Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 470(1): 157-162, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26768366

RESUMO

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARß/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARß/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARß/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARß/δ enhances myoblast differentiation through activation of promyogenic signaling pathways.


Assuntos
Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , PPAR gama/metabolismo , PPAR beta/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , PPAR gama/agonistas , PPAR beta/agonistas , Tiazóis/administração & dosagem
2.
Front Physiol ; 12: 701354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421639

RESUMO

Fusion-negative rhabdomyosarcoma (FN-RMS) is the most common soft tissue sarcoma of childhood arising from undifferentiated skeletal muscle cells from uncertain origin. Currently used therapies are poorly tumor-specific and fail to tackle the molecular machinery underlying the tumorigenicity and uncontrolled proliferation of FN-RMS. We and other groups recently found that microRNAs (miRNA) network contributes to myogenic epigenetic memory and can influence pluripotent stem cell commitments. Here, we used the previously identified promyogenic miRNAs and tailored it to the murine FN-RMS. Subsequently, we addressed the effects of miRNAs in vivo by performing syngeneic transplant of pre-treated FN-RMS cell line in C57Bl/6 mice. miRNA pre-treatment affects murine FN-RMS cell proliferation in vivo as showed by bioluminescence imaging analysis, resulting in better muscle performances as highlighted by treadmill exhaustion tests. In conclusion, in our study we identified a novel miRNA combination tackling the anti-myogenic features of FN-RMS by reducing proliferation and described novel antitumorigenic therapeutic targets that can be further explored for future pre-clinical applications.

3.
J Ginseng Res ; 41(4): 608-614, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29021711

RESUMO

BACKGROUND: Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. METHODS: C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. RESULTS: Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. CONCLUSION: Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA