Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 234: 117972, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757909

RESUMO

Intracranial EEG is the current gold standard technique for localizing seizures for surgery, but it can be insensitive to tangential dipole or distant sources. Electrical Impedance Tomography (EIT) offers a novel method to improve coverage and seizure onset localization. The feasibility of EIT has been previously assessed in a computer simulation, which revealed an improved accuracy of seizure detection with EIT compared to intracranial EEG. In this study, slow impedance changes, evoked by cell swelling occurring over seconds, were reconstructed in real time by frequency division multiplexing EIT using depth and subdural electrodes in a swine model of epilepsy. EIT allowed to generate repetitive images of ictal events at similar time course to fMRI but without its significant limitations. EIT was recorded with a system consisting of 32 parallel current sources and 64 voltage recorders. Seizures triggered with intracranial injection of benzylpenicillin (BPN) in five pigs caused a repetitive peak impedance increase of 3.4 ± 1.5 mV and 9.5 ± 3% (N =205 seizures); the impedance signal change was seen already after a single, first seizure. EIT enabled reconstruction of the seizure onset 9 ± 1.5 mm from the BPN cannula and 7.5 ± 1.1 mm from the closest SEEG contact (p<0.05, n =37 focal seizures in three pigs) and it could address problems with sampling error in intracranial EEG. The amplitude of the impedance change correlated with the spread of the seizure on the SEEG (p <<0.001, n =37). The results presented here suggest that combining a parallel EIT system with intracranial EEG monitoring has a potential to improve the diagnostic yield in epileptic patients and become a vital tool in improving our understanding of epilepsy.


Assuntos
Impedância Elétrica , Eletrocorticografia/métodos , Eletrodos Implantados , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Técnicas Estereotáxicas , Animais , Eletrocorticografia/instrumentação , Feminino , Técnicas Estereotáxicas/instrumentação , Suínos
2.
J Nucl Med ; 65(3): 470-474, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38212073

RESUMO

Ictal SPECT is an informative seizure imaging technique to tailor epilepsy surgery. However, capturing the onset of unpredictable seizures is a medical and logistic challenge. Here, we sought to image planned seizures triggered by direct stimulation of epileptic networks via stereotactic electroencephalography (sEEG) electrodes. Methods: In this case series of 3 adult participants with left temporal epilepsy, we identified and stimulated sEEG contacts able to trigger patient-typical seizures. We administered 99mTc-HMPAO within 12 s of ictal onset and acquired SPECT images within 40 min without any adverse events. Results: Ictal hyperperfusion maps partially overlapped concomitant sEEG seizure activity. In both participants known for periictal aphasia, SPECT imaging revealed hyperperfusion in the speech cortex lacking sEEG coverage. Conclusion: Triggering of seizures for ictal SPECT complements discrete sEEG sampling with spatially complete images of early seizure propagation. This readily implementable method revives interest in seizure imaging to guide resective epilepsy surgery.


Assuntos
Epilepsia , Convulsões , Adulto , Humanos , Estudos de Viabilidade , Convulsões/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Córtex Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA