Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Allergy ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935036

RESUMO

BACKGROUND: Hereditary angioedema (HAE) is a rare genetic disorder characterized by local, self-limiting edema due to temporary increase in vascular permeability. HAE with normal C1 esterase inhibitor (C1INH) activity includes the form with mutations in the F12 gene encoding for coagulation factor XII (FXII-HAE) causing an overproduction of bradykinin (BK) leading to angioedema attack. BK binding to B2 receptors (BK2R) leads to an activation of phospholipase C (PLC) and subsequent generation of second messengers: diacylglycerols (DAGs) and possibly the endocannabinoids (eCBs), 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and eCB-related N-acylethanolamines [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)]. To date, there are no data on the role of these lipid mediators in FXII-HAE. METHODS: Here, we analyzed plasma levels of PLC, DAGs, and eCBs in 40 patients with FXII-HAE and 40 sex- and age-matched healthy individuals. RESULTS: Plasma PLC activity was increased in FXII-HAE patients compared to controls. Concentrations of DAG 18:1-20:4, a lipid second messenger produced by PLC, were higher in FXII-HAE compared to controls, and positively correlated with PLC activity and cleaved high molecular kininogen (cHK). Also the concentrations of the DAG metabolite, 2-AG were altered in FXII-HAE. AEA and OEA were decreased in FXII-HAE patients compared to controls; by contrast, PEA, was increased. The levels of all tested mediators did not differ between symptomatic and asymptomatic patients. Moreover, C1INH-HAE patients had elevated plasma levels of PLC, which correlated with cHK, but the levels of DAGs and eCBs were the same as controls. CONCLUSIONS: BK overproduction and BKR2 activation are linked to alteration of PLCs and their metabolites in patients with FXII-HAE. Our results may pave way to investigations on the functions of these mediators in the pathophysiology of FXII-HAE, and provide new potential biomarkers and therapeutic targets.

2.
Eur Arch Otorhinolaryngol ; 281(7): 3671-3678, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492007

RESUMO

PURPOSE: Although COVID-19 anosmia is often transient, patients with persistent olfactory dysfunction (pOD) can experience refractory parosmia and diminished smell. This study evaluated four putative therapies for parosmia in patients with chronic COVID-19 olfactory impairment. METHODS: After screening nasal endoscopy, 85 patients (49 female, 58%) with pOD and treatment-refractory parosmia were randomized to: (1) ultramicronized palmitoylethanolamide and luteolin + olfactory training (OT) (umPEALUT group, n = 17), (2) alpha-lipoic acid + OT (ALA group, n = 21), (3) umPEALUT + ALA + OT (combination group, n = 28), or 4) olfactory training (OT) alone (control group, n = 23). Olfactory function was assessed at baseline (T0) and 6 months (T1) using a parosmia questionnaire and Sniffin' Sticks test of odor threshold, detection, and identification (TDI). Analyses included one-way ANOVA for numeric data and Chi-Square analyses for nominal data on parosmia. RESULTS: The umPEALUT group had the largest improvement in TDI scores (21.8 ± 9.4 to 29.7 ± 7.5) followed by the combination group (19.6 ± 6.29 to 27.5 ± 2.7), both p < 0.01. The control and ALA groups had no significant change. Patients in the combination and umPEALUT groups had significantly improved TDI scores compared to ALA and control groups (p < 0.001). Rates of parosmia resolution after 6 months were reported at 96% for combination, 65% for control, 53% for umPEALUT and 29% for ALA (p < 0.001). All treatment regimens were well-tolerated. CONCLUSIONS: umPEALUT and OT, with or without ALA, was associated with improvement in TDI scores and parosmia, whereas OT alone or OT with ALA were associated with little benefit.


Assuntos
COVID-19 , Transtornos do Olfato , Ácido Tióctico , Humanos , Feminino , COVID-19/complicações , Masculino , Pessoa de Meia-Idade , Transtornos do Olfato/etiologia , Transtornos do Olfato/terapia , Transtornos do Olfato/reabilitação , Ácido Tióctico/uso terapêutico , Ácido Tióctico/administração & dosagem , Etanolaminas/uso terapêutico , Ácidos Palmíticos/uso terapêutico , Ácidos Palmíticos/administração & dosagem , Amidas/uso terapêutico , Adulto , SARS-CoV-2 , Resultado do Tratamento , Idoso , Anosmia/etiologia , Anosmia/terapia , Olfato/fisiologia , Terapia Combinada , Treinamento Olfativo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38861957

RESUMO

INTRODUCTION: The prevalence of post-viral olfactory dysfunction has increased significantly during the COVID-19 pandemic, posing a major challenge for patients and practitioners. While olfactory training (OT) is a common approach to therapy, there has been increasing interest in supplementing therapy with a combination of palmitoylethanolamide (PEA) and luteolin (LUT), which are known for their anti-inflammatory properties. In this study, their efficacy in the treatment of patients with olfactory loss following upper respiratory tract infections, mainly COVID-19, was investigated in an outpatient clinic. METHODS: Fifty patients with persistent olfactory dysfunction were randomized to two groups: one receiving OT and PEA-LUT, the other OT alone. Olfactory function was evaluated before and after treatment. RESULTS: The study group showed significant improvements in odor discrimination and overall olfactory function (TDI score) after treatment with PEA-LUT and OT, while the control group did not. However, when clinically meaningful improvements were considered, there was no significant difference between the groups. CONCLUSION: The present study suggests that while PEA-LUT may have the potential to improve olfactory function in post-viral dysfunction, the additional benefit over OT alone may be limited. These results contrast with some previous studies.

4.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612415

RESUMO

The endogenous cannabinoid system (ECS) plays a critical role in the regulation of various physiological functions, including sleep, mood, and neuroinflammation. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinomimimetics, and some N-acylethanolamides, particularly palmitoyethanolamide, have emerged as potential therapeutic agents for the management of sleep disorders. THC, the psychoactive component of cannabis, may initially promote sleep, but, in the long term, alters sleep architecture, while CBD shows promise in improving sleep quality without psychoactive effects. Clinical studies suggest that CBD modulates endocannabinoid signaling through several receptor sites, offering a multifaceted approach to sleep regulation. Similarly, palmitoylethanolamide (PEA), in addition to interacting with the endocannabinoid system, acts as an agonist on peroxisome proliferator-activated receptors (PPARs). The favorable safety profile of CBD and PEA and the potential for long-term use make them an attractive alternative to conventional pharmacotherapy. The integration of the latter two compounds into comprehensive treatment strategies, together with cognitive-behavioral therapy for insomnia (CBT-I), represents a holistic approach to address the multifactorial nature of sleep disorders. Further research is needed to establish the optimal dosage, safety, and efficacy in different patient populations, but the therapeutic potential of CBD and PEA offers hope for improved sleep quality and general well-being.


Assuntos
Canabidiol , Canabinoides , Transtornos do Sono-Vigília , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Endocanabinoides , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Sono
5.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063011

RESUMO

Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.


Assuntos
Insuficiência de Múltiplos Órgãos , Sepse , Humanos , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Sepse/microbiologia , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Animais , Microbioma Gastrointestinal , Estresse Oxidativo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
6.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611895

RESUMO

There is a pressing need for efficacious therapies in the field of respiratory diseases and infections. Lipid nanocarriers, administered through aerosols, represent a promising tool for maximizing therapeutic concentration in targeted cells and minimizing systemic exposure. However, this approach requires the application of efficient and safe nanomaterials. Palmitoylethanolamide (PEA), an endocannabinoid-like endogenous lipid, plays a crucial role in providing protective mechanisms during inflammation, making it an interesting material for preparing inhalable lipid nanoparticles (LNPs). This report aims to preliminarily explore the in vitro behavior of LNPs prepared with PEA (PEA-LNPs), a new inhalable inflammatory-targeted nanoparticulate drug carrier. PEA-LNPs exhibited a size of about 250 nm, a rounded shape, and an marked improvement in PEA solubility in comparison to naked PEA, indicative of easily disassembled nanoparticles. A twin glass impinger instrument was used to screen the aerosol performance of PEA-LNP powders, obtained via freeze-drying in the presence of two quantities of mannose as a cryoprotectant. Results indicated that a higher amount of mannose improved the emitted dose (ED), and in particular, the fine particle fraction (FPF). A cytotoxicity assay was performed and indicated that PEA-LNPs are not toxic towards the MH-S alveolar macrophage cell line up to concentrations of 0.64 mg/mL, and using coumarin-6 labelled particles, a rapid internalization into the macrophage was confirmed. This study demonstrates that PEA could represent a suitable material for preparing inhalable lipid nanocarrier-based dry powders, which signify a promising tool for the transport of drugs employed to treat respiratory diseases and infections.


Assuntos
Nanoestruturas , Doenças Respiratórias , Humanos , Manose , Sistemas de Liberação de Medicamentos , Endocanabinoides
7.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611871

RESUMO

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Assuntos
Amidas , Endocanabinoides , Etanolaminas , Neuroblastoma , Ácidos Oleicos , Humanos , Neuroblastoma/tratamento farmacológico , Antígeno B7-H1 , Janus Quinases , PPAR alfa , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Transcrição STAT , Transdução de Sinais , Apoptose , Ácidos Palmíticos/farmacologia
8.
Antimicrob Agents Chemother ; 67(10): e0045923, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37750714

RESUMO

Cryptococcus neoformans (Cn) is an encapsulated neurotropic fungal pathogen and the causative agent of cryptococcal meningoencephalitis (CME) in humans. Recommended treatment for CME is Amphotericin B (AmpB) and 5-fluorocytosine (5-FC). Though effective, AmpB has displayed numerous adverse side effects due to its potency and nephrotoxicity, prompting investigation into alternative treatments. Palmitoylethanolamide (PEA) is an immunomodulatory compound capable of promoting neuroprotection and reducing inflammation. To investigate the efficacy of PEA as a therapeutic alternative for CME, we intracerebrally infected mice with Cn and treated them with PEA or AmpB alone or in combination. Our results demonstrate that PEA alone does not significantly prolong survival nor reduce fungal burden, but when combined with AmpB, PEA exerts an additive effect and promotes both survivability and fungal clearance. However, we compared this combination to traditional AmpB and 5-FC treatment in a survivability study and observed lower efficacy. Overall, our study revealed that PEA alone is not effective as an antifungal agent in the treatment of CME. Importantly, we describe the therapeutic capability of PEA in the context of Cn infection and show that its immunomodulatory properties may confer limited protection when combined with an effective fungicidal agent.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Meningoencefalite , Humanos , Camundongos , Animais , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Antifúngicos/uso terapêutico , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Anfotericina B/uso terapêutico , Flucitosina/uso terapêutico , Meningoencefalite/tratamento farmacológico
9.
Genes Cells ; 27(7): 493-504, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485445

RESUMO

Lipid mediators are known to play crucial roles not only in the onset of the inflammatory response but also in the induction of resolution of inflammation. Here, we report that palmitoylethanolamide (PEA), an endogenous N-acylethanolamine, can suppress the inflammation induced by Toll-like receptor (TLR) signaling both in vitro and in vivo. PEA was found to be significantly reduced in the serum and spleen of lupus-prone MRL/lpr mice analyzed by lipidomics. PEA suppressed pro-inflammatory cytokine production in a mouse macrophage cell line stimulated with TLR ligands such as lipopolysaccharide, peptidoglycan, poly (I:C), imiquimod, and CpG-ODN. PEA also inhibited both mRNA and protein levels of IL-6 in bone marrow-derived dendritic cells (BMDCs) and B cells stimulated with CpG-ODN. Augmentation of cell surface CD86 and CD40 on BMDCs and B cells, IgM production, and cell proliferation of B cells in response to CpG-ODN were attenuated by PEA. Moreover, PEA treatment significantly reduced mortality and serum IL-6 levels in mice injected with CpG-ODN plus D-galactosamine. Taken together, PEA ameliorates inflammation induced by TLR signaling, which could be a novel therapeutic target for inflammatory disorders.


Assuntos
Interleucina-6 , Receptor Toll-Like 9 , Amidas , Animais , Cromatografia Líquida , Etanolaminas , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Lipidômica , Camundongos , Camundongos Endogâmicos MRL lpr , Ácidos Palmíticos , Espectrometria de Massas em Tandem , Receptores Toll-Like
10.
Psychol Med ; 53(15): 7446-7457, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37198936

RESUMO

BACKGROUND: Childhood maltreatment (CM) exerts long-lasting psychological and biological alterations in affected individuals and might also affect the endocannabinoid (eCB) system which modulates inflammation and the endocrine stress response. Here, we investigated the eCB system of women with and without CM and their infants using hair samples representing eCB levels accumulated during the last trimester of pregnancy and 10-12 months postpartum. METHODS: CM exposure was assessed with the Childhood Trauma Questionnaire. At both timepoints, 3 cm hair strands were collected from mothers and children (N = 170 resp. 150) to measure anandamide (AEA), 2/1-arachidonoylglycerol (2-AG/1-AG), stearoylethanolamide (SEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA). RESULTS: Maternal hair levels of 2-AG/1-AG increased and SEA levels decreased from late pregnancy to one year postpartum. Maternal CM was associated with lower SEA levels in late pregnancy, but not one year later. In the children's hair, levels of 2-AG/1-AG increased while levels of SEA, OEA, and PEA decreased from late pregnancy to one year later. Maternal CM was not consistently associated with the eCB levels measured in children's hair. CONCLUSIONS: We provide first evidence for longitudinal change in the eCB system of mothers and infants from pregnancy to one year later. While maternal CM influenced the maternal eCB system, we found no consistent intergenerational effects on early regulation of the eCB system in children. Longitudinal research on the importance of the eCB system for the course and immunoregulation of pregnancy as well as for the children's development.


Assuntos
Maus-Tratos Infantis , Endocanabinoides , Lactente , Criança , Humanos , Gravidez , Feminino , Período Pós-Parto , Cabelo
11.
Skin Pharmacol Physiol ; 36(6): 288-295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38408443

RESUMO

INTRODUCTION: Eczema is a debilitating skin disorder clinically characterised by the development of itchy, dry, rough, and scaling skin caused by a series of rudimentary clinical phenotypes. METHODS: This double-blind, randomised, comparator-controlled trial evaluated the effectiveness of topical application of a novel palmitoylethanolamide formulation (Levagen+) compared with a standard moisturiser (comparator) to reduce eczema severity and improve patient outcomes. Seventy-two participants aged over 18 years old with atopic eczema (symptoms including redness, dry skin, scaling, and/or itchiness) on their hands or arm were recruited. Participants were randomly allocated to one of two treatment groups (Levagen + or comparator). Treatment was applied to the affected area twice daily for 4 weeks. Outcome measures included Self-Assessed Eczema Area Severity Index (SA-EASI) scoring and Patient-Oriented Eczema Measure (POEM) from baseline to week 4. RESULTS: Levagen+ was effective at alleviating symptom severity of eczema over 4 weeks. Levagen+ significantly reduced redness, dryness, and total POEM score compared to a comparator cream. CONCLUSION: Levagen+ can significantly reduce eczema symptom severity compared to a comparator product, supporting its use as a potential treatment for eczema. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT05003453.


Assuntos
Dermatite Atópica , Eczema , Ácidos Palmíticos , Adulto , Humanos , Amidas/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Método Duplo-Cego , Eczema/tratamento farmacológico , Etanolaminas/uso terapêutico , Índice de Gravidade de Doença , Resultado do Tratamento
12.
Eur Arch Otorhinolaryngol ; 280(11): 4949-4961, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37380908

RESUMO

PURPOSE: Few evidence-based therapies are available for chronic olfactory dysfunction after COVID-19. This study investigated the relative efficacy of olfactory training alone, co-ultramicronized palmitoylethanolamide with luteolin (um-PEA-LUT, an anti-neuroinflammatory supplement) alone, or combined therapy for treating chronic olfactory dysfunction from COVID-19. METHODS: This double-blinded controlled, placebo-controlled multicenter randomized clinical trial was conducted in 202 patients with persistent COVID-19 olfactory dysfunction of > 6 month duration. After a screening nasal endoscopy, patients were randomized to: (1) olfactory training and placebo; (2) once daily um-PEA-LUT alone; (3) twice daily um-PEA-LUT alone; or (4) combination of once daily um-PEA-LUT with olfactory training. Olfactory testing (Sniffin' Sticks odor identification test) was performed at baseline and at 1, 2, and 3 months. The primary outcome was recovery of over three points on olfactory testing, with outcomes compared at T0, T1, T2 and T3 across groups. Statistical analyses included one-way ANOVA for numeric data and chi-square for nominal data. RESULTS: All patients completed the study, and there were no adverse events. At 90 days, odor identification scores improved by > 3 points in 89.2% of patients receiving combined therapy vs. 36.8% receiving olfactory training with placebo, 40% receiving twice daily um-PEA-LUT alone, and 41.6% receiving once daily um-PEA-LUT alone (p < 0.00001). Patients receiving treatment with um-PEA-LUT alone demonstrated subclinical improvement (< 3 point odor identification improvement) more often than patients receiving olfactory training with placebo (p < 0.0001.) CONCLUSIONS: Olfactory training plus once daily um-PEA-LUT resulted in greater olfactory recovery than either therapy alone in patients with long-term olfactory function due to COVID-19. TRIAL REGISTRATION: 20112020PGFN on clinicaltrials.gov. LEVEL OF EVIDENCE: 1b (Individual Randomized Clinical Trial).


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , COVID-19/complicações , Luteolina , Treinamento Olfativo , Olfato , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia
13.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982577

RESUMO

Neuropathic pain is a typical patient disorder resulting from damage and dysfunction of the peripheral neuraxis. Injury to peripheral nerves in the upper extremities can result in a lifelong reduction in quality of life and a devastating loss of sensory and motor function. Since some standard pharmaceutical therapies can cause dependence or intolerance, nonpharmacological treatments have gained great interest in recent years. In this context, the beneficial effects of a new combination of palmitoylethanolamide and Equisetum arvense L. are evaluated in the present study. The bioavailability of the combination was initially analyzed in a 3D intestinal barrier simulating oral intake to analyze its absorption/biodistribution and exclude cytotoxicity. In a further step, a 3D nerve tissue model was performed to study the biological effects of the combination during the key mechanisms leading to peripheral neuropathy. Our results demonstrate that the combination successfully crossed the intestinal barrier and reached the target site, modulating the nerve recovery mechanism after Schwann cell injury and offering the initial response of relieving pain. This work supported the efficacy of palmitoylethanolamide and Equisetum arvense L. in reducing neuropathy and modifying the major pain mechanisms, outlining a possible alternative nutraceutical approach.


Assuntos
Equisetum , Neuralgia , Humanos , Qualidade de Vida , Distribuição Tecidual , Neuralgia/tratamento farmacológico
14.
J Nutr ; 152(10): 2218-2226, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36084236

RESUMO

BACKGROUND: Inflammation is at the core of many chronic conditions and exacerbates infectious conditions, including the severity of coronavirus disease 2019 (COVID-19) infections. OBJECTIVES: This study aimed to examine the effects of a novel food supplement, palmitoylethanolamide (PEA), specifically Levagen+, as compared with a placebo on proinflammatory biomarkers in adults recently diagnosed with COVID-19 who were unvaccinated and nonhospitalized. METHODS: This study was a double-blind randomized placebo-controlled trial conducted October 2020-March 2021 (clinicaltrials.gov: NCT04912921). Participants aged 19-53 y were unvaccinated and recently infected with COVID-19 as indicated by a positive test result per RT-PCR or antigen test, and they reported to the test site following diagnosis as allowed by the CDC's return-to-work policy. Participants were stratified by age, sex, and BMI and randomly assigned by coin toss to receive 600 mg Levagen+ twice daily (LEV) or placebo tablets twice daily (CON) for 4 wk. At baseline and week 4, participants completed health histories, 24-h dietary recalls, anthropometrics, and nonfasting blood sampling. The primary outcomes were the 4-wk change between groups for IL-6, C-reactive protein, ferritin, intercellular adhesion molecule 1, soluble P-selectin (sP-selectin), and neutrophil/lymphocyte ratio. Multiple linear regression models were utilized to assess treatment effects on outcomes, adjusting for covariates. RESULTS: A total of 60 participants completed the study (LEV: n = 30; CON: n = 30). After 4 wk of supplementation, sP-selectin (ß = -11.5; 95% CI: -19.8, -3.15; P = 0.0078), IL-1ß (ß = -22.9; 95% CI: -42.4, -3.40; P = 0.0222), and IL-2 (ß = -1.73; 95% CI: -3.45, -0.065; P = 0.0492) concentrations were significantly reduced in the LEV group compared with the CON group. CONCLUSIONS: Inflammatory mechanisms are crucial to optimal resolution of infectious conditions, yet unchecked secretion of inflammatory mediators can promote the dysregulated immune response implicated in COVID-19 complications. Overall, PEA supplementation produced anti-inflammatory effects in individuals recently diagnosed with COVID-19 who were nonhospitalized.


Assuntos
COVID-19 , Adulto , Amidas , Anti-Inflamatórios , Biomarcadores , Proteína C-Reativa , Método Duplo-Cego , Etanolaminas , Ferritinas , Humanos , Mediadores da Inflamação , Molécula 1 de Adesão Intercelular , Interleucina-2 , Interleucina-6 , Selectina-P , Ácidos Palmíticos , SARS-CoV-2 , Resultado do Tratamento
15.
Pharmacol Res ; 182: 106338, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781057

RESUMO

The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention.


Assuntos
Neuroblastoma , Transtornos Parkinsonianos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Amidoidrolases , Animais , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Degeneração Neural/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico
16.
Pharmacol Res ; 185: 106491, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244543

RESUMO

Psoriasis is an incurable autoimmune disease that affects 2-3% of the world's population. Limited understanding of its pathogenesis hinders the development of therapies for the disease. Herein, we reported that N-acylethanolamine acid amidase (NAAA), a cysteine enzyme that catalyzes the hydrolysis of fatty acid ethanolamides (FAEs), was upregulated in psoriasis patients and imiquimod (IMQ)-induced mouse model of psoriasis. The upregulated NAAA contributes to the progression of psoriasis via enhancing dendritic cell (DCs) maturation. Transgenic expression of NAAA in mice accelerated the development of psoriasis, whereas genetic ablation of NAAA or local administration of NAAA inhibitor F96 ameliorated psoriasis. NAAA expressed in dendritic cells (DCs), but not in macrophages, T cells, or keratinocytes plays a critical role in psoriasis development. In addition, the results showed that NAAA degrades palmitoylethanolamide (PEA) and reduces PEA-PPARα-mediated dissociation of NF-κB p65 from Sirtuin 1 (SIRT1), subsequently, repressing the acetylation of p65 and down-regulating IL10 production. The decreased IL10 then leads to the maturation of DCs, thus promoting the development of psoriasis. These results provide new insights into the pathophysiological mechanism of psoriasis and identify NAAA as a novel target for the treatment of psoriasis.


Assuntos
Interleucina-10 , Psoríase , Camundongos , Animais , Inibidores Enzimáticos/farmacologia , Amidoidrolases , Inflamação , Psoríase/tratamento farmacológico , Células Dendríticas/metabolismo
17.
Headache ; 62(3): 227-240, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35179780

RESUMO

BACKGROUND: Migraine is a complex and highly disabling neurological disease whose treatment remains challenging in many patients, even after the recent advent of the first specific-preventive drugs, namely monoclonal antibodies that target calcitonin gene-related peptide. For this reason, headache researchers are actively searching for new therapeutic targets. Cannabis has been proposed for migraine treatment, but controlled clinical studies are lacking. A major advance in cannabinoid research has been the discovery of the endocannabinoid system (ECS), which consists of receptors CB1 and CB2; their endogenous ligands, such as N-arachidonoylethanolamine; and the enzymes that catalyze endocannabinoid biosynthesis or degradation. Preclinical and clinical findings suggest a possible role for endocannabinoids and related lipids, such as palmitoylethanolamide (PEA), in migraine-related pain treatment. In animal models of migraine-related pain, endocannabinoid tone modulation via inhibition of endocannabinoid-catabolizing enzymes has been a particular focus of research. METHODS: To conduct a narrative review of available data on the possible effects of cannabis, endocannabinoids, and other lipids in migraine-related pain, relevant key words were used to search the PubMed/MEDLINE database for basic and clinical studies. RESULTS: Endocannabinoids and PEA seem to reduce trigeminal nociception by interacting with many pathways associated with migraine, suggesting a potential synergistic or similar effect. CONCLUSIONS: Modulation of the metabolic pathways of the ECS may be a basis for new migraine treatments. The multiplicity of options and the wealth of data already obtained in animal models underscore the importance of further advancing research in this area. Multiple molecules related to the ECS or to allosteric modulation of CB1 receptors have emerged as potential therapeutic targets in migraine-related pain. The complexity of the ECS calls for accurate biochemical and pharmacological characterization of any new compounds undergoing testing and development.


Assuntos
Canabinoides , Transtornos de Enxaqueca , Analgésicos/uso terapêutico , Animais , Peptídeo Relacionado com Gene de Calcitonina , Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Endocanabinoides/uso terapêutico , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Dor/tratamento farmacológico , Dor/etiologia
18.
Psychiatry Clin Neurosci ; 76(10): 505-511, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35737597

RESUMO

AIM: Palmitoylethanolamide is an endogenous fatty acid amide with neuroprotective and anti-inflammatory actions. We performed a randomized, double-blind, placebo-controlled clinical trial to investigate the efficacy and safety of palmitoylethanolamide combination therapy in acute mania. METHODS: Patients in the acute phase of mania were assigned into two parallel groups given either lithium (blood level of 0.8-1.1 mEq/L) and risperidone 3 mg plus palmitoylethanolamide 600 mg or placebo twice per day for 6 weeks. All participants were assessed with the Young Mania Rating Scale (YMRS), Hamilton Depression Rating Scale (HDRS), and Extrapyramidal Symptom Rating Scale (ESRS) at baseline and at weeks 1, 2, 4, and 6. RESULTS: A total of 63 patients (32 in palmitoylethanolamide and 31 in placebo groups) completed the trial. We found a significant effect for time×treatment interaction on the YMRS score (F = 5.22, d.f. = 2.34, P= 0.004) from baseline to study end point. Results from independent t test showed a significantly greater decrease in YMRS scores in the palmitoylethanolamide group, compared with the placebo group, from baseline to weeks 4 and 6 (P= 0.018 and P= 0.002, respectively). There was no significant difference between palmitoylethanolamide and placebo groups based on ESRS scores or ESRS changes in scores (P>0.05). CONCLUSIONS: Our findings provide preliminary evidence that palmitoylethanolamide is an effective adjunctive medication that improves manic symptoms and overall clinical status in acute episodes of mania. However, larger sample sizes and more extended follow-up therapy are needed in future studies to confirm our findings.


Assuntos
Antipsicóticos , Doenças dos Gânglios da Base , Transtorno Bipolar , Amidas/uso terapêutico , Antimaníacos/uso terapêutico , Antipsicóticos/uso terapêutico , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/tratamento farmacológico , Método Duplo-Cego , Quimioterapia Combinada , Etanolaminas , Humanos , Lítio/uso terapêutico , Mania , Ácidos Palmíticos/efeitos adversos , Escalas de Graduação Psiquiátrica , Risperidona , Resultado do Tratamento
19.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235308

RESUMO

The enteric nervous system (ENS) is a part of the autonomic nervous system that intrinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-competent cells that contribute to the maintenance of the GI tract homeostasis through supporting epithelial integrity, providing neuroprotection, and influencing the GI motor function and sensation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids (anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved. Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dysfunctions, and the current knowledge about how EGCs may be modulated by the ECS components, as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with potential nutraceutical use.


Assuntos
Canabinoides , Endocanabinoides , Canabinoides/metabolismo , Canabinoides/farmacologia , Ciclo-Oxigenase 2 , Suplementos Nutricionais , Endocanabinoides/metabolismo , Neuroglia/metabolismo , Receptores Ativados por Proliferador de Peroxissomo
20.
Inflammopharmacology ; 30(6): 2063-2077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057884

RESUMO

BACKGROUND: Peripheral neuropathy is a common complication of diabetes. The management of the associated neuropathic pain remains difficult to treat. OBJECTIVE: This study explored the safety, tolerability and efficacy of a palmitoylethanolamide (PEA) formulation in treating diabetic-related peripheral neuropathic pain (PNP). Secondary outcomes included systemic inflammation, sleep and mood changes in patients diagnosed with type 1 and type 2 diabetes and PNP. DESIGN: This study was a single-centre, quadruple-blinded, placebo-controlled trial with 70 participants receiving 600 mg of PEA or placebo daily, for 8 weeks, with a 94% rate of study participation completion. Primary outcomes were neuropathic pain and specific pain types (the BPI-DPN and NPSI). The secondary outcomes were sleep quality (MOS sleep scale), mood (DASS-21), glucose metabolism and inflammation. RESULTS: There was a significant reduction (P ≤ 0.001) in BPI-DPN total pain and pain interference, NPSI total score and sub-scores, except for evoked pain (P = 0.09) in the PEA group compared with the placebo group. The MOS sleep problem index and sub-scores significantly improved (P ≤ 0.001). DASS-21 depression scores significantly reduced (P = 0.03), but not anxiety or stress scores. Interleukin-6 and elevated C-reactive protein levels significantly reduced in the PEA group (P = 0.05), with no differences in fibrinogen between groups (P = 0.78) at treatment completion. There were no changes in safety pathology parameters, and the treatment was well tolerated. CONCLUSIONS: The study demonstrated that the PEA formulation reduced diabetic peripheral neuropathic pain and inflammation along with improving mood and sleep. Further studies on the mechanistic effectiveness of PEA as an adjunct medicine and as a monotherapy pain analgesic are warranted. CLINICAL TRIAL REGISTRATION: Registry name: Australian New Zealand Clinical Trials Registry (ANZCTR), Registration number: ACTRN12620001302943, Registration link: https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=380826 , Actual study start date: 20 November 2020.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Neuralgia , Humanos , Austrália , Neuropatias Diabéticas/tratamento farmacológico , Inflamação/tratamento farmacológico , Neuralgia/tratamento farmacológico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA