Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 142: 38-41, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30248587

RESUMO

CSYP (CYlindrical SPectrometer) is a directional neutron spectrometer based on a single moderator embedding multiple thermal neutron detectors. Similarly to Bonner Spheres, CYSP responds from thermal up to GeV neutrons and the spectrum is obtained via few-channel unfolding methods. CYSP has the shape of a polyethylene cylinder with diameter 50 cm and height 65 cm. Owing on a thick collimator and on a specifically designed shielding structure, the internal detectors only respond to neutrons coming from a known direction. Internal thermal neutron detectors are one-cm2 6LiF-covered silicon diodes. Un upgraded version of CYPS was developed to work in low intensity applications, such as cosmic field measurements. It is called CYSP-HS (High-Sensitivity) and is equipped with large area 6LiF-covered silicon diodes (LATND, Large Area Thermal Neutron Detectors). Compared with the former CYSP, the sensitivity increased approximately by an order of magnitude. This paper presents CYSP-HS focusing on the new internal detectors, the response matrix and its verification in a reference field of Am-Be available at the Politecnico di Milano.

2.
Appl Radiat Isot ; 107: 171-176, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26516990

RESUMO

A new thermal neutron irradiation facility based on an (241)Am-Be source embedded in a polyethylene moderator has been designed, and is called ETHERNES (Extended THERmal NEutron Source). The facility shows a large irradiation cavity (45 cm × 45 cm square section, 63 cm in height), which is separated from the source by means of a polyethylene sphere acting as shadowing object. Taking advantage of multiple scattering of neutrons with the walls of this cavity, the moderation process is especially effective and allows obtaining useful thermal fluence rates from 550 to 800 cm(-2) s(-1) with a source having nominal emission rate 5.7×10(6) s(-1). Irradiation planes parallel to the cavity bottom have been identified. The fluence rate across a given plane is as uniform as 3% (or better) in a disk with 30 cm (or higher) diameter. In practice, the value of thermal fluence rate simply depends on the height from the cavity bottom. The thermal neutron spectral fraction ranges from 77% up to 89%, depending on the irradiation plane. The angular distribution of thermal neutrons is roughly isotropic, with a slight prevalence of directions from bottom to top of the cavity. The mentioned characteristics are expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA