Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 91: 103185, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31430681

RESUMO

Previous study demonstrated large scale production of trichochecenes which limited the discovery of novel metabolites in Trichoderma hypoxylon. By genetic deletion of trichothecene synthase encoding gene thtri5, we created the dereplication mutant which eliminated the production of trichothecenes. Through chemical isolation, we characterized a couple of rare new polycyclic lactones tricholactones A and B from the thtri5 deletion strain. The structures of these two compounds were well determined by NMR, HR-ESI-MS and IECD analysis.


Assuntos
Carbono-Carbono Liases/genética , Deleção de Genes , Mutação , Trichoderma/genética , Trichoderma/metabolismo , Tricotecenos do Tipo A/metabolismo , Tricotecenos do Tipo B/metabolismo , Proteínas Fúngicas/genética , Trichoderma/crescimento & desenvolvimento
2.
Microbiology (Reading) ; 164(5): 769-778, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29557773

RESUMO

Trichoderma hypoxylon is a fungicolous species which produces rich secondary metabolites. However, no genetic transformation method is available for further studies. Here, we developed a marker-less transformation system based on the complementation of an uridine/uracil biosynthetic gene by protoplast transformation. An uridine/uracil auxotrophic mutant of Δthpyr4 was obtained by using a positive screening protocol with 5'-fluoroorotic acid as a selective reagent. To improve the homologous integration rates, the orthologues of ku70 and lig4 which play critical roles in non-homologous end-joining recombination were disrupted. The resulting thlig4 mutant showed remarkable transformation rates of 89 %, while no change was found in the thku70 deletion mutant compared with the WT strain. This suggests that thlig4 play a key role in the non-homologous recombination in this strain. Using this system, the biosynthetic gene cluster of trichothecene (tri) harzianum B was identified by deletion of the thtri5 in T. hypoxylon. Comparative genome analysis revealed that the trichothecene biosynthetic gene cluster in T. hypoxylon shared similar organizations with T. arundinaceum and T. brevicompactum, even though their encoded products are different in structures. Taken together, the highly efficient genetic system provides a convenient tool for studying the biosynthetic diversity and mining the novel natural product from the fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA