Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 171(7): 1589-1598.e8, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29153833

RESUMO

Removal of an intron from a pre-mRNA by the spliceosome results in the ligation of two exons in the post-catalytic spliceosome (known as the P complex). Here, we present a cryo-EM structure of the P complex from Saccharomyces cerevisiae at an average resolution of 3.6 Å. The ligated exon is held in the active site through RNA-RNA contacts. Three bases at the 3' end of the 5' exon remain anchored to loop I of U5 small nuclear RNA, and the conserved AG nucleotides of the 3'-splice site (3'SS) are specifically recognized by the invariant adenine of the branch point sequence, the guanine base at the 5' end of the 5'SS, and an adenine base of U6 snRNA. The 3'SS is stabilized through an interaction with the 1585-loop of Prp8. The P complex structure provides a view on splice junction formation critical for understanding the complete splicing cycle.


Assuntos
Saccharomyces cerevisiae/química , Spliceossomos/química , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Splicing de RNA , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
2.
J Biol Chem ; 299(9): 105123, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536630

RESUMO

Distinct functions mediated by members of the monopolar spindle-one-binder (MOB) family of proteins remain elusive beyond the evolutionarily conserved and well-established roles of MOB1 (MOB1A/B) in regulating tissue homeostasis within the Hippo pathway. Since MOB proteins are adaptors, understanding how they engage in protein-protein interactions and help assemble complexes is essential to define the full scope of their biological functions. To address this, we undertook a proximity-dependent biotin identification approach to define the interactomes of all seven human MOB proteins in HeLa and human embryonic kidney 293 cell lines. We uncovered >200 interactions, of which at least 70% are unreported on BioGrid. The generated dataset reliably recalled the bona fide interactors of the well-studied MOBs. We further defined the common and differential interactome between different MOBs on a subfamily and an individual level. We discovered a unique association between MOB3C and 7 of 10 protein subunits of the RNase P complex, an endonuclease that catalyzes tRNA 5' maturation. As a proof of principle for the robustness of the generated dataset, we validated the specific interaction of MOB3C with catalytically active RNase P by using affinity purification-mass spectrometry and pre-tRNA cleavage assays of MOB3C pulldowns. In summary, our data provide novel insights into the biology of MOB proteins and reveal the first interactors of MOB3C, components of the RNase P complex, and hence an exciting nexus with RNA biology.


Assuntos
Via de Sinalização Hippo , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Ribonuclease P , Humanos , Células HeLa , Via de Sinalização Hippo/fisiologia , Ribonuclease P/metabolismo , Células HEK293 , Subunidades Proteicas/metabolismo
3.
J Virol ; 97(11): e0122623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37861337

RESUMO

IMPORTANCE: Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Fator 1 de Elongação de Peptídeos , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Peixes , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/veterinária , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas de Peixes/metabolismo , Doenças dos Peixes/metabolismo
4.
Environ Res ; 236(Pt 1): 116730, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37500045

RESUMO

Phosphorus (P) removal from wastewater is critical for ecosystem operation and resource recovery. To facilitate the recycling of the used absorbents through balancing their adsorption and desorption performance on P, in this work, a novel porous magnetic La(OH)3-loaded MAPTAC/chitosan (CTS)/polyethyleneimine (PEI) ternary composite hydrogel (p-MTCH-La(OH)3) with enhanced bifunctional adsorption sites was synthesized by simultaneous dissolution of pre-embedded CaCO3 and CTS powder, followed by grafting PEI and loading La. Hierarchical porous channels promoted good dispersion of La(OH)3, bringing an excellent P adsorption capacity of 107.23 ± 4.96 mg P/g at neutral condition. PEI grafted with CTS increased the surface charge and enhanced the electrostatic attraction, which facilitated the desorption of P. The porous structure and abundant active sites also facilitated rapid adsorption with an adsorption rate constant of 0.1 g mg-1 h-1. p-MTCH-La(OH)3 maintained effective P adsorption despite co-existence with competing substances and after 5 cycles. Further mechanistic analysis indicated that La-P inner sphere complexation and LaPO4 crystalline transformation were the main pathways for P removal. However, electrostatic interactions contributed 17.5%-46.7% of the adsorption amount during the first 30 min of rapid adsorption, enabling 92.8% of the adsorbed P at this stage to be desorbed by alkaline solution. Based on the variations of adsorption and desorption capacity with adsorption time, a rapid unsaturated adsorption of 1-2 h was proposed to facilitate the recycling of the adsorbent. This study proposed a method to promote P adsorption and desorption by enhancing bifunctional adsorption sites, and proved that p-MTCH-La(OH)3 is a promising phosphate adsorbent.


Assuntos
Fósforo , Poluentes Químicos da Água , Hidrogéis , Lantânio/química , Porosidade , Ecossistema , Fosfatos/química , Adsorção , Cátions , Cinética , Poluentes Químicos da Água/química
5.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203474

RESUMO

A cell population characterized by the release of glucose repression and known as [GAR+] emerges spontaneously in the yeast Saccharomyces cerevisiae. This study revealed that the [GAR+] variants exhibit retarded alcoholic fermentation when glucose is the sole carbon source. To identify the key to the altered glucose response, the gene expression profile of [GAR+] cells was examined. Based on RNA-seq data, the [GAR+] status was linked to impaired function of the Cyc8p-Tup1p complex. Loss of Cyc8p led to a decrease in the initial rate of alcoholic fermentation under glucose-rich conditions via the inactivation of pyruvate decarboxylase, an enzyme unique to alcoholic fermentation. These results suggest that Cyc8p can become inactive to attenuate alcoholic fermentation. These findings may contribute to the elucidation of the mechanism of non-genetic heterogeneity in yeast alcoholic fermentation.


Assuntos
Carbono , Saccharomyces cerevisiae , Fermentação , Glucose , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/genética
6.
Am J Hum Genet ; 105(5): 987-995, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31587868

RESUMO

NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.


Assuntos
Disfunção Cognitiva/genética , Mutação de Sentido Incorreto/genética , Proteínas Repressoras/genética , Transcrição Gênica/genética , Sequência de Aminoácidos , Animais , Regulação para Baixo/genética , Éxons/genética , Regulação da Expressão Gênica/genética , Genes Ligados ao Cromossomo X/genética , Histona Desacetilases/genética , Humanos , Alinhamento de Sequência , Transcriptoma/genética , Peixe-Zebra/genética
7.
Methods ; 196: 30-35, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33577981

RESUMO

Circular RNAs (circRNAs) generated from back-splicing of exons have been found in a wide range of eukaryotic species and exert a variety of biological functions. Unlike canonical splicing, the mechanism of back-splicing has long remained elusive. We recently determined the cryo-EM structure of the yeast spliceosomal E complex assembled on introns, leading us to hypothesize that the same E complex can assemble across an exon forming the exon-definition complex. This complex, when assembled on long exons, goes through the splicing cycle and catalyzes back-splicing to generate circRNAs. Supporting this hypothesis, we purified the yeast post-catalytic spliceosomal P complex (the best complex in the splicing cycle to trap splicing products and intermediates) and detected canonical and back-splicing products as well as splicing intermediates. Here we describe in detail this procedure, which may be applied to other organisms to facilitate research on the biogenesis and regulation of circRNA.


Assuntos
RNA Circular , RNA , Íntrons/genética , RNA/genética , RNA/metabolismo , Splicing de RNA , Spliceossomos/genética , Spliceossomos/metabolismo
8.
J Biol Chem ; 294(49): 18650-18661, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653702

RESUMO

Profilins are abundant cytosolic proteins that are universally expressed in eukaryotes and that regulate actin filament elongation by binding to both monomeric actin (G-actin) and formin proteins. The atypical profilin Arabidopsis AtPRF3 has been reported to cooperate with canonical profilin isoforms in suppressing formin-mediated actin polymerization during plant innate immunity responses. AtPRF3 has a 37-amino acid-long N-terminal extension (NTE), and its suppressive effect on actin assembly is derived from enhanced interaction with the polyproline (Poly-P) of the formin AtFH1. However, the molecular mechanism remains unclear. Here, we solved the crystal structures of AtPRF3Δ22 and AtPRF3Δ37, as well as AtPRF2 apo form and in complex with AtFH1 Poly-P at 1.5-3.6 Å resolutions. By combining these structures with molecular modeling, we found that AtPRF3Δ22 NTE has high plasticity, with a primary "closed" conformation that can adopt an open conformation that enables Poly-P binding. Furthermore, using molecular dynamics simulation and free-energy calculations of protein-protein binding, along with experimental validation, we show that the AtPRF3Δ22 binds to Poly-P in an adaptive manner, thereby enabling different binding modes that maintain the interaction through disordered sequences. Together, our structural and simulation results suggest that the dynamic conformational changes of the AtPRF3 NTE upon Poly-P binding modulate their interactions to fine-tune formin-mediated actin assembly.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/metabolismo , Profilinas/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Immunoblotting , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Profilinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Biol Chem ; 294(10): 3647-3660, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626736

RESUMO

As all the viruses belonging to the Mononegavirales order, the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV) is encapsidated by the viral nucleoprotein N. N protein polymerizes along the genomic and anti-genomic RNAs during replication. This requires the maintenance of the neosynthesized N protein in a monomeric and RNA-free form by the viral phosphoprotein P that plays the role of a chaperone protein, forming a soluble N0-P complex. We have previously demonstrated that residues 1-30 of P specifically bind to N0 Here, to isolate a stable N0-P complex suitable for structural studies, we used the N-terminal peptide of P (P40) to purify truncated forms of the N protein. We show that to purify a stable N0-P-like complex, a deletion of the first 30 N-terminal residues of N (NΔ30) is required to impair N oligomerization, whereas the presence of a full-length C-arm of N is required to inhibit RNA binding. We generated structural models of the RSV N0-P with biophysical approaches, including hydrodynamic measurements and small-angle X-ray scattering (SAXS), coupled with biochemical and functional analyses of human RSV (hRSV) NΔ30 mutants. These models suggest a strong structural homology between the hRSV and the human metapneumovirus (hMPV) N0-P complexes. In both complexes, the P40-binding sites on N0 appear to be similar, and the C-arm of N provides a high flexibility and a propensity to interact with the N RNA groove. These findings reveal two potential sites to target on N0-P for the development of RSV antivirals.


Assuntos
Nucleoproteínas/química , Nucleoproteínas/metabolismo , Vírus Sincicial Respiratório Humano , Proteínas Virais/química , Proteínas Virais/metabolismo , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Mutação , Nucleoproteínas/genética , Conformação Proteica , Soluções , Propriedades de Superfície , Proteínas Virais/genética
10.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32660994

RESUMO

Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. We demonstrate that these peptides inhibit RSV replication in vitro and in vivo by preventing the formation of the N0-P complex. The present strategy provides a novel means of targeting RSV replication with constrained macrocyclic peptides or small molecules and is broadly applicable to other viruses of the Mononegavirales order.


Assuntos
Antivirais , Peptídeos , Conformação Proteica em alfa-Hélice , Vírus Sincicial Respiratório Humano , Animais , Antivirais/farmacologia , Humanos , Camundongos , Peptídeos/farmacologia , Fosfoproteínas/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Replicação Viral
11.
Microbiol Spectr ; 10(5): e0103122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036587

RESUMO

Peste des petits ruminants virus (PPRV) causes a highly contagious disease in small ruminants and severe economic losses in developing countries. PPRV infection can stimulate high levels of interferon (IFN) and many IFN-stimulated genes (ISGs), such as ISG15, which may play a key role in the process of viral infection. However, the role of ISG15 in PPRV infection and replication has not yet been reported. In this study, we found ISG15 expression to be significantly upregulated after PPRV infection of caprine endometrial epithelial cells (EECs), and ISG15 inhibits the proliferation of PPRV. Further analysis showed that free ISG15 could inhibit PPRV proliferation. Moreover, ISG15 does not affect the binding, entry, and transcription but does suppress the replication of PPRV. A detailed analysis revealed that ISG15 interacts and colocalizes with both viral N and P proteins and that its interactive regions are all located in the N-terminal domain. Further studies showed that ISG15 can competitively interact with N and P proteins and significantly interfere with their binding. Finally, through the construction of the C-terminal mutants of ISG15 with different lengths, it was found that amino acids (aa) 77 to 101 play a key role in inhibiting the binding of N and P proteins and that interaction with the P protein disappears after the deletion of 77 to 101 aa. The present study revealed a novel mechanism of ISG15 in disrupting the activity of the N0-P complex to inhibit viral replication. IMPORTANCE PPRV, a widespread and fatal disease of small ruminants, is one of the most devastating animal diseases in Africa, the Middle East, and Asia, causing severe economic losses. IFNs play an important role as a component of natural immunity against pathogens, yet the role of ISG15, an IFN-stimulated gene, in protecting against PPRV infection is currently unknown. We demonstrated, for the first time, that free ISG15 inhibits PPRV proliferation by disrupting the activity of the N0-P complex, a finding that has not been reported in other viruses. Our results provide important insights that can further understand the pathogenesis and innate immune mechanisms of PPRV.


Assuntos
Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Vírus da Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/metabolismo , Nucleoproteínas , Fosfoproteínas , Cabras , Interferons/genética , Ruminantes , Aminoácidos
12.
Chemosphere ; 306: 135468, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35760134

RESUMO

Presence of excessive phosphorus in surface waters is the main cause for eutrophication. In this study, a lanthanum/chitosan (La/CS) bead was prepared so as to provide a cost-effective solution to the problem. The optimization of bead for the treatment was conducted, leading to the optimal condition: 30 wt% La/CS bead at a dosage of 30 g L-1 (wet weight). A higher phosphate removal around 90% was obtained in pH 4.0-10.0. Most of uptake occurred in the first 2 h and the equilibrium was reached in about 6 h. Coexisting ions of Cl-, [Formula: see text] , [Formula: see text] , and [Formula: see text] had negligible effects on the treatment, while the presence of F- reduced the uptake by 10.39%. The maximum adsorption capacity of 261.1 mg-PO4·g-1 (dried weight) at pH 5.0 was achieved, which is much better than many reported La-based adsorbents. The adsorbed phosphate can be effectively recovered with an alkaline solution. A multi-cycle regeneration-reuse study illustrated that the treated water still met the phosphorus discharge standard. The characterization results demonstrated the disappearance of La(OH)3 and La2(CO3)3 on the bead and the formation of NH3+ … P and La-P groups after the adsorption, indicating the significant roles of ion exchange and electrostatic attraction on the uptake. The excellent performance found in this study clearly indicates that the optimized La/CS bead is promising in the treatment of phosphate and perhaps its recovery for industrial use.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Quitosana/química , Cinética , Lantânio/química , Fosfatos/química , Fósforo , Poluentes Químicos da Água/química
13.
Acta Pharm Sin B ; 12(2): 735-746, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256943

RESUMO

The cell cycle inhibitor P21 has been implicated in cell senescence and plays an important role in the injury-repair process following lung injury. Pulmonary fibrosis (PF) is a fibrotic lung disorder characterized by cell senescence in lung alveolar epithelial cells. In this study, we report that P21 expression was increased in alveolar epithelial type 2 cells (AEC2s) in a time-dependent manner following multiple bleomycin-induced PF. Repeated injury of AEC2s resulted in telomere shortening and triggered P21-dependent cell senescence. AEC2s with elevated expression of P21 lost their self-renewal and differentiation abilities. In particular, elevated P21 not only induced cell cycle arrest in AEC2s but also bound to P300 and ß-catenin and inhibited AEC2 differentiation by disturbing the P300-ß-catenin interaction. Meanwhile, senescent AEC2s triggered myofibroblast activation by releasing profibrotic cytokines. Knockdown of P21 restored AEC2-mediated lung alveolar regeneration in mice with chronic PF. The results of our study reveal a mechanism of P21-mediated lung regeneration failure during PF development, which suggests a potential strategy for the treatment of fibrotic lung diseases.

14.
J Mol Biol ; 427(17): 2816-39, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26210662

RESUMO

In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular ß-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Proteínas de Choque Térmico HSP90/genética , Interações Hidrofóbicas e Hidrofílicas , Metilação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA