Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252215

RESUMO

Three rhodamine 6G derivatives (REHA, RETA and REDA) were designed and synthesized by connecting rhodamine 6G and 3-methyl-2-thiophenal with hydrazine hydrate, ethylenediamine and diethylenetriamine, respectively. In CH3CN/H2O (50/50, v/v), the absorbance of REHA, RETA and REDA at 528 nm was suddenly enhanced by 3.2, 3.8 and 7.2 times within the pH range of 3.03-2.31, 3.05-2.32 and 3.06-2.34, respectively, and the solution changed from colorless to pink. Meanwhile, the maximal fluorescence intensity sharply increased by 53.9, 26.6 and 24.9 times in the pH range of 3.86-3.46, 3.88-3.47 and 3.89-3.48, respectively, and the solution changed from dark to bright yellow-green fluorescence. REHA, RETA and REDA can act as highly selective and sensitive colorimetric and fluorescent pH switches with good recyclability and anti-interference ability. The response mechanism of REHA, RETA and REDA to pH was studied by 1H NMR spectroscopy, and their application in indicating small pH changes in dyeing wastewater was investigated.

2.
J Fluoresc ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280054

RESUMO

SiO2@Ag nanocomposite (NC) has been synthesized by the chemical reduction and StÓ§ber method for Metal-enhanced fluorescence (MEF) of Rhodmine 6G (R6G) and Surface-enhanced Raman spectroscopy (SERS) of Malachite green (MG). As-synthesized SiO2@Ag NC indicated SiO2 nanosphere (NS) and Ag nanoparticle (NP) morphologies. The SiO2@Ag NC was high quality with a well-defined crystallite phase with average sizes of 24 nm and 132 nm for Ag NP and SiO2 NC, respectively. By using SiO2@Ag NC, the photoluminescence (PL) intensity of the R6G (at 59.17 ppm) was increased approximately 133 times. The SERS of the MG (at 1.0 ppm) with SiO2@Ag NC as substrate clearly observed vibrational modes in MG dye at 798, 916, 1172, 1394, and 1616 cm-1. As a result, the SERS enhancement factor (EFSERS) at 1172 cm-1 obtained 6.3 × 106. This initial study points to the potential of SiO2@Ag NC as a promising material for MEF and SERS substrates to detect dyes at low concentrations.

3.
Environ Res ; 258: 119371, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876420

RESUMO

Cu2ZnSnS4 (CZTS) was synthesized following hot injection method and the process was optimized by varying temperature conditions. Four samples at different temperatures viz., 200, 250, 300 and 350 °C were prepared and analyzed using different characterization techniques. Based on the correlation between XRD, Raman and XPS, we conclude that the formation of ZnS and SnS2 occurs at 350 °C but at 200 °C there is no breakdown of the complex as per XRD. According to Raman and XPS analysis, as the temperature rises, the bonds between the metals become weaker, which is visibly seen in Raman and XPS due to the minor peaks of copper sulfide. Scanning electron microscopic analysis confirmed nanometric particles which increase in size with temperature. The photocatalytic evaluation showed that CZTS synthesized at 200 °C performed efficiently in the removal of the two colorants, methylene blue and Rhodamine 6G, achieving 92.80% and 90.65%, respectively. The photocatalytic degradation efficiencies decreased at higher temperatures due to bigger sized CZTS particles as confirmed by SEM results. Computational simulations confirm that CZTS has a highly negative energy -25,764 Ry, confirming its structural stability and higher covalent than ionic character.


Assuntos
Cobre , Azul de Metileno , Rodaminas , Sulfetos , Rodaminas/química , Azul de Metileno/química , Sulfetos/química , Cobre/química , Catálise , Compostos de Estanho/química , Temperatura Alta , Poluentes Químicos da Água/química
4.
Molecules ; 29(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339294

RESUMO

The increasing global requirement for clean and safe drinking water has necessitated the development of efficient methods for the elimination of organic contaminants, especially dyes, from wastewater. This study reports the synthesis of magnesium oxide (MgO) nanoparticles via a simple precipitation approach and their thorough characterization using various techniques, including XRD, FT-IR, XPS, TGA, DLS, and FESEM. Synthesized MgO nanoparticles' photocatalytic effectiveness was evaluated towards rhodamine B and rhodamine 6G degradation under both UV and visible light irradiation. The results indicated that the MgO nanoparticles possess a face-centered cubic structure with enhanced crystallinity and purity, as well as an average crystallite size of approximately 3.20 nm. The nanoparticles demonstrated a significant BET surface area (52 m2/g) and a bandgap value equal to 5.27 eV. Photocatalytic experiments indicated complete degradation of rhodamine B dye under UV light within 180 min and 83.23% degradation under visible light. For rhodamine 6G, the degradation efficiency was 92.62% under UV light and 38.71% under visible light, thus verifying the MgO catalyst's selectivity towards degradation of rhodamine B dye. Also, reusability of MgO was investigated for five experimental photocatalytic trials with very promising results, mainly against rhodamine B. Scavenging experiments confirmed that •OH radicals were the major reactive oxygen species involved in the photodegradation procedure, unraveling the molecular mechanism of the photocatalytic efficiency of MgO.

5.
Molecules ; 29(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39339389

RESUMO

Among a variety of diverse host molecules distinguished by specific characteristics, the cucurbit[n]uril (CB) family stands out, being widely known for the attractive properties of its representatives along with their increasingly expanding area of applications. The presented herewith density functional theory (DFT)-based study is inspired by some recent studies exploring CBs as a key component in multifunctional hydrogels with applications in materials science, thus considering CB-assisted supramolecular polymeric hydrogels (CB-SPHs), a new class of 3D cross-linked polymer materials. The research systematically investigates the inclusion process between the most applied representative of the cavitand family CB[7] and a series of laser dye molecules as guests, as well as the possible encapsulation of a model side chain from the photoanisotropic polymer PAZO and its sodium-containing salt. The obtained results shed light on the most significant factors that play a key role in the recognition process, such as binding mode, charge, and dielectric constant of the solvent. The observed findings provide valuable insights at a molecular level for the design of dye-CB[7] systems in various environments, with potential applications in intriguing and prosperous fields like photonics and material science.

6.
Nanotechnology ; 35(10)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38035399

RESUMO

The surface-enhanced Raman scattering (SERS) is an effective spectral technology based on Raman scattering, but in practice, the commonly used SERS substrates suffer from low sensitivity and poor stability. In order to overcome these limitations, the SERS substrates were prepared from hydrophobic modification of dodecanethiol (C12) coupled with a flexible substrate, which was then used for pesticides detection in water. A flexible PA@Ag-C12 substrate with surface functionalization has been obtained. This work aims to investigate the self-assembly of Ag NPs modified with C12 onto polyamide (PA) membranes. Initially, transmission electron microscopy and scanning electron microscopy were used to analyze the substrate's morphology. Then with the help of an energy-dispersive spectrometer, sulfur content of C12-modified Ag NPs was analyzed. In order to determine the hydrophobicity of the modified Ag NPs, the contact angle was used. The results indicate that the gap between Ag NPs on PA membrane can be effectively controlled in order to prevent Ag NPs from aggregating. Furthermore, the finite-difference time-domain analysis indicated that the PA@Ag-C12 substrate exhibited a stronger electromagnetic enhancement effect than the PA@Ag substrate. By reducing NPs gaps on the PA membrane, the number of 'hot spots' increased, and the SERS performance of the substrate was improved as a result. According to the results of this study, this method can greatly reduce the manufacturing costs and time costs of the SERS substrate while maintaining the original uniformity. The SERS performance of PA@Ag-C12 was found to be three orders of magnitude better than that of PA@Ag direct self-assembled substrate, and the detection limit for Rhodamine 6G (R6G) was approximately 8.47 × 10-14M. On the basis of the PA@Ag-C12 substrate, thiram is detectable at a detection limit of 5.88 × 10-11M with a high degree of sensitivity and repeatability.

7.
Environ Res ; 236(Pt 1): 116540, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406725

RESUMO

The dual-signal probe utilizing functionalized silver nanoparticles (AgNPs) is a promising sensing tool. Herein, a novel colorimetric/fluorescent dual-signal probe (AgNPs-L-Cys-Rh6G2) was fabricated for copper ion (Cu2+) detection and cell imaging by using L-cysteine as a "bridge" to connect AgNPs and rhodamine 6G derivatives. The AgNPs-L-Cys-Rh6G2 probe exhibits a dual-signal response to Cu2+ due to Rh6G2 hydrolysis, resulting in a high fluorescence response and a significant change in color from light yellow to pink under sunlight. The linear detection ranges of the AgNPs-L-Cys-Rh6G2 probe for Cu2+ were 100-450 µM and 150-650 µM using fluorescent and colorimetry methods, respectively. The detection limits were as low as 0.169 µM and 1.36 µM, respectively. Meanwhile, the proposed probe was applied to detect Cu2+ in the actual sediment with satisfactory recovery and low relative standard deviation. Furthermore, the probe was further employed for fluorescence imaging in HeLa cells. In brief, the developed AgNPs-L-Cys-Rh6G2 sensing platform can be used for simultaneous Cu2+ determination and cell imaging.

8.
J Sep Sci ; 46(19): e2300190, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37496320

RESUMO

An NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized for extraction and determination of Rhodamine (Rh) 6G from environmental and cosmetic samples. The deep eutectic solvent (DES) was prepared by mixing choline chloride and urea in a mole ratio of 1:2. NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized using the impregnation method at a ratio of 60:40 (w/w). The optimum conditions were determined after NH2 -MIL-53(Al)-DES(ChCl-Urea) characterization was performed. The optimum conditions were determined as pH 8, adsorbent amount of 15 mg, total adsorption-desorption time of 6 min, and enrichment factor of 20. The recovery values of the solid-phase extraction method for water and cosmetic samples under optimum conditions were between 95% and 106%. NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was an economically advantageous adsorbent because of its reusability of 15 times. All analyses were performed using the ultraviolet-visible spectrophotometer. The linear range, limit of detection, and limit of quantification of the method were 100-1000, 9.80, and 32.68 µg/L, respectively. The obtained results showed that the synthesized nanocomposite is a suitable adsorbent for the determination of Rh 6G in water and cosmetic samples. The real sample applications were verified with the high-performance liquid chromatography system.

9.
Inorg Chem Commun ; 1472023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37485236

RESUMO

A new rhodamine 6G derivative R1 has been synthesized by condensation of rhodamine hydrazide and 6-hydroxymethyl-pyridine using microwave-assisted reaction. Naked-eye colorimetric and photo physical studies show the synthesized compound is selectively sensing Cu2+ in CH3CN/H2O (9:1, v/v) solution. Upon coordination with Cu2+ ion, the spirolactam of R1 is opened, which results in a formation of highly fluorescent complex and change in color of the solution. The Job's plot indicates 1:2 binding stoichiometry between Cu2+ ion and R1. Limit of detection for Cu2+ was determined to be 1.23 µM. The sensor was successfully applied to fluorescent imaging of Cu2+ ion in living cells.

10.
Nanotechnology ; 34(2)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36195059

RESUMO

The adsorption of analyte molecules on nano-optoelectrodes (e.g. a combined nanoantenna and nanoelectrode device) significantly affects the signal characteristics in surface-enhanced Raman scattering (SERS) measurements. Understanding how different molecules adsorb on electrodes and their electrical potential modulation helps interpret SERS measurements better. We use molecular dynamics simulations to investigate the adsorption of prototypical analyte molecules (rhodamine 6G and choline) on gold electrodes with negative, neutral, and positive surface charges. We show that both molecules can readily adsorb on gold surfaces at all surface charge densities studied. Nevertheless, the configurations of the adsorbed molecules can differ for different surface charge densities, and adsorption can also change a molecule's conformation. Rhodamine 6G molecules adsorb more strongly than choline molecules, and the adsorption of both molecules is affected by electrode charge in 0.25 M NaCl solutions. The mechanisms of these observations are elucidated, and their implications for voltage-modulated SERS measurements are discussed.

11.
Nanotechnology ; 33(33)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35508104

RESUMO

A scalable procedure of SERS substrates design was developed using a novel plasmonic structure based on a freestanding chitosan film, silver nanoparticles, and graphene oxide. Chitosan provides a uniform distribution of silver nanoparticles from a colloidal suspension and, therefore, a reproducible Raman signal from local areas of measurements of several tens of microns. The addition of graphene oxide (GO) to the colloidal solution of silver nanoparticles suppresses the tortuous background fluorescence signal from the analyte and leads to an increase in the signal-to-fluorescence background intensity ratio by up to 6 times as compared to structures without GO. The manufactured plasmonic polymer nanocomposite provides a detection limit of down to 100 pM for R6G using a laser wavelength of 532 nm through a portable ×10 objective. The high colloidal stability of GO in water and the use of an aqueous colloid of silver nanoparticles simplify the procedure for creating a substrate by applying the GO-silver composite on the surface of a chitosan film without a need to form a GO film. Therefore, our approach paves a promising avenue to provide more sensitive detection even for the fluorescent analytes with short-wavelength lasers (532, 633 nm) instead of IR (785, 1024 nm) and foster the practical application of the developed plasmonic composites on portable Raman spectrometers.

12.
Luminescence ; 37(7): 1126-1134, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35470954

RESUMO

A chemiluminescence (CL) method based on rhodamine 6G (R6G)-diperiodatoargentate(III) (silver(III) complex) reaction in acid solution is reported for the determination of lansoprazole (LNP) combined with a flow injection (FI) technique. The most likely mechanism for CL reaction was elucidated considering reported data, spectrophotometric and spectrofluorimetric studies. The weak CL reaction between R6G and silver(III) complex could be magnanimously increased in the presence of LNP with a limit of detection (LOD) of 0.002 mg L-1 (S/N = 3), a linear range of 0.01 to 10 mg L-1 (R2 = 0.9997, n = 7), a relative standard deviation (RSD) of 1.2 to 3.2% (n = 4) and an injection throughput of 140 h-1 . No interference activity of commonly found excipients in LNP was detected. After LNP extraction from pharmaceutical samples, the recovery rate ranging from 93 to 110% (RSD, 1.4-3.3%, n = 4) was calculated. The results of the proposed flow CL method were assessed with a spectrophotometric approach applying paired Student's t-test and the calculated value (0.178) was lower than the distributed value (2.20) at a 95% confidence limit.


Assuntos
Análise de Injeção de Fluxo , Lansoprazol , Medições Luminescentes , Preparações Farmacêuticas , Complexos de Coordenação , Análise de Injeção de Fluxo/métodos , Lansoprazol/análise , Medições Luminescentes/métodos , Preparações Farmacêuticas/análise , Rodaminas , Prata
13.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616787

RESUMO

In this work, we test the effectiveness of using highly transparent holographic phase reflection and transmission volume gratings based on multifunctional acrylates as linear compression and rotation sensors. The gratings are recorded in a holographic mixture based on multi-reticulated acrylate and haloalkanes. To activate the photo-polymerization process, we used a mixture of 6-oxocamphore and rhodamine 6G. The mixture is a simplified version of the mixture used in previous works and shows some interesting features mainly in connection with the different roles played by the rhodamine 6G dye at different writing wavelengths λ = 532 nm and λ = 460 nm. Regarding reflection gratings, the maximum achieved diffraction efficiency is ≈50% and their use as linear compression sensors produces a shift in the reflection peak of 2 nm. Following the removal of compression, the grating slowly returns to the initial state. Regarding transmission gratings, the maximum achieved diffraction efficiency is ≈45% and they demonstrate very high sensitivity to even small rotations in a free-standing configuration.

14.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500551

RESUMO

Vertical-aligned CuO nanowires have been directly fabricated on Cu foil through a facile thermal oxidation process by a hotplate at 550 °C for 6 h under ambient conditions. The intermediate layer of resorcinol-formaldehyde (RF) and silver (Ag) nanoparticles can be sequentially deposited on Cu nanowires to form CuO@RF@Ag core-shell nanowires by a two-step wet chemical approach. The appropriate resorcinol weight and silver nitrate concentration can be favorable to grow the CuO@RF@Ag nanowires with higher surface-enhanced Raman scattering (SERS) enhancement for detecting rhodamine 6G (R6G) molecules. Compared with CuO@Ag nanowires grown by ion sputtering, CuO@RF@Ag nanowires exhibited a higher SERS enhancement factor of 5.33 × 108 and a lower detection limit (10-12 M) for detecting R6G molecules. This result is ascribed to the CuO@RF@Ag nanowires with higher-density hot spots and surface-active sites for enhanced high SERS enhancement, good reproducibility, and uniformity. Furthermore, the CuO@RF@Ag nanowires can also reveal a high-sensitivity SERS-active substrate for detecting amoxicillin (10-10 M) and 5-fluorouracil (10-7 M). CuO@RF@Ag nanowires exhibit a simple fabrication process, high SERS sensitivity, high reproducibility, high uniformity, and low detection limit, which are helpful for the practical application of SERS in different fields.


Assuntos
Nanopartículas Metálicas , Nanofios , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Prata , Nanofios/química , Formaldeído
15.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235289

RESUMO

Label-free biosensors provide an important platform for detecting chemical and biological substances without needing extra labeling agents. Unlike surface-based techniques such as surface plasmon resonance (SPR), interference, and ellipsometry, surface-enhanced Raman spectroscopy (SERS) possesses the advantage of monitoring analytes both on surfaces and in solutions. Increasing the SERS enhancement is crucial to preparing high-quality substrates without quickly losing their stability, sensitivity, and repeatability. However, fabrication methods based on wet chemistry, nanoimprint lithography, spark discharge, and laser ablation have drawbacks of waste of time, complicated processes, or nonreproducibility in surface topography. This study reports the preparation of recyclable TiO2/Ag nanoparticle (AgNP) substrates by using simple arc ion plating and direct-current (dc) magnetron sputtering technologies. The deposited anatase-phased TiO2 ensured the photocatalytic degradation of analytes. By measuring the Raman spectra of rhodamine 6G (R6G) in titrated concentrations, a limit of detection (LOD) of 10-8 M and a SERS enhancement factor (EF) of 1.01 × 109 were attained. Self-cleaning was performed via UV irradiation, and recyclability was achieved after at least five cycles of detection and degradation. The proposed TiO2/AgNP substrates have the potential to serve as eco-friendly SERS enhancers for label-free detection of various chemical and biological substances.


Assuntos
Nanopartículas Metálicas , Prata , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Titânio/química
16.
Nanotechnology ; 32(29)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33848997

RESUMO

Rhodamine 6G (R6G) molecules linked CdZnSeS/ZnS green-emitting quantum dots (QDs) are self-assembled onto Ag nanoparticles (NPs) for studying the surface plasmon (SP) coupling effect on the Förster resonance energy transfer (FRET) process from QD into R6G. SP coupling can enhance the emission efficiency of QD such that FRET has to compete with QD emission for transferring energy into R6G. It is found that FRET efficiency is reduced under the SP coupling condition. Although R6G emission efficiency can also be enhanced through SP coupling when it is directly linked onto Ag NP, the enhancement decreases when R6G is linked onto QD and then the QD-R6G complex is self-assembled onto Ag NP. In particular, R6G emission efficiency can be reduced through SP coupling when the number of R6G molecules linked onto a QD is high. A rate-equation model is built for resembling the measured photoluminescence decay profiles and providing us with more detailed explanations for the observed FRET and SP coupling behaviors.

17.
Luminescence ; 36(5): 1300-1305, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33856103

RESUMO

Fluorescence quenching of rhodamine 6G by graphene oxide (GO) was investigated using steady-state fluorescence spectroscopy and ultrafast time-resolved absorption spectroscopy. The steady-state fluorescence spectra showed that rhodamine 6G fluorescence was effectively quenched by titrating the GO to the rhodamine 6G solutions. For lower GO concentrations, transient dynamic curves followed two-exponential decay parameters. For higher GO concentrations, the dynamic curves could not be fitted well, and three-exponential decay parameters were appropriate. The results indicated that there was a new transition process (electron transfer) in the exited rhodamine 6G and GO solution.


Assuntos
Grafite , Rodaminas , Espectrometria de Fluorescência
18.
J Fluoresc ; 30(6): 1375-1381, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32996105

RESUMO

The highly selective and sensitive fluorometric method has been developed for trace level determination of Hg(II) is based on photo-induced electron transfer between rhodamine-6G dye and metal complex. Quenching in fluorescence intensity by fluorescence resonance energy transfer (FRET) is due to interaction between metal ion complex and dye. The fluorescence emitted was measured at 510 and 550 nm, for excitation and emission wavelengths respectively. Possible interferences present in water samples, which could affect the analytical response are studied and determined. The calibration graph was dynamically linear from 0.002 to 0.05 mgL-1 of Hg(II) with limit of detection 7 × 10-4 mgL-1 and limit of quantitation 1.9 × 10-3 mgL-1. The Stern-Volmer constant (KSV) calculated for the quenching of R-6G with Hg (II) was 8.47 Lmg-1 s-1 at optimized reaction conditions. The proposed FRET based fluorometric method was applied successfully in different industrial wastewater samples with satisfactory outcome.


Assuntos
Fluorometria , Resíduos Industriais/análise , Mercúrio/análise , Águas Residuárias/química , Calibragem , Transferência Ressonante de Energia de Fluorescência , Limite de Detecção , Mercúrio/química
19.
J Fluoresc ; 30(5): 1043-1048, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32613438

RESUMO

This study deals with the effects of different sets of binary solvents on the Two-Photon Induced Fluorescence (TPIF), a non-linear process, of the Rhodamine-6G (Rh6G) dye, which is a well-known xanthene dye. This work examines the importance of inter-molecular interactions, which results in the modulation of the TPIF of the Rh6G. In this work, we have investigated three binary solvent mixtures representing varying polarity and intermolecular interactions. Specific solvent mixtures used are methanol-water, methanol-dimethyl formamide, and methanol-chloroform. Since the solvent polarity across these binary solvents differs, there are significant intermolecular interactions in the binary mixture solvents, which modulate the two-photon process of Rh6G when irradiated with high-intensity laser light at 780 nm. In our studies, we find that Rh6G in the MeOH-H2O binary solvent has maximum red-shift and minimum intensity as compared to other pairs of binary liquids when the volume fraction of methanol decreases due to more extensive hydrogen bonding between the two components. Additionally, at 1:1 ratio of binary mixtures, Rh6G is found to have the highest TPEACS value for methanol-chloroform binary solvent and reason for that is related to the formation of weak H-bond networks between proton donor chloroform and proton acceptor methanol.

20.
Environ Res ; 186: 109615, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32668555

RESUMO

Among conducting polymers, polyaniline (PANI) is one of the most widely used materials due to its unique properties (e.g., high electrical conductivity, outstanding electrochemical properties, easy polymerization, high stability, and low-cost synthesis). In this study, we report the synthesis of a composite of polyaniline with lead sulfide quantum dots (PbS QDs), which was subsequently employed for photocatalysis of a dye, rhodamine 6G (Rh-6G). This PANI/PbS composite was prepared by employing the chemical oxidative polymerization of aniline monomer in the presence of PbS QDs. The composite has been characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and ultraviolet-visible spectroscopy. The composite formation turned out to be beneficial not only for the dispersion of PbS QDs but also for increasing the conductivity of the whole catalyst. They exhibited ~87% degradation of the dye content for 50 min. The kinetic rate for its destruction is 5.03 mmol g-1 h-1 with the quantum efficiency (QE) of 7.98E-06 molec/photon. Due to enhanced charge transfer characteristics, the PANI/PbS photocatalyst was capable of efficiently degrading the dye molecules across varying concentrations. The electron-hole pair generated after the visible light irradiation on the PANI/PbS composite led to an efficient oxidative degradation of Rh 6G.


Assuntos
Compostos de Anilina , Nanocompostos , Luz , Fotólise , Rodaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA