Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 19(34): e2301521, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093187

RESUMO

A 3D crimped sulfonated polyethersulfone-polyethylene oxide(C-SPES/PEO) nanofiber membrane and long-range lanthanum cobaltate(LaCoO3 ) nanowires are collectively doped into a PEO matrix to acquire a composite solid electrolyte (C-SPES-PEO-LaCoO3 ) for all-solid-state lithium metal batteries(ASSLMBs). The 3D crimped structure enables the fiber membrane to have a large porosity of 90%. Therefore, under the premise of strongly guaranteeing the mechanical properties of C-SPES-PEO-LaCoO3 , the ceramic nanowires conveniently penetrated into the 3D crimped SPES nanofiber without being blocked, which can facilitate fast ionic conductivity by forming 3D continuous organic-inorganic ion transport pathways. The as-prepared electrolyte delivers an excellent ionic conductivity of 2.5 × 10-4  S cm-1 at 30 °C. Density functional theory calculations indicate that the LaCoO3 nanowires and 3D crimped C-SPES/PEO fibers contribute to Li+ movement. Particularly, the LiFePO4 /C-SPES-PEO-LaCoO3 /Li and NMC811/C-SPES-PEO-LaCoO3 /Li pouch cell have a high initial discharge specific capacity of 156.8 mAh g-1 and a maximum value of 176.7 mAh g-1 , respectively. In addition, the universality of the penetration of C-SPES/PEO nanofibers to functional ceramic nanowires is also reflected by the stable cycling performance of ASSLMBs based on the electrolytes, in which the LaCoO3 nanowires are replaced with Gd-doped CeO2 nanowires. The work will provide a novel approach to high performance solid-state electrolytes.

2.
Sci Total Environ ; 889: 164062, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207767

RESUMO

Dust storms are a significant concern because of their adverse effects on ambient air quality and human health. To investigate the evolution of dust storms during long-distance transport and its impacts on air quality and human health risks in cities along the transport pathway, we monitored the major fraction of dust (i.e., particle-bound elements) online in four cities in northern China during March 2021. Three dust events originating from the Gobi Desert of North China and Mongolia and the Taklimakan Desert of Northwest China were captured. We investigated the source regions of dust storms using daily multi-sensor absorbing aerosol index products, backward trajectories, and specific element ratios, identified and quantified sources of particle-bound elements using Positive Matrix Factorization model, and calculated the carcinogenic and non-carcinogenic risks of elements using a health risk assessment model. Our results indicated that under the influence of dust storms, mass concentrations of crustal elements increased up to dozens of times in cities near the dust source and up to ten times in cities farther from the source. In contrast, anthropogenic elements increased less or even decreased, depending on the relative contributions of the increase caused by accumulation of dust itself and entrainment along the transport path and the decrease caused by dilution of high wind speeds. Si/Fe ratio was found to be a valuable indicator for characterizing the attenuation of the amount of dust along its transport pathways, especially for the case originated from northern source regions. This study highlights the significant role of source regions, intensity and attenuation rates of dust storms, and wind speeds in determining the increased levels of element concentrations during dust storms and its associated impacts on downwind areas. Furthermore, non-carcinogenic risks of particle-bound elements increased at all sites during dust events, emphasizing the importance of personal exposure protection during dust storms.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poeira/análise , Vento , China , Cidades , Material Particulado/análise
3.
Membranes (Basel) ; 12(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35877921

RESUMO

We have in the past proposed that proton motion constitutes the gating current in the potassium channel Kv1.2 and is responsible for the gating mechanism. For this to happen, there must be a proton path between the voltage-sensing domain (VSD) and the channel gate, and here we present quantum calculations that lead to a specific pair of proton paths, defined at the molecular level, with well-defined water molecule linkages, and with hydrogen bonding between residues; there is also at least one interpath crossover, where protons can switch paths. Quantum calculations on the entire 563-atom system give the complete geometry, the energy, and atomic charges. Calculations show that three specific residues (in the pdb 3Lut numbering, H418, E327, R326), and the T1 intracellular moiety, all of which have been shown experimentally to be involved in gating, would necessarily be protonated or deprotonated in the path between the VSD and the gate. Hydroxyl reorientation of serine and threonine residues are shown to provide a means of adjusting proton directions of motion. In the deprotonated state for K312, a low energy state, our calculations come close to reproducing the X-ray structure. The demonstration of the existence of a double proton path between VSD and gate supports the proposed proton gating mechanism; when combined with our earlier demonstration of proton generation in the VSD, and comparison with other systems that are known to move protons, we are close to achieving the definition of a complete gating mechanism in molecular detail. The coupling of the paths to the VSD, and to the PVPV section that essentially forms the gate, can be easily seen from the results of the calculation. The gate itself remains for further computations.

4.
Sci Total Environ ; 713: 136584, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019016

RESUMO

Microplastics in the environment is a highly relevant research topic. However, although more and more studies on environmental concentrations of microplastics are published, a profound risk assessment could not be carried out yet. This is mainly attributable to the fact that the current sampling and analysis methods do not provide a representative picture of the environmental pollution, as the fundamental knowledge about transport processes of microplastic is not present, and the ecotoxicological studies therefore cannot consider the relevant exposures of the organisms. To provide a methodological basis for further research and risk assessments, this paper applies the Source-Pathway-Receptor model to the context of microplastics, whereby the current state of knowledge can be compiled in a structured way and important knowledge gaps can be identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA