Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(4): 749-762.e5, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30661981

RESUMO

The introduction of azole heterocycles into a peptide backbone is the principal step in the biosynthesis of numerous compounds with therapeutic potential. One of them is microcin B17, a bacterial topoisomerase inhibitor whose activity depends on the conversion of selected serine and cysteine residues of the precursor peptide to oxazoles and thiazoles by the McbBCD synthetase complex. Crystal structures of McbBCD reveal an octameric B4C2D2 complex with two bound substrate peptides. Each McbB dimer clamps the N-terminal recognition sequence, while the C-terminal heterocycle of the modified peptide is trapped in the active site of McbC. The McbD and McbC active sites are distant from each other, which necessitates alternate shuttling of the peptide substrate between them, while remaining tethered to the McbB dimer. An atomic-level view of the azole synthetase is a starting point for deeper understanding and control of biosynthesis of a large group of ribosomally synthesized natural products.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Bacteriocinas/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Ribossomos/enzimologia , Inibidores da Topoisomerase II/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Difração de Raios X
2.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968106

RESUMO

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Assuntos
Proteínas de Bactérias , Cobre , Haemophilus influenzae , Oxazolona , Fatores de Virulência , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidade , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Cobre/metabolismo , Cobre/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Oxazolona/metabolismo , Tioamidas/metabolismo , Tioamidas/química , Ferro/metabolismo , Processamento de Proteína Pós-Traducional , Oxirredutases/metabolismo , Oxirredutases/genética , Óperon , Cisteína/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(13): e2116578119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35316135

RESUMO

SignificanceThe channel-forming proteusins are bacterial helical peptides that allow permeation of positively charged ions to influence membrane potential and cellular physiology. We biochemically characterize the effect of two critical posttranslational modifications on the secondary structure of the peptide substrate. We determine how a methyl group can be added to the side chains of D-Asn residues in a peptide substrate and show how flanking residues influence selectivity. These studies should foster the development of small-molecule peptide ion channels as therapeutics.


Assuntos
Amidas , Citotoxinas , Metilação , Peptídeos/química , Processamento de Proteína Pós-Traducional
4.
Proc Natl Acad Sci U S A ; 119(29): e2205285119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35787182

RESUMO

A subset of natural products, such as polyketides and nonribosomal peptides, is biosynthesized while tethered to a carrier peptide via a thioester linkage. Recently, we reported that the biosyntheses of 3-thiaglutamate and ammosamide, single amino acid-derived natural products, employ a very different type of carrier peptide to which the biosynthetic intermediates are bound via an amide linkage. During their biosyntheses, a peptide aminoacyl-transfer ribonucleic acid (tRNA) ligase (PEARL) first loads an amino acid to the C terminus of the carrier peptide for subsequent modification by other enzymes. Proteolytic removal of the modified C-terminal amino acid yields the mature product. We termed natural products that are biosynthesized using such pathways pearlins. To investigate the diversity of pearlins, in this study we experimentally characterized another PEARL-encoding biosynthetic gene cluster (BGC) from Tistrella mobilis (tmo). The enzymes encoded in the tmo BGC transformed cysteine into 3-thiahomoleucine both in vitro and in Escherichia coli. During this process, a cobalamin-dependent radical S-adenosylmethionine (SAM) enzyme catalyzes C-isopropylation. This work illustrates that the biosynthesis of amino acid-derived natural products on a carrier peptide is a widespread strategy in nature and expands the spectrum of thiahemiaminal analogs of amino acids that may serve a broader, currently unknown function.


Assuntos
Produtos Biológicos , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Policetídeos , Aminoácidos/química , Escherichia coli/genética , Peptídeo Sintases/genética , Peptídeos , Rhodospirillaceae , S-Adenosilmetionina
5.
Proc Natl Acad Sci U S A ; 119(33): e2202661119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939668

RESUMO

In Staphylococcus aureus, virulence is under the control of a quorum sensing (QS) circuit encoded in the accessory gene regulator (agr) genomic locus. Key to this pathogenic behavior is the production and signaling activity of a secreted pheromone, the autoinducing peptide (AIP), generated following the ribosomal synthesis and posttranslational modification of a precursor polypeptide, AgrD, through two discrete cleavage steps. The integral membrane protease AgrB is known to catalyze the first processing event, generating the AIP biosynthetic intermediate, AgrD (1-32) thiolactone. However, the identity of the second protease in this biosynthetic pathway, which removes an N-terminal leader sequence, has remained ambiguous. Here, we show that membrane protease regulator of agr QS (MroQ), an integral membrane protease recently implicated in the agr response, is directly involved in AIP production. Genetic complementation and biochemical experiments reveal that MroQ proteolytic activity is required for AIP biosynthesis in agr specificity group I and group II, but not group III. Notably, as part of this effort, the biosynthesis and AIP-sensing arms of the QS circuit were reconstituted together in vitro. Our experiments also reveal the molecular features guiding MroQ cleavage activity, a critical factor in defining agr specificity group identity. Collectively, our study adds to the molecular understanding of the agr response and Staphylococcus aureus virulence.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana , Peptídeo Hidrolases , Feromônios , Percepção de Quorum , Staphylococcus aureus , Transativadores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Proteínas de Membrana/fisiologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/fisiologia , Feromônios/biossíntese , Percepção de Quorum/genética , Staphylococcus aureus/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Virulência
6.
Chembiochem ; 25(13): e202400201, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701360

RESUMO

Selective modification of peptides is often exploited to improve pharmaceutically relevant properties of bioactive peptides like stability, circulation time, and potency. In Nature, natural products belonging to the class of ribosomally synthesized and post-translationally modified peptides (RiPPs) are known to install a number of highly attractive modifications with high selectivity. These modifications are installed by enzymes guided to the peptide by corresponding leader peptides that are removed as the last step of biosynthesis. Here, we exploit leader peptides and their matching enzymes to investigate the installation of D-Ala post-translationally in a critical position in the hormones, glucagon-like peptides (GLP) 1 and 2. We also offer insight into how precursor peptide design can modulate the modification pattern achieved.


Assuntos
Escherichia coli , Peptídeo 1 Semelhante ao Glucagon , Peptídeo 2 Semelhante ao Glucagon , Escherichia coli/enzimologia , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 2 Semelhante ao Glucagon/química , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos
7.
Chembiochem ; 25(3): e202300626, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059521

RESUMO

Multiple backbone N-methylation and macrocyclization improve the proteolytic stability and oral availability of therapeutic peptides. Chemical synthesis of such peptides is challenging, in particular for the generation of peptide libraries for screening purposes. Enzymatic backbone N-methylation and macrocyclization occur as part of both non-ribosomal and ribosomal peptide biosynthesis, exemplified by the fungal natural products cyclosporin A and omphalotin A, respectively. Omphalotin A, a 9fold backbone N-methylated dodecamer isolated from the agaricomycete Omphalotus olearius, can be produced in Pichia pastoris by coexpression of the ophMA and ophP genes coding for the peptide precursor protein harbouring an autocatalytic peptide α-N-methyltransferase domain, and a peptide macrocyclase, respectively. Since both OphMA and OphP were previously shown to be relatively promiscuous in terms of peptide substrates, we expressed mutant versions of ophMA, encoding OphMA variants with altered core peptide sequences, along with wildtype ophP and assessed the production of the respective peptide macrocycles by the platform by high-performance liquid chromatography, coupled with tandem mass spectrometry (HPLC-MS/MS). Our results demonstrate the successful production of fifteen non-natural omphalotin-derived macrocycles, containing polar, aromatic and charged residues, and, thus, suggest that the system may be used as biotechnological platform to generate libraries of non-natural multiply backbone N-methylated peptide macrocycles.


Assuntos
Saccharomyces cerevisiae , Espectrometria de Massas em Tandem , Saccharomyces cerevisiae/metabolismo , Peptídeos/química , Peptídeos Cíclicos/química
8.
Arch Biochem Biophys ; 756: 110012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663796

RESUMO

In recent years, the biological significance of ribosomally synthesized, post-translationally modified peptides (RiPPs) and the intriguing chemistry catalyzed by their tailoring enzymes has garnered significant attention. A subgroup of bacterial radical S-adenosylmethionine (rSAM) enzymes can activate C-H bonds in peptides, which leads to the production of a diverse range of RiPPs. The remarkable ability of these enzymes to facilitate various chemical processes, to generate and harbor high-energy radical species, and to accommodate large substrates with a high degree of flexibility is truly intriguing. The wide substrate scope and diversity of the chemistry performed by rSAM enzymes raise one question: how does the protein environment facilitate these distinct chemical conversions while sharing a similar structural fold? In this review, we discuss recent advances in the field of RiPP-rSAM enzymes, with a particular emphasis on domain architectures and substrate engagements identified by biophysical and structural characterizations. We provide readers with a comparative analysis of six examples of RiPP-rSAM enzymes with experimentally characterized structures. Linking the structural elements and the nature of rSAM-catalyzed RiPP production will provide insight into the functional engineering of enzyme activity to harness their catalytic power in broader applications.


Assuntos
Peptídeos , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Especificidade por Substrato , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínios Proteicos
9.
Bioorg Med Chem Lett ; 89: 129323, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169227

RESUMO

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) with polar-functionalized fatty acyl groups are newly found lipopeptide-class natural products. We recently employed a combined approach of genome mining and stable isotope labeling and discovered solabiomycins as one of the polar-functionalized fatty-acylated RiPPs (PFARs) from Streptomyces lydicus NBRC13058. The solabiomycins contained a characteristic sulfoxide group in the labionin moiety referred to as the 'solabionin' structure for the RiPP moiety. A previous gene knockout experiment indicated that solS, which encodes a putative flavin adenine dinucleotide (FAD)-nicotinamide adenine dinucleotide (phosphate) (NAD(P))-binding protein, is involved in the sulfoxidation of an alkyl sulfide in the solabionin. In this study, we isolated deoxysolabiomycins A and B from ΔsolS mutant and fully determined the chemical structures using a series of NMR experiments. We also tested the bioactivity of deoxysolabiomycins against Gram-positive bacteria, including Mycolicibacterium smegmatis, and notably found that the sulfoxide is critical for the antibacterial activity. To characterize the catalytic activity of SolS, the recombinant protein was incubated with a putative substrate, deoxysolabiomycins, and the cofactors FAD and NADPH. In vitro reactions demonstrated that SolS catalyzes the sulfoxidation, converting deoxysolabiomycins to solabiomycins.


Assuntos
Flavina-Adenina Dinucleotídeo , Peptídeos , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Peptídeos/farmacologia , Catálise , Sulfóxidos
10.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36931895

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large class of secondary metabolites that have garnered scientific attention due to their complex scaffolds with potential roles in medicine, agriculture, and chemical ecology. RiPPs derive from the cleavage of ribosomally synthesized proteins and additional modifications, catalyzed by various enzymes to alter the peptide backbone or side chains. Of these enzymes, cytochromes P450 (P450s) are a superfamily of heme-thiolate proteins involved in many metabolic pathways, including RiPP biosyntheses. In this review, we focus our discussion on P450 involved in RiPP pathways and the unique chemical transformations they mediate. Previous studies have revealed a wealth of P450s distributed across all domains of life. While the number of characterized P450s involved in RiPP biosyntheses is relatively small, they catalyze various enzymatic reactions such as C-C or C-N bond formation. Formation of some RiPPs is catalyzed by more than one P450, enabling structural diversity. With the continuous improvement of the bioinformatic tools for RiPP prediction and advancement in synthetic biology techniques, it is expected that further cytochrome P450-mediated RiPP biosynthetic pathways will be discovered. SUMMARY: The presence of genes encoding P450s in gene clusters for ribosomally synthesized and post-translationally modified peptides expand structural and functional diversity of these secondary metabolites, and here, we review the current state of this knowledge.


Assuntos
Produtos Biológicos , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , Processamento de Proteína Pós-Traducional , Bactérias/genética , Bactérias/metabolismo , Peptídeos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Produtos Biológicos/química
11.
Mar Drugs ; 21(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37888469

RESUMO

Aborycin is a type I lasso peptide with a stable interlocked structure, offering a favorable framework for drug development. The aborycin biosynthetic gene cluster gul from marine sponge-associated Streptomyces sp. HNS054 was cloned and integrated into the chromosome of S. coelicolor hosts with different copies. The three-copy gul-integration strain S. coelicolor M1346::3gul showed superior production compared to the one-copy or two-copy gul-integration strains, and the total titer reached approximately 10.4 mg/L, i.e., 2.1 times that of the native strain. Then, five regulatory genes, phoU (SCO4228), wblA (SCO3579), SCO1712, orrA (SCO3008) and gntR (SCO1678), which reportedly have negative effects on secondary metabolism, were further knocked out from the M1346::3gul genome by CRISPR/Cas9 technology. While the ΔSCO1712 mutant showed a significant decrease (4.6 mg/L) and the ΔphoU mutant showed no significant improvement (12.1 mg/L) in aborycin production, the ΔwblA, ΔorrA and ΔgntR mutations significantly improved the aborycin titers to approximately 23.6 mg/L, 56.3 mg/L and 48.2 mg/L, respectively, which were among the highest heterologous yields for lasso peptides in both Escherichia coli systems and Streptomyces systems. Thus, this study provides important clues for future studies on enhancing antibiotic production in Streptomyces systems.


Assuntos
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/farmacologia , Peptídeos/farmacologia , Cromossomos , Família Multigênica
12.
Proc Natl Acad Sci U S A ; 117(39): 24243-24250, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929037

RESUMO

The necrotrophic fungal pathogen Cochliobolus victoriae produces victorin, a host-selective toxin (HST) essential for pathogenicity to certain oat cultivars with resistance against crown rust. Victorin is a mixture of highly modified heterodetic cyclic hexapeptides, previously assumed to be synthesized by a nonribosomal peptide synthetase. Herein, we demonstrate that victorin is a member of the ribosomally synthesized and posttranslationally modified peptide (RiPP) family of natural products. Analysis of a newly generated long-read assembly of the C. victoriae genome revealed three copies of precursor peptide genes (vicA1-3) with variable numbers of "GLKLAF" core peptide repeats corresponding to the victorin peptide backbone. vicA1-3 are located in repeat-rich gene-sparse regions of the genome and are loosely clustered with putative victorin biosynthetic genes, which are supported by the discovery of compact gene clusters harboring corresponding homologs in two distantly related plant-associated Sordariomycete fungi. Deletion of at least one copy of vicA resulted in strongly diminished victorin production. Deletion of a gene encoding a DUF3328 protein (VicYb) abolished the production altogether, supporting its predicted role in oxidative cyclization of the core peptide. In addition, we uncovered a copper amine oxidase (CAO) encoded by vicK, in which its deletion led to the accumulation of new glycine-containing victorin derivatives. The role of VicK in oxidative deamination of the N-terminal glycyl moiety of the hexapeptides to the active glyoxylate forms was confirmed in vitro. This study finally unraveled the genetic and molecular bases for biosynthesis of one of the first discovered HSTs and expanded our understanding of underexplored fungal RiPPs.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Ascomicetos/genética , Desaminação , Proteínas Fúngicas/genética , Proteínas Fúngicas/toxicidade , Deleção de Genes , Família Multigênica , Micotoxinas/genética , Micotoxinas/toxicidade , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional
13.
Chemistry ; 28(31): e202200627, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35253932

RESUMO

B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.


Assuntos
Metiltransferases , S-Adenosilmetionina , Metilação , Metiltransferases/metabolismo , S-Adenosilmetionina/química , Triptofano/química , Vitamina B 12/química
14.
J Pept Sci ; 28(6): e3388, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34931400

RESUMO

Thioamitides are a group of ribosomally synthesized and post-translationally modified peptides that possess diverse bioactivities and are usually featured by thioamide and 2-aminovinyl-cysteine (AviCys) motifs. In natural product thiosparsoamide, the AviCys motif is formed by an enzyme cascade formed by the flavin-dependent decarboxylase SpaD and dehydratase SpaKC. SpaKC is a lanthipeptide synthetase homolog located outside the thiosparsoamide biosynthetic gene cluster. In this study, we show that SpaKC does not strictly require the N-terminal leader peptide of precursor peptide SpaA for substrate recognition and dehydration. The C-terminal seven residues serve as a minimal structural element for enzyme recognition. Through a systematic mutagenesis experiments, our study demonstrates the relaxed substrate specificity of SpaKC as a dehydratase and potentially as an enzymatic tool to install dehydroalanine or dehydrobutyrine motifs in peptides.


Assuntos
Cisteína , Peptídeos , Cisteína/química , Hidroliases/genética , Peptídeos/química , Processamento de Proteína Pós-Traducional , Especificidade por Substrato , Tioamidas
15.
Proc Natl Acad Sci U S A ; 116(17): 8525-8534, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948631

RESUMO

The rice immune receptor XA21 is activated by the sulfated microbial peptide required for activation of XA21-mediated immunity X (RaxX) produced by Xanthomonas oryzae pv. oryzae (Xoo). Mutational studies and targeted proteomics revealed that the RaxX precursor peptide (proRaxX) is processed and secreted by the protease/transporter RaxB, the function of which can be partially fulfilled by a noncognate peptidase-containing transporter component B (PctB). proRaxX is cleaved at a Gly-Gly motif, yielding a mature peptide that retains the necessary elements for RaxX function as an immunogen and host peptide hormone mimic. These results indicate that RaxX is a prokaryotic member of a previously unclassified and understudied group of eukaryotic tyrosine sulfated ribosomally synthesized, posttranslationally modified peptides (RiPPs). We further demonstrate that sulfated RaxX directly binds XA21 with high affinity. This work reveals a complete, previously uncharacterized biological process: bacterial RiPP biosynthesis, secretion, binding to a eukaryotic receptor, and triggering of a robust host immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Redes e Vias Metabólicas/genética , Oryza/imunologia , Oryza/metabolismo , Oryza/microbiologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeos/química , Peptídeos/genética , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/imunologia , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
16.
Proc Natl Acad Sci U S A ; 116(16): 7831-7836, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944220

RESUMO

Cyclotides are plant defense peptides that have been extensively investigated for pharmaceutical and agricultural applications, but key details of their posttranslational biosynthesis have remained elusive. Asparaginyl endopeptidases are crucial in the final stage of the head-to-tail cyclization reaction, but the enzyme(s) involved in the prerequisite steps of N-terminal proteolytic release were unknown until now. Here we use activity-guided fractionation to identify specific members of papain-like cysteine proteases involved in the N-terminal cleavage of cyclotide precursors. Through both characterization of recombinantly produced enzymes and in planta peptide cyclization assays, we define the molecular basis of the substrate requirements of these enzymes, including the prototypic member, here termed kalatase A. The findings reported here will pave the way for improving the efficiency of plant biofactory approaches for heterologous production of cyclotide analogs of therapeutic or agricultural value.


Assuntos
Ciclotídeos , Cisteína Proteases , Papaína , Proteínas de Plantas , Ciclotídeos/química , Ciclotídeos/metabolismo , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Defensinas/química , Defensinas/metabolismo , Modelos Moleculares , Papaína/química , Papaína/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
17.
Beilstein J Org Chem ; 18: 1656-1671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570563

RESUMO

Natural products are structurally highly diverse and exhibit a wide array of biological activities. As a result, they serve as an important source of new drug leads. Traditionally, natural products have been discovered by bioactivity-guided fractionation. The advent of genome sequencing technology has resulted in the introduction of an alternative approach towards novel natural product scaffolds: Genome mining. Genome mining is an in-silico natural product discovery strategy in which sequenced genomes are analyzed for the potential of the associated organism to produce natural products. Seemingly universal biosynthetic principles have been deciphered for most natural product classes that are used to detect natural product biosynthetic gene clusters using pathway-encoded conserved key enzymes, domains, or motifs as bait. Several generations of highly sophisticated tools have been developed for the biosynthetic rule-based identification of natural product gene clusters. Apart from these hard-coded algorithms, multiple tools that use machine learning-based approaches have been designed to complement the existing genome mining tool set and focus on natural product gene clusters that lack genes with conserved signature sequences. In this perspective, we take a closer look at state-of-the-art genome mining tools that are based on either hard-coded rules or machine learning algorithms, with an emphasis on the confidence of their predictions and potential to identify non-canonical natural product biosynthetic gene clusters. We highlight the genome mining pipelines' current strengths and limitations by contrasting their advantages and disadvantages. Moreover, we introduce two indirect biosynthetic gene cluster identification strategies that complement current workflows. The combination of all genome mining approaches will pave the way towards a more comprehensive understanding of the full biosynthetic repertoire encoded in microbial genome sequences.

18.
J Biol Chem ; 295(42): 14510-14521, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817170

RESUMO

Cyclic peptides are reported to have antibacterial, antifungal, and other bioactivities. Orbitides are a class of cyclic peptides that are small, head-to-tail cyclized, composed of proteinogenic amino acids and lack disulfide bonds; they are also known in several genera of the plant family Rutaceae. Melicope xanthoxyloides is the Australian rain forest tree of the Rutaceae family in which evolidine, the first plant cyclic peptide, was discovered. Evolidine (cyclo-SFLPVNL) has subsequently been all but forgotten in the academic literature, so to redress this we used tandem MS and de novo transcriptomics to rediscover evolidine and decipher its biosynthetic origin from a short precursor just 48 residues in length. We also identified another six M. xanthoxyloides orbitides using the same techniques. These peptides have atypically diverse C termini consisting of residues not recognized by either of the known proteases plants use to macrocyclize peptides, suggesting new cyclizing enzymes await discovery. We examined the structure of two of the novel orbitides by NMR, finding one had a definable structure, whereas the other did not. Mining RNA-seq and whole genome sequencing data from other species of the Rutaceae family revealed that a large and diverse family of peptides is encoded by similar sequences across the family and demonstrates how powerful de novo transcriptomics can be at accelerating the discovery of new peptide families.


Assuntos
Peptídeos Cíclicos/genética , Rutaceae/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Folhas de Planta/metabolismo , Rutaceae/genética , Alinhamento de Sequência , Espectrometria de Massas em Tandem
19.
J Biol Chem ; 295(1): 34-54, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784450

RESUMO

The ribosomally synthesized and posttranslationally modified peptides (RiPPs), also called ribosomal peptide natural products (RPNPs), form a growing superfamily of natural products that are produced by many different organisms and particularly by bacteria. They are derived from precursor polypeptides whose modification by various dedicated enzymes helps to establish a vast array of chemical motifs. RiPPs have attracted much interest as a source of potential therapeutic agents, and in particular as alternatives to conventional antibiotics to address the bacterial resistance crisis. However, their ecological roles in nature are poorly understood and explored. The present review describes major RiPP actors in competition within microbial communities, the main ecological and physiological functions currently evidenced for RiPPs, and the microbial ecosystems that are the sites for these functions. We envision that the study of RiPPs may lead to discoveries of new biological functions and highlight that a better knowledge of how bacterial RiPPs mediate inter-/intraspecies and interkingdom interactions will hold promise for devising alternative strategies in antibiotic development.


Assuntos
Fenômenos Fisiológicos Bacterianos , Bacteriocinas/metabolismo , Percepção de Quorum , Animais , Interações Hospedeiro-Patógeno , Microbiota , Plantas/microbiologia
20.
J Biol Chem ; 295(49): 16665-16677, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32972973

RESUMO

Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC's antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether-containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,ß-dehydro-amino acid intermediate during Cα-thioether bridge LC-MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Clostridiales/metabolismo , Microbiota , Sulfetos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/genética , Biocatálise , Cromatografia Líquida de Alta Pressão , Humanos , Cinética , Família Multigênica , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Motivo Estéril alfa , Especificidade por Substrato , Sulfetos/análise , Sulfetos/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA