Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Annu Rev Genet ; 51: 361-383, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28934593

RESUMO

Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.


Assuntos
Centrossomo/ultraestrutura , Regulação Fúngica da Expressão Gênica , Microtúbulos/ultraestrutura , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Corpos Polares do Fuso/ultraestrutura , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Microtúbulos/genética , Microtúbulos/metabolismo , Mitose , Poro Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Proteoma/genética , Proteoma/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Corpos Polares do Fuso/genética , Corpos Polares do Fuso/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
Biochim Biophys Acta ; 1864(4): 319-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26779587

RESUMO

Centrin binds to Rad4(XPC) and Sfi1 through the hydrophobic motif W(1)xxL(4)xxxL(8) in the opposite orientation. Rad4 has one motif, but Sfi1 has approximately 20 repeats, each of which interacts with a centrin molecule. To investigate the parameters involved in centrin binding, we purified a ScSfi1 domain containing 6 repeats complexed with either yeast centrin Cdc31 or human centrin 1. The present study was performed using mutagenesis of centrin and of Sfi1 residues involved in centrin binding and the stability of the centrin-centrin complexes was assessed using thermal denaturation and CD. Calcium stabilized these complexes, as indicated by the Tm increases measured by circular dichroism. The complexes, which were composed of Sfi1 variants and yeast centrin, were analysed in the presence of EDTA. The replacement of W with F within the repeat region yielded a functional repeat (Tm 45°C). The replacement of W with A in two adjacent Sfi1 repeats reduced the thermal stability of the Sfi1-centrin complexes (40°C). We analysed three HsCen1 variants that were homologous to the yeast mutants and induced cell cycle arrest during the G2/M transition. The HsCen1 variants E105K and F113L reduced the thermal stability (50°C, 50°C) of the ScSfi1-HsCen1 complexes; in contrast, the A109T variant exhibited no change in thermal stability relative to the wild-type (60°C). Conversely to ScCdc31, there were no apparent centrin-centrin interactions with wild-type HsCen1, but they did occur for the S170D mutation that mimics PKA phosphorylation at the S170 residue.


Assuntos
Proteínas de Ciclo Celular/química , Combinação Trimetoprima e Sulfametoxazol/química , Sequência de Aminoácidos , Sítios de Ligação , Pontos de Checagem do Ciclo Celular , Ácido Edético/farmacologia , Dados de Sequência Molecular , Fosforilação
3.
J Cell Sci ; 126(Pt 7): 1659-71, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23426847

RESUMO

Directed fluid flow, which is achieved by the coordinated beating of motile cilia, is required for processes as diverse as cellular swimming, developmental patterning and mucus clearance. Cilia are nucleated, anchored and aligned at the plasma membrane by basal bodies, which are cylindrical microtubule-based structures with ninefold radial symmetry. In the unicellular ciliate Tetrahymena thermophila, two centrin family members associated with the basal body are important for both basal body organization and stabilization. We have identified a family of 13 proteins in Tetrahymena that contain centrin-binding repeats related to those identified in the Saccharomyces cerevisiae Sfi1 protein. We have named these proteins Sfr1-Sfr13 (for Sfi1-repeat). Nine of the Sfr proteins localize in unique polarized patterns surrounding the basal body, suggesting non-identical roles in basal body organization and association with basal body accessory structures. Furthermore, the Sfr proteins are found in distinct basal body populations in Tetrahymena cells, indicating that they are responsive to particular developmental programs. A complete genetic deletion of one of the family members, Sfr13, causes unstable basal bodies and defects in daughter basal body separation from the mother, phenotypes also observed with centrin disruption. It is likely that the other Sfr family members are involved in distinct centrin functions, providing specificity to the tasks that centrins perform at basal bodies.


Assuntos
Centríolos/metabolismo , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/metabolismo
4.
Biomolecules ; 12(8)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009009

RESUMO

Centrins are calcium (Ca2+)-binding proteins that are involved in many cellular functions including centrosome regulation. A known cellular target of centrins is SFI1, a large centrosomal protein containing multiple repeats that represent centrin-binding motifs. Recently, a protein homologous to yeast and mammalian SFI1, denominated TgSFI1, which shares SFI1-repeat organization, was shown to colocalize at centrosomes with centrin 1 from Toxoplasma gondii (TgCEN1). However, the molecular details of the interaction between TgCEN1 and TgSFI1 remain largely unknown. Herein, combining different biophysical methods, including isothermal titration calorimetry, nuclear magnetic resonance, circular dichroism, and fluorescence spectroscopy, we determined the binding properties of TgCEN1 and its individual N- and C-terminal domains to synthetic peptides derived from distinct repeats of TgSFI1. Overall, our data indicate that the repeats in TgSFI1 constitute binding sites for TgCEN1, but the binding modes of TgCEN1 to the repeats differ appreciably in terms of binding affinity, Ca2+ sensitivity, and lobe-specific interaction. These results suggest that TgCEN1 displays remarkable conformational plasticity, allowing for the distinct repeats in TgSFI1 to possess precise modes of TgCEN1 binding and regulation during Ca2+ sensing, which appears to be crucial for the dynamic association of TgCEN1 with TgSFI1 in the centrosome architecture.


Assuntos
Proteínas de Saccharomyces cerevisiae , Toxoplasma , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mamíferos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Toxoplasma/metabolismo
5.
mSphere ; 1(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904881

RESUMO

Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin's roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively.

6.
Peptides ; 78: 77-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26923803

RESUMO

The Ca(2+)-binding protein centrin binds to a hydrophobic motif (W(1)xxL(4)xxxL(8)) included in the sequence of several cellular targets: XPC (xeroderma pigmentosum group C protein), Sfi1 (suppressor of fermentation-induced loss of stress resistance protein1), and Sac3 [the central component of the transcription and mRNA export (TREX-2) complex]. However, centrin binding occurs in a reversed orientation (L(8)xxxL(4)xxW(1)) for Sfi1 and Sac3 compared with XPC. Because D-peptides have been investigated for future therapeutic use, we analyzed their centrin-binding properties. Their affinity for centrin was measured using isothermal titration calorimetry. The chirality change in the target-derived peptides affected their ability to bind centrin in a specific manner depending on the sequence orientation of the centrin-binding motif. In contrast to L-XPC-P10, D-XPC-P10 bound C-HsCen1 in a Ca(2+)-dependent manner and to a lesser extent. D-XPC-P10 exhibited a reduced affinity for C-HsCen1 (Ka=0.064 × 10(6) M(-1)) by a factor of 2000 compared with L-XPC-P10 (Ka=132 × 10(6) M(-1)). D-peptides have a lower affinity than L-peptides for centrin, and the strength of this affinity depends on the sequence orientation of the target-derived peptides. The residual affinity observed for D-XPC suggests that the use of d-peptides represents a promising strategy for inhibiting centrin binding to its targets.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Clorófitas/química , Proteínas de Ligação a DNA/química , Peptídeos/química , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/metabolismo , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Dados de Sequência Molecular , Peptídeos/síntese química , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Termodinâmica
7.
Elife ; 42015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371506

RESUMO

Duplication of the yeast centrosome (called the spindle pole body, SPB) is thought to occur through a series of discrete steps that culminate in insertion of the new SPB into the nuclear envelope (NE). To better understand this process, we developed a novel two-color structured illumination microscopy with single-particle averaging (SPA-SIM) approach to study the localization of all 18 SPB components during duplication using endogenously expressed fluorescent protein derivatives. The increased resolution and quantitative intensity information obtained using this method allowed us to demonstrate that SPB duplication begins by formation of an asymmetric Sfi1 filament at mitotic exit followed by Mps1-dependent assembly of a Spc29- and Spc42-dependent complex at its tip. Our observation that proteins involved in membrane insertion, such as Mps2, Bbp1, and Ndc1, also accumulate at the new SPB early in duplication suggests that SPB assembly and NE insertion are coupled events during SPB formation in wild-type cells.


Assuntos
Divisão Celular , Centrossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/fisiologia , Genes Reporter , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Methods Cell Biol ; 129: 383-392, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175449

RESUMO

Like centrosomes, yeast spindle pole bodies (SPBs) undergo a tightly controlled duplication cycle in order to restrict their number to one or two per cell and promote the assembly of a bipolar spindle at mitotic entry. This conservative duplication cycle is tightly coordinated with cell cycle progression although the mechanisms that ensure this coordination remain largely unknown. In this chapter, we describe simple high resolution microscopy- and quantitative light microscopy-based methods that allow to monitor SPB biogenesis in fission yeast and may be useful to study the molecular pathways controlling the successive phases of the duplication cycle.


Assuntos
Schizosaccharomyces/fisiologia , Corpos Polares do Fuso/fisiologia , Microscopia de Fluorescência , Análise de Célula Única
9.
FEBS Open Bio ; 4: 407-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918055

RESUMO

Centrins are calcium-binding proteins that can interact with several cellular targets (Sfi1, XPC, Sac3 and transducin ß) through the same hydrophobic triad. However, two different orientations of the centrin-binding motif have been observed: W(1)xxL(4)xxxL(8) for XPC (xeroderma pigmentosum group C protein) and the opposite orientation L(8)xxxL(4)xxW(1) for Sfi1 (suppressor of fermentation-induced loss of stress resistance protein 1), Sac3 and transducin ß. Centrins are also phosphorylated by several protein kinases, among which is CK2. The purpose of this study was to determine the binding mechanism of human centrins to three targets (transducin ß, Sfi1 and XPC), and the effects of in vitro phosphorylation by CK2 of centrins 1 and 2 with regard to this binding mechanism. We identified the centrin-binding motif at the COOH extremity of transducin ß. Human centrin 1 binds to transducin ß only in the presence of calcium with a binding constant lower than the binding constant observed for Sfi1 and for XPC. The affinity constants of centrin 1 were 0.10 10(6) M(-1), 249 10(6) M(-1) and 52.5 10(6) M(-1) for Trd, R17-Sfi1 and P17-XPC respectively. CK2 phosphorylates human centrin 1 at residue T138 and human centrin 2 at residues T138 and S158. Consequently CK2 phosphorylation abolished the binding of centrin 1 to transducin ß and reduced the binding to Sfi1 and XPC. CK2 phosphorylation of centrin 2 at T138 and S158 abolished the binding to Sfi1 as assessed using a C-HsCen2 T138D-S158D phosphomimetic form of centrin 2.

10.
FEBS Open Bio ; 4: 33-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24371720

RESUMO

Centrins are members of the EF-hand family of calcium-binding proteins, which are highly conserved among eukaryotes. Centrins bind to several cellular targets, through a hydrophobic triad. However, the W(1)xxL(4)xxxL(8) triad in XPC (Xeroderma Pigmentosum Group C protein) is found in the reverse orientation, as in the L(8)xxxL(4)xxW(1) triad in Sfi1 (Suppressor of Fermentation-Induced loss of stress resistance protein 1). As shown by previous NMR studies of human centrin 2 in complex with XPC or Sfi1, the E148 residue of human centrin 2 is in contact with XPC but is pushed away from the triad of Sfi1. We corroborated these findings using site-directed mutagenesis to generate mutations in Scherffelia dubia centrin (SdCen) and by using isothermal titration calorimetry to analyze the binding affinity of these mutants to XPC and Sfi1. We mutated the F109 residue, which is the main residue involved in target binding regardless of triad orientation, and the E144 residue, which was thought to be involved only in XPC binding. The F109L mutation reduced the binding of SdCen to XPC and Sfi1 and the negative effect was greater upon temperature increase. By contrast, the E144A mutation reduced the binding to XPC but had no effect on Sfi1 binding. The F109L-E144A mutation enhanced the negative effect of the two single mutations on XPC binding. Sfi1 proteins from Ostreococcus lucimarinus and Ostreococcus tauri, which belong to the same clade as S. dubia, were also investigated. A comparative analysis shows that the triad residues are more conserved than those in human Sfi1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA