologia , Metano/análogos & derivados , Sulfonamidas/farmacologia , Aminobenzoatos/química , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Metano/química , Metano/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , Células Tumorais Cultivadas
9.
ACS Catal ; 10(19): 10967-10977, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34484852

RESUMO

Optically active amines represent highly valuable building blocks for the synthesis of advanced pharmaceutical intermediates, drug molecules, and biologically active natural products. Hemoproteins have recently emerged as promising biocatalysts for the formation of C-N bonds via carbene transfer, but asymmetric N-H carbene insertion reactions using these or other enzymes have so far been elusive. Here, we report the successful development of a biocatalytic strategy for the asymmetric N-H carbene insertion of aromatic amines with 2-diazopropanoate esters using engineered variants of myoglobin. High activity and stereoinduction in this reaction could be achieved by tuning the chiral environment around the heme cofactor in the metalloprotein in combination with catalyst-matching and tailoring of the diazo reagent. Using this approach, an efficient biocatalytic protocol for the synthesis of a broad range of substituted aryl amines with up to 82% ee was obtained. In addition, a stereocomplementary catalyst useful for accessing the mirror-image form of the N-H insertion products was identified. This work paves the way to asymmetric amine synthesis via biocatalytic carbene transfer, and the present strategy based on the synergistic combination of protein and diazo reagent engineering is expected to prove useful in the context of these as well as other challenging asymmetric carbene transfer reactions.

10.
Synlett ; 31(3): 224-229, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32255925

RESUMO

Engineered myoglobins have recently gained attention for their ability to catalyze a variety of abiological carbene transfer reactions including the functionalization of amines via carbene insertion into N-H bonds. However, the scope of myoglobin and other hemoprotein-based biocatalysts in the context of this transformation has been largely limited to aniline derivatives as the amine substrates and ethyl diazoacetate as the carbene donor reagent. In this report, we describe the development of an engineered myoglobin-based catalyst useful for promoting carbene N-H insertion reactions across a broad range of substituted benzylamines and α-diazo acetates with high efficiency (82-99% conversion), elevated catalytic turnovers (up to 7,000), and excellent chemoselectivity for the desired single insertion product (up to 99%). The scope of this transformation could be extended to cyclic aliphatic amines. These studies expand the biocatalytic toolbox available for the selective formation of C-N bonds, which are ubiquitous in many natural and synthetic bioactive compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA