Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(19): 8149-8160, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38652896

RESUMO

Environmental impacts associated with shale gas exploitation have been historically underestimated due to neglecting to account for the production or the release of end-of-pipe organic pollutants. Here, we assessed the environmental impacts of shale gas production in China and the United States using life cycle assessment. Through data mining, we compiled literature information on organic pollutants in flowback and produced water (FPW), followed by assessments using USEtox to evaluate end-of-pipe risks. Results were incorporated to reveal the life cycle risks associated with shale gas exploitation in both countries. China exhibited higher environmental impacts than the US during the production phase. Substantially different types of organic compounds were observed in the FPW between two countries. Human carcinogenic and ecological toxicity attributed to organics in FPW was 3 orders of magnitude higher than that during the production phase in the US. Conversely, in China, end-of-pipe organics accounted for approximately 52%, 1%, and 47% of the overall human carcinogenic, noncarcinogenic, and ecological impacts, respectively. This may be partially limited by the quantitative data available. While uncertainties exist associated with data availability, our study highlights the significance of integrating impacts from shale gas production to end-of-pipe pollution for comprehensive environmental risk assessments.


Assuntos
Gás Natural , China , Medição de Risco , Estados Unidos , Humanos , Monitoramento Ambiental
2.
J Environ Manage ; 367: 121966, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068783

RESUMO

In this study, Co3O4@MoS2 is prepared as anodic catalytic material for microbial fuel cells (MFCs). As the mass fraction of MoS2 is 20%, the best performance of Co3O4@MoS2 composite catalytic material is achieved, and the addition of MoS2 enhances both the electrical conductivity and catalytic performance of the composite catalyst. Through the structural characterization of Co3O4@MoS2 composite catalytic material, nanorod-like Co3O4 and lamellar MoS2 interweaved and stacked each other, and the agglomeration of Co3O4 is weakened. Among the four groups of single-chamber MFCs constructed, the Co3O4@MoS2-MFC shows the best power production performance with a maximum stable output voltage of to 539 mV and a maximum power density of up to 2221 mW/m2. Additionally, the ammonia nitrogen removal rate of the MFCs loaded with catalysts is enhanced by about 10% compared with the blank carbon cloth MFC. Overall, the findings suggest that Co3O4@MoS2 composite catalysts can significantly improve the performance of MFCs, making them more effective for both energy production and wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Molibdênio , Molibdênio/química , Catálise , Dissulfetos/química , Cobalto/química , Óxidos/química , Eletrodos
3.
Molecules ; 29(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39064981

RESUMO

In this study, a new polyionic polymer inhibitor, TIL-NH2, was developed to address the instability of shale gas horizontal wells caused by water-based drilling fluids. The structural characteristics and inhibition effects of TIL-NH2 on mud shale were comprehensively analyzed using infrared spectroscopy, NMR spectroscopy, contact angle measurements, particle size distribution, zeta potential, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The results demonstrated that TIL-NH2 significantly enhances the thermal stability of shale, with a decomposition temperature exceeding 300 °C, indicating excellent high-temperature resistance. At a concentration of 0.9%, TIL-NH2 increased the median particle size of shale powder from 5.2871 µm to over 320 µm, effectively inhibiting hydration expansion and dispersion. The zeta potential measurements showed a reduction in the absolute value of illite's zeta potential from -38.2 mV to 22.1 mV at 0.6% concentration, highlighting a significant decrease in surface charge density. Infrared spectroscopy and X-ray diffraction confirmed the formation of a close adsorption layer between TIL-NH2 and the illite surface through electrostatic and hydrogen bonding, which reduced the weakly bound water content to 0.0951% and maintained layer spacing of 1.032 nm and 1.354 nm in dry and wet states, respectively. Thermogravimetric analysis indicated a marked reduction in heat loss, particularly in the strongly bound water content. Scanning electron microscopy revealed that shale powder treated with TIL-NH2 exhibited an irregular bulk shape with strong inter-particle bonding and low hydration degree. These findings suggest that TIL-NH2 effectively inhibits hydration swelling and dispersion of shale through the synergistic effects of cationic imidazole rings and primary amine groups, offering excellent temperature and salt resistance. This provides a technical foundation for the low-cost and efficient extraction of shale gas in horizontal wells.

4.
Proc Natl Acad Sci U S A ; 117(2): 913-922, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31740597

RESUMO

Oil and gas well leakage is of public concern primarily due to the perceived risks of aquifer contamination and greenhouse gas (GHG) emissions. This study examined well leakage data from the British Columbia Oil and Gas Commission (BC OGC) to identify leakage pathways and initially quantify incident rates of leakage and GHG emissions from leaking wells. Three types of leakage are distinguished: "surface casing vent flow" (SCVF), "outside the surface casing leakage" (OSCL), and "cap leakage" (CL). In British Columbia (BC), the majority of reported incidents involve SCVF of gases, which does not pose a risk of aquifer contamination but does contribute to GHG emissions. Reported liquid leakage of brines and hydrocarbons is rarer. OSCL and CL of gas are more serious problems due to the risk of long-term leakage from abandoned wells; some were reported to be leaking gas several decades after they were permanently abandoned. According to the requirements of provincial regulation, 21,525 have been tested for leakage. In total, 2,329 wells in BC have had reported leakage during the lifetime of the well. This represents 10.8% of all wells in the assumed test population. However, it seems likely that wells drilled and/or abandoned before 2010 have unreported leakage. In BC, the total GHG emission from gas SCVF is estimated to reach about 75,000 t/y based on the existing inventory calculation; however, this number is likely higher due to underreporting.


Assuntos
Gases de Efeito Estufa/análise , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Poluição do Ar , Colúmbia Britânica , Monitoramento Ambiental , Geologia , Água Subterrânea , Gás Natural , Permeabilidade , Poços de Água
5.
Ecotoxicol Environ Saf ; 251: 114552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652741

RESUMO

The processes of hydraulic fracturing to extract shale gas generate a large amount of wastewater, and the potential impacts of wastewater discharge after treatment are concerning. In this field study, we investigated the effects of the irrigation of paddy fields for 2 consecutive years by river water that has been influenced by shale gas wastewater discharge on soil physicochemical properties, microbial community structure and function, and rice grain quality. The results showed that conductivity, chloride and sulfate ions in paddy soils downstream of the outfall showed an accumulative trend after two years of irrigation, but these changes occurred on a small scale (<500 m). Two-year irrigation did not cause the accumulation of trace metals (barium, cadmium, chromium, copper, lead, strontium, zinc, nickel, and uranium) in soil and rice grains. Among all soil parameters, the accumulation of chloride ions was the most pronounced, with concentrations in the paddy soil at the discharge site 13.3 times higher than at the upstream control site. The use of influenced river water for paddy irrigation positively increased the soil microbial diversity, but these changes occurred after two years of irrigation and did not occur after one year of irrigation. Overall, the use of river water affected by shale gas wastewater discharge for agricultural irrigation has limited effects on agroecosystems over a short period. Nevertheless, the possible negative effects of contaminant accumulation in soil and rice caused by longer-term irrigation should be seriously considered.


Assuntos
Microbiota , Oryza , Poluentes do Solo , Solo/química , Águas Residuárias , Gás Natural , Cloretos , Irrigação Agrícola , Água , Oryza/química , Poluentes do Solo/análise
6.
J Environ Manage ; 331: 117238, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681031

RESUMO

The production of shale gas in China has repercussions for the global energy landscape and carbon neutrality. However, limited and threatened water resources may hinder the expansion of shale-derived natural gas, one of China's most promising development prospects. Coupling historical trends with policy guidance, we project that baseline water stress will intensify in two-thirds of China's provinces in the next decade. By 2035, annual water use for shale gas hydraulic fracturing activities is likely to increase to 16-35 million m3, with 13.8-23.7 million m3 of wastewater produced annually to extract 38-48 billion m3 of gas from ∼4800 shale gas wells. Analysis suggests that this projection is based on previously underestimated geological constraints (e.g., deep continental facies) in shale gas development in China. Nevertheless, forecasts suggest that the water footprint of shale development will become impossible to ignore, particularly in drought-stricken areas, indicating the potential risk of competition for water among shale development, domestic use, food production, and ecological protection. Meanwhile, the annual wastewater management market will increase to $0.2 billion by 2035. Our study suggests a critical need to direct attention to the (shale) energy-water nexus and develop multi-pronged policies to facilitate China's transition to carbon neutrality.


Assuntos
Gás Natural , Águas Residuárias , Carbono , Campos de Petróleo e Gás , China , Minerais
7.
J Environ Manage ; 347: 119094, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776792

RESUMO

A vacuum membrane distillation (VMD) followed by crystallization (VMD-C) was developed for the recovery of water and salts from shale gas produced water (SGPW). Before VMD, the pretreatment of SGPW with Fenton oxidation-flocculation is applied, with the chemical oxygen demand (COD) concentration reduction of 75% and the total removal of the total suspended solids (TSS), Ca2+, and Mg2+ in SGPW. The pretreatment of SGPW mitigated the membrane fouling in the VMD and effectively prevented the reduction of membrane flux over time. The average flux of the PTFE membrane reached 12.1 kg m-2 h-1 during the separation of the pretreated SGPW at a feed flux of 40 L h-1 and a feed temperature of 40 °C. The rejection rate of the membrane to TDS in SGPW was over 99%. Fresh water with a conductivity of below 20 µs cm-1 was produced by VMD-C. The salts concentrated upstream of the membrane were recovered by a stirring crystallization process. The VMD-C system resulted in a 61% cost savings compared to conventional SGPW treatment.


Assuntos
Purificação da Água , Água , Água/química , Vácuo , Sais/química , Gás Natural , Purificação da Água/métodos , Destilação/métodos , Cristalização , Membranas Artificiais , Cloreto de Sódio
8.
J Environ Manage ; 348: 119355, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857222

RESUMO

Shale gas flowback water (SGFW), which is an inevitable waste product generated after hydraulic fracturing during development, poses a severe threat to the environment and human health. Managing high-salinity wastewater with complex physicochemical compositions is critical for ensuring environmental sustainability of shale gas development. Desalination processes have been recommended to treat SGFW to adhere to the discharge limits. However, organic fouling has become a significant concern in the steady operation of desalination processes, and the effective removal of organic compounds is challenging. This study aimed to develop an effective oxidation method to mitigate membrane fouling in real SGFW treatment process. It adopted the peroxymonosulfate (PMS)/ferrate (Fe(VI)) process, involving both free and non-free radical pathways that can alleviate the negative effects of high-salinity environments on oxidation. The operating parameters were optimized and removal effects were examined, while the synergistic oxidation mechanism and organic conversion of the PMS/Fe(VI) process were also analyzed. The results showed that the PMS/Fe(VI) process exhibited a synergistic effect compared with the PMS and Fe(VI) processes alone, with a total organic carbon (TOC) removal efficiency of 46.8% under optimal reaction conditions in real SGFW. In the Fe(VI)/PMS process, active species such as Fe(V)/Fe(IV), ·OH, and SO4-· were jointly involved in the oxidation of organic matter. Additionally, 99.5% of the total suspended solids and 95.2% of Ba2+ in the SGFW were removed owing to the formation of a coagulant (Fe3+) and SO42- during the reaction. Finally, an ultrafiltration membrane fouling experiment proved that oxidation processes can increase the membrane-specific flux and alleviate fouling resistance. This study can serve as a reference for the design of real SGFW treatment processes and is significant for the environmental management of shale gas development.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Gás Natural , Membranas Artificiais , Purificação da Água/métodos , Oxirredução
9.
Environ Monit Assess ; 195(6): 707, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212929

RESUMO

The exploration of unconventional hydrocarbons may be very effective in promoting economic development and confronting energy crisis around the world. However, the environmental risks associated with this practice might be an impediment if not adequately dimensioned. In this context, naturally occurring radioactive materials and ionizing radiation are sensitive aspects in the unconventional gas industry that may compromise the environmental sustainability of gas production and they should be properly monitored. This paper provides a radioecological assessment of the São Francisco Basin (Brazil) as part of an environmental baseline evaluation regarding the Brazilian potential for exploring its unconventional gas reserves. Eleven and thirteen samples of surface waters and groundwater were analyzed for gross alpha and beta using a gas flow proportional counter. A radiological background range was proposed using the ± 2 Median Absolute Deviation method. Using geoprocessing tools, the annual equivalent doses and lifetime cancer risk indexes were spatialized. Gross alpha and beta background thresholds in surface water ranged from 0.04-0.40 Bq L-1 to 0.17-0.46 Bq L-, respectively. Groundwater radiological background varies from 0.006-0.81 Bq L-1 to 0.06-0.72 Bq L-1 for gross alpha and beta, respectively. All environmental indexes are relatively higher in the south of the basin, probably a direct response to the local volcanic formations. Traçadal fault and local gas seepages might also influence the gross alpha and beta distribution. All samples have radiological indexes below the environmental thresholds, and should remain at acceptable levels with the development of the unconventional gas industry in Brazil.


Assuntos
Água Subterrânea , Gás Natural , Campos de Petróleo e Gás , Monitoramento Ambiental , Medição de Risco , Radiação Ionizante
10.
Environ Res ; 212(Pt D): 113486, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597290

RESUMO

Membrane processes are widely applied in shale gas flowback and produced water (SGFPW) reuse. However, particulate matters and organic matters aggravate membrane fouling, which is one of the major restrictions on SGFPW reuse. The present study proposed fixed bed adsorption using granular activated carbon (GAC) combined with ultrafiltration (UF) for the first time to investigate the treatment performance and membrane fouling mechanism. The adsorption of GAC for SGFPW was best described by the Temkin isotherm model and the pseudo-second-order kinetic model. GAC fixed bed pretreatment with different empty bed contact times (EBCT) (30, 60 and 90 min) showed the significant removal rate for dissolved organic carbon (DOC) and turbidity, which was 34.7%-42.4% and 98.1%-98.9%, respectively. According to characterization of UF membrane fouling layer, particulate matters and organic matters caused major part of membrane fouling. After being treated by GAC fixed bed, total fouling index (TFI) and hydraulic irreversible fouling index (HIFI) respectively decreased by more than 32.5% and 18.3% respectively, showing the mitigation effect of GAC fixed bed on membrane fouling. According to the XDLVO theory, GAC fixed bed also mitigated membrane fouling by reducing the hydrophobic interactions between the foulants and the UF membrane. The integrated GAC fixed bed-UF process produced high-quality effluents that met the water quality standards of SGFPW internal reuse, which was an effective technology of the SGFPW reuse.


Assuntos
Ultrafiltração , Purificação da Água , Adsorção , Carvão Vegetal/química , Membranas Artificiais , Gás Natural , Águas Residuárias/química
11.
Ecotoxicol Environ Saf ; 246: 114189, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265404

RESUMO

Chongqing Fuling shale gas field, the largest shale gas exploration site in China, produces a large amount of oil-based drill cuttings (OBDC) every year, which is a hazardous waste. Traditional treatment methods such as solidification/stabilization did not recycle the valuable components such as petroleum hydrocarbons. Pyrolysis is proven to be an efficient method that can recover those components. This study firstly investigated the pyrolysis kinetics by two different methods on the basis of detailed material characterization, and then taking the workers and the surrounding ecological environment as the analysis object, the human health risk assessment (HHRA) and ecological risk assessment were evaluated respectively before and after pyrolysis. The results showed that the pyrolysis of OBDC was divided into three stages, and the cracking of light hydrocarbons stage was the key control step for pyrolysis process. The activation energy E increased gradually during the pyrolysis progress. The HHRA results showed that pyrolysis could greatly reduce the non-carcinogenic risk, carcinogenic risk and ecological risk by 59.6 %, 62.8 % and 75 % respectively. However, the carcinogenic risk after pyrolysis was still higher than the critical value 10-6.


Assuntos
Gás Natural , Petróleo , Humanos , Pirólise , Óleos , Hidrocarbonetos
12.
Risk Anal ; 42(7): 1472-1487, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33651900

RESUMO

Reaching net-zero for global greenhouse gas emissions by the year 2050 will require a portfolio of new technologies and approaches, potentially requiring direct removal and sequestration of atmospheric carbon dioxide using negative emissions technologies (NETs). Since energy and climate systems are fundamentally interconnected it is important that we understand the impacts of policy decisions and their associated controversies in other related technologies and sectors. Using a secondary analysis of data from a series of deliberative workshops conducted with lay publics in the United Kingdom, we suggest that perceptions of CO2 removal technologies were negatively impacted by risk perceptions and recent policy decisions surrounding shale gas and fracking. Using the social amplification of risk framework, we argue that heightened risk perceptions have extended via "ripple effects" across these technologies. Participants' attitudes were underpinned by deeper misgivings regarding the actions and motives of experts and policymakers; a pervasive discourse of "but they told us it was safe" regarding fracking negatively affected people's trust in assurances of the safety and efficacy of CO2 removal. This has the potential to undermine attempts to build societal agreement around future deployment of CO2 removal technologies.


Assuntos
Dióxido de Carbono , Fraturamento Hidráulico , Dióxido de Carbono/análise , Clima , Efeito Estufa , Humanos , Gás Natural
13.
Environ Sci Technol ; 55(14): 9657-9671, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34251200

RESUMO

The potential contamination of shallow groundwater with inorganic constituents is a major environmental concern associated with shale gas extraction through hydraulic fracturing. However, the impact of shale gas development on groundwater quality is a highly controversial issue. The only way to reliably assess whether groundwater quality has been impacted by shale gas development is to collect pre-development baseline data against which subsequent changes in groundwater quality can be compared. The objective of this paper is to provide a conceptual and methodological framework for establishing a baseline of inorganic groundwater quality in shale gas areas, which is becoming standard practice as a prerequisite for evaluating shale gas development impacts on shallow aquifers. For this purpose, this paper first reviews the potential sources of inorganic contaminants in shallow groundwater from shale gas areas. Then, it reviews the previous baseline studies of groundwater geochemistry in shale gas areas, showing that a comprehensive baseline assessment includes documenting the natural sources of salinity, potential geogenic contamination, and potential anthropogenic influences from legacy contamination and surface land use activities that are not related to shale gas development. Based on this knowledge, best practices are identified in terms of baseline sampling, selection of inorganic baseline parameters, and definition of threshold levels.


Assuntos
Água Subterrânea , Fraturamento Hidráulico , Poluentes Químicos da Água , Monitoramento Ambiental , Gás Natural , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
14.
Proc Natl Acad Sci U S A ; 115(27): 6970-6975, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915033

RESUMO

Concern persists over the potential for unconventional oil and gas development to contaminate groundwater with methane and other chemicals. These concerns motivated our 2-year prospective study of groundwater quality within the Marcellus Shale. We installed eight multilevel monitoring wells within bedrock aquifers of a 25-km2 area targeted for shale gas development (SGD). Twenty-four isolated intervals within these wells were sampled monthly over 2 years and groundwater pressures were recorded before, during, and after seven shale gas wells were drilled, hydraulically fractured, and placed into production. Perturbations in groundwater pressures were detected at hilltop monitoring wells during drilling of nearby gas wells and during a gas well casing breach. In both instances, pressure changes were ephemeral (<24 hours) and no lasting impact on groundwater quality was observed. Overall, methane concentrations ([CH4]) ranged from detection limit to 70 mg/L, increased with aquifer depth, and, at several sites, exhibited considerable temporal variability. Methane concentrations in valley monitoring wells located above gas well laterals increased in conjunction with SGD, but CH4 isotopic composition and hydrocarbon composition (CH4/C2H6) are inconsistent with Marcellus origins for this gas. Further, salinity increased concurrently with [CH4], which rules out contamination by gas phase migration of fugitive methane from structurally compromised gas wells. Collectively, our observations suggest that SGD was an unlikely source of methane in our valley wells, and that naturally occurring methane in valley settings, where regional flow systems interact with local flow systems, is more variable in concentration and composition both temporally and spatially than previously understood.

15.
Proc Natl Acad Sci U S A ; 115(49): 12349-12358, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455298

RESUMO

Extensive development of shale gas has generated some concerns about environmental impacts such as the migration of natural gas into water resources. We studied high gas concentrations in waters at a site near Marcellus Shale gas wells to determine the geological explanations and geochemical implications. The local geology may explain why methane has discharged for 7 years into groundwater, a stream, and the atmosphere. Gas may migrate easily near the gas wells in this location where the Marcellus Shale dips significantly, is shallow (∼1 km), and is more fractured. Methane and ethane concentrations in local water wells increased after gas development compared with predrilling concentrations reported in the region. Noble gas and isotopic evidence are consistent with the upward migration of gas from the Marcellus Formation in a free-gas phase. This upflow results in microbially mediated oxidation near the surface. Iron concentrations also increased following the increase of natural gas concentrations in domestic water wells. After several months, both iron and SO42- concentrations dropped. These observations are attributed to iron and SO42- reduction associated with newly elevated concentrations of methane. These temporal trends, as well as data from other areas with reported leaks, document a way to distinguish newly migrated methane from preexisting sources of gas. This study thus documents both geologically risky areas and geochemical signatures of iron and SO42- that could distinguish newly leaked methane from older methane sources in aquifers.

16.
J Environ Manage ; 279: 111589, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223350

RESUMO

Water risks are one of the key issues dominating environmental debates on shale gas development. Water withdrawals and wastewater discharges in shale gas fields of mountainous areas are more complicated than in plain areas due to different climatic, topographical and hydrological conditions, which would impact water resources. This research identifies the surface water-related risks from shale gas development in mountainous areas as water shortage and water pollution. Conceptions of accessibility for both water supply and water pollution are proposed to describe the vulnerability of water resources and the exposure to water pollution. Based on a risk probability model, a water risk assessment method for mountainous areas is constructed from the perspectives of dangers, exposures and vulnerabilities. Finally, the assessment method is applied in Chongqing, China. The results show that, from 2010 to 2020, the water consumption of shale gas development has a little impact on regional water resources in total, but more significant impacts are seen in a few areas, including the seasonal water-deficient areas in Western Chongqing, the urban and suburban areas with high pollutant loadings in Midwest Chongqing, and other areas with high pollutant accessibility and vulnerable water environments. The surface water-related risks of the shale gas development in Chongqing are principally composed of low and relatively low levels of risks, which cover 60% of the total area of Chongqing and display a spatial difference of west > northeast > southeast areas. Based on Monte Carlo method, the results of uncertainty analyses show the model is reliable. This research provides a reference for water comprehensive risk assessment of shale gas development in mountainous areas.


Assuntos
Gás Natural , Água , China , Gás Natural/análise , Campos de Petróleo e Gás , Poluição da Água
17.
Environ Res ; 182: 109124, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32069745

RESUMO

BACKGROUND: Hydraulic fracturing together with directional and horizontal well drilling (unconventional oil and gas (UOG) development) has increased substantially over the last decade. UOG development is a complex process presenting many potential environmental health hazards, raising serious public concern. AIM: To conduct a scoping review to assess what is known about the human health outcomes associated with exposure to UOG development. METHODS: We performed a literature search in MEDLINE and SCOPUS for epidemiological studies of exposure to UOG development and verified human health outcomes published through August 15, 2019. For each eligible study we extracted data on the study design, study population, health outcomes, exposure assessment approach, statistical methodology, and potential confounders. We reviewed the articles based on categories of health outcomes. RESULTS: We identified 806 published articles, most of which were published during the last three years. After screening, 40 peer-reviewed articles were selected for full text evaluation and of these, 29 articles met our inclusion criteria. Studies evaluated pregnancy outcomes, cancer incidence, hospitalizations, asthma exacerbations, sexually transmitted diseases, and injuries or mortality from traffic accidents. Our review found that 25 of the 29 studies reported at least one statistically significant association between the UOG exposure metric and an adverse health outcome. The most commonly studied endpoint was adverse birth outcomes, particularly preterm deliveries and low birth weight. Few studies evaluated the mediating pathways that may underpin these associations, highlighting a clear need for research on the potential exposure pathways and mechanisms underlying observed relationships. CONCLUSIONS: This review highlights the heterogeneity among studies with respect to study design, outcome of interest, and exposure assessment methodology. Though replication in other populations is important, current research points to a growing body of evidence of health problems in communities living near UOG sites.


Assuntos
Estudos Epidemiológicos , Fraturamento Hidráulico , Resultado da Gravidez , Exposição Ambiental , Feminino , Humanos , Recém-Nascido , Gás Natural , Campos de Petróleo e Gás , Gravidez
18.
Environ Manage ; 66(2): 180-190, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32500202

RESUMO

Unconventional oil and gas (UOG) drilling has expanded rapidly across the United States, including in the Fayetteville Shale formation in north-central Arkansas where drilling began in 2004. As one of the oldest regions of UOG activity in the United States, this area has experienced significant land-use changes, specifically development of natural habitat and agricultural land for gas infrastructure. In recent years, drilling of new wells has stopped and production has declined. By 2017, 1038 wells had ceased production and been abandoned, which makes them eligible for land reclamation. However, most of these sites (80%) have not been reclaimed and continue to cause losses in ecosystem services. If reclamation was performed on lands associated with abandoned infrastructure, we estimate more than $2 million USD annually in agricultural, timber, and carbon sequestration values would be gained. These benefits far outweigh the costs of reclamation, especially since the benefits accrue over time and reclamation is a short-term cost. Our estimates indicate a 2-4 year break-even time period when cumulative ecosystem services benefits will outweigh reclamation costs. We predicted a well-abandonment rate of 155 per year until 2050 when 98% of wells will be abandoned, which indicates great potential for future ecosystem services restoration. Thus, we recommend that Arkansans at the government and citizen level work to restore lands impacted by UOG development in the Fayetteville Shale region so that their value to landowners and society can be recovered, which will enhance long-term economic and environmental benefits.


Assuntos
Ecossistema , Campos de Petróleo e Gás , Agricultura , Arkansas , Gás Natural , Estados Unidos
19.
Artigo em Inglês | MEDLINE | ID: mdl-32427053

RESUMO

Understanding the physicochemical characteristics of oil-based cuttings (OBCs) is an important foundation for subsequent treatment and management. The macro- and microscopic properties of white oil-based cuttings (WOBCs) and diesel-based cuttings (DBCs) after the different pretreatment steps have been assessed using scanning electron microscopy. The organic and inorganic compositions of OBCs have been analyzed using X-ray diffraction, Fourier-transform infrared spectrometry, and gas chromatography-mass spectrometry. Inorganic matter (SiO2, BaSO4, and CaCO3), alkanes, aromatic compounds, and water were the main components of OBCs. The organic content (26.14%) and alkane content of the WOBCs were higher than that of the DBCs, whereas for the inorganic content (70.87%), the reverse was true. The macro- and micromorphologies of OBCs were quite different because their oil and water contents were different. The oil contents of OBCs decreased in the order A1 (14.64%) > A3 (12.67%) > A2 (11.06%) and B1 (9.19%) > B3 (8.94%) > B2 (4.66%); the water contents decreased in the order A1 (2.99%) > A3 (2.19%) > A2 (1.09%) and B1 (2.30%) > B3 (1.87%) > B2 (1.09%). Moreover, a skid-mounted treatment technology for OBCs was proposed. The results can be a scientific guidance for the treatment and management of OBCs.


Assuntos
Substâncias Perigosas/química , Compostos Inorgânicos/química , Óleo Mineral/química , Campos de Petróleo e Gás/química , Hidrocarbonetos Policíclicos Aromáticos/química , Purificação da Água/métodos , Fenômenos Químicos , Cromatografia Gasosa-Espectrometria de Massas , Substâncias Perigosas/análise , Compostos Inorgânicos/análise , Óleo Mineral/análise , Gás Natural/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Águas Residuárias/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
20.
Rev Environ Contam Toxicol ; 246: 1-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29280081

RESUMO

We identify uncertainties and knowledge gaps of chemical risk assessment related to unconventional drillings and propose adaptations. We discuss how chemical risk assessment in the context of unconventional oil and gas (UO&G) activities differs from conventional chemical risk assessment and the implications for existing legislation. A UO&G suspect list of 1,386 chemicals that might be expected in the UO&G water samples was prepared which can be used for LC-HRMS suspect screening. We actualize information on reported concentrations in UO&G-related water. Most information relates to shale gas operations, followed by coal-bed methane, while only little is available for tight gas and conventional gas. The limited research on conventional oil and gas recovery hampers comparison whether risks related to unconventional activities are in fact higher than those related to conventional activities. No study analyzed the whole cycle from fracturing fluid, flowback and produced water, and surface water and groundwater. Generally target screening has been used, probably missing contaminants of concern. Almost half of the organic compounds analyzed in surface water and groundwater exceed TTC values, so further risk assessment is needed, and risks cannot be waived. No specific exposure scenarios toward groundwater aquifers exist for UO&G-related activities. Human errors in various stages of the life cycle of UO&G production play an important role in the exposure. Neither at the international level nor at the US federal and the EU levels, specific regulations for UO&G-related activities are in place to protect environmental and human health. UO&G activities are mostly regulated through general environmental, spatial planning, and mining legislation.


Assuntos
Campos de Petróleo e Gás , Medição de Risco/métodos , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Humanos , Fraturamento Hidráulico , Hidrocarbonetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA