Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 508(2): 487-493, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30503498

RESUMO

Tangier disease is a rare disorder of lipoprotein metabolism that presents with extremely low levels of HDL cholesterol and apoprotein A-I. It is caused by mutations in the ATP-binding cassette transporter A1 (ABCA1) gene. Clinical heterogeneity and mutational pattern of Tangier disease are poorly characterized. Moreover, also familial HDL deficiency may be caused by mutations in ABCA1 gene. ATP-binding cassette transporter A1 (ABCA1) gene mutations in a patient with Tangier disease, who presented an uncommon clinical history, and in his family were found and characterized. He was found to be compound heterozygous for two intronic mutations of ABCA1 gene, causing abnormal pre-mRNAs splicing. The novel c.1510-1G > A mutation was located in intron 12 and caused the activation of a cryptic splice site in exon 13, which determined the loss of 22 amino acids of exon 13 with the introduction of a premature stop codon. Five heterozygous carriers of this mutation were also found in proband's family, all presenting reduced HDL cholesterol and ApoAI (0.86 ±â€¯0.16 mmol/L and 92.2 ±â€¯10.9 mg/dL respectively), but not the typical features of Tangier disease, a phenotype compatible with the diagnosis of familial HDL deficiency. The other known mutation c.1195-27G > A was confirmed to cause aberrant retention of 25 nucleotides of intron 10 leading to the insertion of a stop codon after 20 amino acids of exon 11. Heterozygous carriers of this mutation also showed the clinical phenotype of familial HDL deficiency. Our study extends the catalog of pathogenic intronic mutations affecting ABCA1 pre-mRNA splicing. In a large family, a clear demonstration that the same mutations may cause Tangier disease (if in compound heterozygosis) or familial HDL deficiency (if in heterozygosis) is provided.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Hipoalfalipoproteinemias/genética , Mutação , Splicing de RNA/genética , Doença de Tangier/genética , Códon sem Sentido , Família , Feminino , Heterozigoto , Humanos , Íntrons/genética , Masculino , Linhagem , Sítios de Splice de RNA/genética
2.
Mol Genet Metab ; 126(4): 388-396, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30709776

RESUMO

Inbred mouse strains are a cornerstone of translational research but paradoxically many strains carry mild inborn errors of metabolism. For example, α-aminoadipic acidemia and branched-chain ketoacid dehydrogenase deficiency are known in C57BL/6J mice. Using RNA sequencing, we now reveal the causal variants in Dhtkd1 and Bckdhb, and the molecular mechanism underlying these metabolic defects. C57BL/6J mice have decreased Dhtkd1 mRNA expression due to a solitary long terminal repeat (LTR) in intron 4 of Dhtkd1. This LTR harbors an alternate splice donor site leading to a partial splicing defect and as a consequence decreased total and functional Dhtkd1 mRNA, decreased DHTKD1 protein and α-aminoadipic acidemia. Similarly, C57BL/6J mice have decreased Bckdhb mRNA expression due to an LTR retrotransposon in intron 1 of Bckdhb. This transposable element encodes an alternative exon 1 causing aberrant splicing, decreased total and functional Bckdhb mRNA and decreased BCKDHB protein. Using a targeted metabolomics screen, we also reveal elevated plasma C5-carnitine in 129 substrains. This biochemical phenotype resembles isovaleric acidemia and is caused by an exonic splice mutation in Ivd leading to partial skipping of exon 10 and IVD protein deficiency. In summary, this study identifies three causal variants underlying mild inborn errors of metabolism in commonly used inbred mouse strains.


Assuntos
Erros Inatos do Metabolismo/genética , Camundongos Endogâmicos/genética , Animais , Elementos de DNA Transponíveis/genética , Cetona Oxirredutases/genética , Masculino , Erros Inatos do Metabolismo/diagnóstico , Metabolômica , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fenótipo , Análise de Sequência de RNA
3.
BMC Med Genet ; 20(1): 6, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621608

RESUMO

BACKGROUND: Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis type 1 is an autosomal recessive disease characterized by excessive renal magnesium and calcium excretion, bilateral nephrocalcinosis, and progressive chronic renal failure. This rare disease is caused by mutations in CLDN16 that encodes claudin-16, a tight-junction protein involved in paracellular reabsorption of magnesium and calcium in the renal tubule. Most of these variants are located in exons and have been classified as missense mutations. The functional consequences of some of these claudin-16 mutant proteins have been analysed after heterologous expression showing indeed a significant loss of function compared to the wild-type claudin-16. We hypothesize that a number of CLDN16 exonic mutations can be responsible for the disease phenotype by disrupting the pre-mRNA splicing process. METHODS: We selected 12 previously described presumed CLDN16 missense mutations and analysed their potential effect on pre-mRNA splicing using a minigene assay. RESULTS: Our results indicate that five of these mutations induce significant splicing alterations. Mutations c.453G > T and c.446G > T seem to inactivate exonic splicing enhancers and promote the use of an internal cryptic acceptor splice site resulting in inclusion of a truncated exon 3 in the mature mRNA. Mutation c.571G > A affects an exonic splicing enhancer resulting in partial skipping of exon 3. Mutations c.593G > C and c.593G > A disturb the acceptor splice site of intron 3 and cause complete exon 4 skipping. CONCLUSIONS: To our knowledge, this is the first report of CLDN16 exonic mutations producing alterations in splicing. We suggest that in the absence of patients RNA samples, splicing functional assays with minigenes could be valuable for evaluating the effect of exonic CLDN16 mutations on pre-mRNA splicing.


Assuntos
Claudinas/genética , Éxons/genética , Predisposição Genética para Doença , Hipercalciúria/genética , Mutação de Sentido Incorreto , Nefrocalcinose/genética , Erros Inatos do Transporte Tubular Renal/genética , Sequência de Bases , Cálcio , Claudinas/metabolismo , Testes Genéticos , Humanos , Falência Renal Crônica/genética , Magnésio , Mutagênese Sítio-Dirigida , Fenótipo , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro/genética
4.
Proc Natl Acad Sci U S A ; 113(37): E5408-15, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573846

RESUMO

Splicing can be epigenetically regulated and involved in cellular differentiation in somatic cells, but the interplay of epigenetic factors and the splicing machinery during spermatogenesis remains unclear. To study these interactions in vivo, we generated a germline deletion of MORF-related gene on chromosome 15 (MRG15), a multifunctional chromatin organizer that binds to methylated histone H3 lysine 36 (H3K36) in introns of transcriptionally active genes and has been implicated in regulation of histone acetylation, homology-directed DNA repair, and alternative splicing in somatic cells. Conditional KO (cKO) males lacking MRG15 in the germline are sterile secondary to spermatogenic arrest at the round spermatid stage. There were no significant alterations in meiotic division and histone acetylation. Specific mRNA sequences disappeared from 66 germ cell-expressed genes in the absence of MRG15, and specific intronic sequences were retained in mRNAs of 4 genes in the MRG15 cKO testes. In particular, introns were retained in mRNAs encoding the transition proteins that replace histones during sperm chromatin condensation. In round spermatids, MRG15 colocalizes with splicing factors PTBP1 and PTBP2 at H3K36me3 sites between the exons and single intron of transition nuclear protein 2 (Tnp2). Thus, our results reveal that MRG15 is essential for pre-mRNA splicing during spermatogenesis and that epigenetic regulation of pre-mRNA splicing by histone modification could be useful to understand not only spermatogenesis but also, epigenetic disorders underlying male infertile patients.


Assuntos
Proteínas Cromossômicas não Histona/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Infertilidade Masculina/genética , Proteínas do Tecido Nervoso/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Espermatogênese/genética , Transativadores/genética , Animais , Proteínas de Ligação a DNA , Epigênese Genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/patologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Splicing de RNA/genética , Deleção de Sequência/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
5.
Biochem Biophys Res Commun ; 497(4): 1043-1048, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29481804

RESUMO

Leigh syndrome (LS) is a rare progressive neurodegenerative disorder occurring in infancy. The most common clinical signs reported in LS are growth retardation, optic atrophy, ataxia, psychomotor retardation, dystonia, hypotonia, seizures and respiratory disorders. The paper reported a manifestation of 3 Tunisian patients presented with LS syndrome. The aim of this study is the MT[HYPHEN]ATP6 and SURF1 gene screening in Tunisian patients affected with classical Leigh syndrome and the computational investigation of the effect of detected mutations on its structure and functions by clinical and bioinformatics analyses. After clinical investigations, three Tunisian patients were tested for mutations in both MT-ATP6 and SURF1 genes by direct sequencing followed by in silico analyses to predict the effects of sequence variation. The result of mutational analysis revealed the absence of mitochondrial mutations in MT-ATP6 gene and the presence of a known homozygous splice site mutation c.516-517delAG in sibling patients added to the presence of a novel double het mutations in LS patient (c.752-18 A > C/c. c.751 + 16G > A). In silico analyses of theses intronic variations showed that it could alters splicing processes as well as SURF1 protein translation. Leigh syndrome (LS) is a rare progressive neurodegenerative disorder occurring in infancy. The most common clinical signs reported in LS are growth retardation, optic atrophy, ataxia, psychomotor retardation, dystonia, hypotonia, seizures and respiratory disorders. The paper reported a manifestation of 3 Tunisian patients presented with LS syndrome. The aim of this study is MT-ATP6 and SURF1 genes screening in Tunisian patients affected with classical Leigh syndrome and the computational investigation of the effect of detected mutations on its structure and functions. After clinical investigations, three Tunisian patients were tested for mutations in both MT-ATP6 and SURF1 genes by direct sequencing followed by in silico analysis to predict the effects of sequence variation. The result of mutational analysis revealed the absence of mitochondrial mutations in MT-ATP6 gene and the presence of a known homozygous splice site mutation c.516-517delAG in sibling patients added to the presence of a novel double het mutations in LS patient (c.752-18 A>C/ c.751+16G>A). In silico analysis of theses intronic vaiations showed that it could alters splicing processes as well as SURF1 protein translation.


Assuntos
Deficiência de Citocromo-c Oxidase/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Doença de Leigh/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Simulação por Computador , Análise Mutacional de DNA , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Splicing de RNA , Tunísia
6.
Clin Immunol ; 153(2): 292-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24825797

RESUMO

Familial Hemophagocytic Lymphohistiocytosis type 3 (FHL3) is a genetic disorder caused by mutations in UNC13D gene, coding the granule priming factor Munc13-4 that intervenes in NK and T cell cytotoxic function. Here we report the case of a 17-month-old girl with prolonged symptomatic EBV infectious mononucleosis and clinical symptoms of hemophagocytic syndrome. In vitro functional analysis pointed to a degranulation defect. The genetic analysis of UNC13D gene identified initially a heterozygous mutation (c.753+1G>T) in the donor splice-site that resulted in exon 9 skipping (maternal allele). Mutations in other genes were considered, but additional analysis of UNC13D cDNA revealed in the paternal allele a heterozygous transition from G to A (c.2448-13G>A) at the 3' acceptor splice-site in intron 25, generating a new acceptor splice-site that leads to a frameshift and a premature STOP codon. Allele specific amplification of the cDNA confirmed the absence of a functional mRNA from the paternal allele. This case illustrates an atypical compound heterozygous UNC13D mutation affecting the RNA splicing that generates a typical FHL3 phenotype.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Linfo-Histiocitose Hemofagocítica/genética , Proteínas de Membrana/genética , Mutação , Sequência de Bases , Códon sem Sentido , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Heterozigoto , Humanos , Lactente , Linfo-Histiocitose Hemofagocítica/etiologia , Proteínas de Membrana/química , Modelos Moleculares , Mutação Puntual , Estrutura Terciária de Proteína , Sítios de Splice de RNA/genética
7.
Hematology ; 29(1): 2343163, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38655690

RESUMO

BACKGROUND: Congenital dyserythropoietic anemia Ⅱ (CDA Ⅱ) is a rare inherited disorder of defective erythropoiesis caused by SEC23B gene mutation. CDA Ⅱ is often misdiagnosed as a more common type of clinically related anemia, or it remains undiagnosed due to phenotypic variability caused by the coexistence of inherited liver diseases, including Gilbert's syndrome (GS) and hereditary hemochromatosis. METHODS: We describe the case of a boy with genetically undetermined severe hemolytic anemia, hepatosplenomegaly, and gallstones whose diagnosis was achieved by targeted next generation sequencing. RESULTS: Molecular analysis revealed a maternally inherited novel intronic variant and a paternally inherited missense variant, c.[994-3C > T];[1831C > T] in the SEC23B gene, confirming diagnosis of CDA Ⅱ. cDNA analysis verified that the splice acceptor site variant results in two mutant transcripts, one with an exon 9 skip and one in which exons 9 and 10 are deleted. SEC23B mRNA levels in the patient were lower than those in healthy controls. The patient was also homozygous for the UGT1A1*6 allele, consistent with GS. CONCLUSION: Identification of the novel splice variant in this study further expands the spectrum of known SEC23B gene mutations. Molecular genetic approaches can lead to accurate diagnosis and management of CDA Ⅱ patients, particularly for those with GS coexisting.


Assuntos
Anemia Diseritropoética Congênita , Doença de Gilbert , Proteínas de Transporte Vesicular , Humanos , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/diagnóstico , Masculino , Proteínas de Transporte Vesicular/genética , Doença de Gilbert/genética , Doença de Gilbert/complicações , Doença de Gilbert/diagnóstico , Splicing de RNA , Mutação
8.
Methods Mol Biol ; 2434: 267-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213024

RESUMO

Over the last decades, animal models have become increasingly important in therapeutic drug development and assessment. The use of these models, mainly mice and rats, allow evaluating drugs in the real-organism environment and context. However, several molecular therapeutic approaches are sequence-dependent, and therefore, the humanization of such models is required to assess the efficacy. The generation of genetically modified humanized mouse models is often an expensive and laborious process that may not always recapitulate the human molecular and/or physiological phenotype. In this chapter, we summarize basic aspects to consider before designing and generating humanized models, especially when they are aimed to test antisense-based therapies.


Assuntos
Oligonucleotídeos Antissenso , Animais , Modelos Animais de Doenças , Camundongos , Oligonucleotídeos Antissenso/genética , Ratos
9.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831035

RESUMO

Splicing defects caused by mutations in the consensus sequences at the borders of introns and exons are common in human diseases. Such defects frequently result in a complete loss of function of the protein in question. Therapy approaches based on antisense oligonucleotides for specific gene mutations have been developed in the past, but they are very expensive and require invasive, life-long administration. Thus, modulation of splicing by means of small molecules is of great interest for the therapy of genetic diseases resulting from splice-site mutations. Using minigene approaches and patient cells, we here show that methylxanthine derivatives and the food-derived flavonoid luteolin are able to enhance the correct splicing of the AGA mRNA with a splice-site mutation c.128-2A>G in aspartylglucosaminuria, and result in increased AGA enzyme activity in patient cells. Furthermore, we also show that one of the most common disease causing TPP1 gene variants in classic late infantile neuronal ceroid lipofuscinosis may also be amenable to splicing modulation using similar substances. Therefore, our data suggest that splice-modulation with small molecules may be a valid therapy option for lysosomal storage disorders.


Assuntos
Aspartilglucosaminúria/genética , Aspartilglucosaminúria/terapia , Luteolina/farmacologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Splicing de RNA/genética , Xantinas/farmacologia , Sequência de Aminoácidos , Aspartilglucosilaminase/química , Aspartilglucosilaminase/genética , Aspartilglucosilaminase/metabolismo , Sequência de Bases , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Homozigoto , Humanos , Luciferases de Vaga-Lume/metabolismo , Mutação/genética , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tripeptidil-Peptidase 1/genética
10.
Transl Neurodegener ; 10(1): 16, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016162

RESUMO

Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.


Assuntos
Processamento Alternativo/genética , Terapia Genética/métodos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Splicing de RNA/genética , Animais , Humanos , Oligonucleotídeos Antissenso
11.
Front Neurosci ; 14: 295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317919

RESUMO

Fragile X-associated tremor ataxia syndrome is an untreatable neurological and neuromuscular disorder caused by unstable expansion of 55-200 CGG nucleotide repeats in 5' UTR of Fragile X intellectual disability 1 (FMR1) gene. The expansion of CGG repeats in the FMR1 mRNA elicits neuronal cell toxicity through two main pathogenic mechanisms. First, mRNA with CGG expanded repeats sequester specific RNA regulatory proteins resulting in splicing alterations and formation of ribonuclear inclusions. Second, repeat-associated non-canonical translation (RANT) of the CGG expansion produces a toxic homopolymeric protein, FMRpolyG. Very few small molecules are known to modulate these pathogenic events, limiting the therapeutic possibilities for FXTAS. Here, we found that a naturally available biologically active small molecule, Curcumin, selectively binds to CGG RNA repeats. Interestingly, Curcumin improves FXTAS associated alternative splicing defects and decreases the production and accumulation of FMRpolyG protein inclusion. Furthermore, Curcumin decreases cell cytotoxicity promptly by expression of CGG RNA in FXTAS cell models. In conclusion, our data suggest that small molecules like Curcumin and its derivatives may be explored as a potential therapeutic strategy against the debilitating repeats associated neurodegenerative disorders.

12.
J Cyst Fibros ; 19 Suppl 1: S15-S18, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31883651

RESUMO

CFTR is an extensively studied gene and multiple sequence variants have been identified, many of which still need to be defined as neutral or disease causing. Complex alleles are defined when at least two variants are identified on the same allele. Each pathogenic variant can affect distinct steps of the CFTR biogenesis. As CFTR modulators are being developed to alleviate specific defects, pathogenic variants need to be characterized to propose adequate treatments. Conversely, cis-variants can affect treatment response when defects are additive or if they alter the binding or efficacy of the modulator. Hence, complex alleles increase the complexity of CFTR variant classification and need to be assigned as neutral, disease causing or modulating treatment efficacy. This review was based on a symposium session presented at the 16th ECFS Basic Science Conference, Dubrovnik, Croatia, 27 to 30 March, 2019.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Terapia Genética , Humanos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética
13.
Oncotarget ; 9(25): 17334-17348, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29707112

RESUMO

Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.

14.
Clin Chim Acta ; 436: 276-82, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24915601

RESUMO

BACKGROUND: Pre-mRNA splicing defects may have an important impact on clinical phenotype in several diseases, but often their pathogenic role is difficult to demonstrate. The aim of this study was to validate an in vitro method to assess the effects of putative splicing variants. MATERIALS AND METHODS: We studied three novel variants in vitro using a novel minigene approach and compared results with in silico and ex vivo strategies from patient samples. RESULTS: For the c.1146C>T variant in the LMNA gene, in vitro and ex vivo studies were concordant with the prediction obtained by in silico tools, confirming the loss of 13 bp at the end of exon 6. In the second case (c.1140+1G>A, SCN5A gene), in vitro experiments identified the insertion of 94 intronic bp in exon 9 as well as exon 9 skipping, but these results were not correctly predicted by ex vivo data and in silico tools. In the third case (c.1608+1C>T, LMNA gene) in vitro and ex vivo studies suggested the recognition of an exonic cryptic site leading to the loss of 29 bp in exon 9, not predicted by in silico analysis. CONCLUSION: Our results revealed how in silico tools are often unreliable requiring "wet" RNA analysis. Since ex vivo studies are not always feasible, the use of an in vitro construct represents an efficient and useful method for the evaluation of damaging effects of unknown splicing variants, especially in diagnostic laboratories.


Assuntos
Técnicas de Laboratório Clínico/métodos , Mutação , Splicing de RNA/genética , Sequência de Bases , Simulação por Computador , Éxons/genética , Humanos , Lamina Tipo A/genética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA