Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 197: 106955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820855

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies lacking effective therapies. KRAS mutations that occur in over 90% of PDAC are major oncogenic drivers of PDAC. The MAPK signaling pathway plays a central role in KRAS-driven oncogenic signaling. However, pharmacological inhibitors of the MAPK pathway are poorly responded in KRAS-mutant PDAC, raising a compelling need to understand the mechanism behind and to seek new therapeutic solutions. Herein, we perform a screen utilizing a library composed of 800 naturally-derived bioactive compounds to identify natural products that are able to sensitize KRAS-mutant PDAC cells to the MAPK inhibition. We discover that tetrandrine, a natural bisbenzylisoquinoline alkaloid, shows a synergistic effect with MAPK inhibitors in PDAC cells and xenograft models. Mechanistically, pharmacological inhibition of the MAPK pathway exhibits a double-edged impact on the TRAIL-death receptor axis, transcriptionally upregulating TRAIL yet downregulating its agonistic receptors DR4 and DR5, which may explain the limited therapeutic outcomes of MAPK inhibitors in KRAS-mutant PDAC. Of great interest, tetrandrine stabilizes DR4/DR5 protein via impairing ubiquitination-mediated protein degradation, thereby allowing a synergy with MAPK inhibition in inducing apoptosis in KRAS-mutant PDAC. Our findings identify a new combinatorial approach for treating KRAS-mutant PDAC and highlight the role of TRAIL-DR4/DR5 axis in dictating the therapeutic outcome in KRAS-mutant PDAC.


Assuntos
Benzilisoquinolinas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Morte Celular , Neoplasias Pancreáticas
2.
Pharmacol Res ; 120: 242-251, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28396094

RESUMO

Primary effusion lymphoma (PEL) is a lymphoma that shows malignant effusion in body cavities without contiguous tumor masses and has a very poor prognosis. We recently developed a novel drug screening system using patient-derived xenograft (PDX) cells that maintained the primary cell phenotype better than cell lines. This screening is expected to discover anti-tumor drugs that have been overlooked by conventional screening using cell lines. We herein performed this screening to identify new therapeutic agents for PEL. We screened 3518 compounds with known pharmaceutical activities based on cytotoxic effects on PDX cells of PEL and selected YM155, a possible survivin inhibitor. It exerted strong anti-tumor effects in PDX cells and three cell lines of PEL; the GI50 of YM155 was 1.2-7.9nM. We found that YM155 reduced myeloid cell leukemia-1 (MCL-1) protein levels prior to decreasing survivin levels, and this was inhibited by a proteasome inhibitor. The knockdown of MCL-1 by siRNA induced cell death in a PEL cell line, suggesting the involvement of decreased MCL-1 levels in YM155-induced cell death. YM155 also induced the phosphorylation of ERK1/2 and MCL-1, and a MEK1 inhibitor inhibited the phosphorylation of ERK1/2, degradation of MCL-1, and YM155-induced apoptosis. These results indicate that YM155 induces the proteasome-dependent degradation of MCL-1 through its phosphorylation by ERK1/2 and causes apoptosis in PEL cells. Furthermore, a treatment with YM155 significantly inhibited the development of ascites in PEL PDX mice. These results suggest the potential of YM155 as an anti-cancer agent for PEL.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Imidazóis/uso terapêutico , Linfoma de Efusão Primária/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Naftoquinonas/uso terapêutico , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Imidazóis/farmacologia , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Naftoquinonas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
Biomed Pharmacother ; 128: 110330, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504922

RESUMO

MEF2D-fusion (M-fusion) genes are newly discovered recurrent gene abnormalities that are detected in approximately 5 % of acute lymphoblastic leukemia (ALL) cases. Their introduction to cells has been reported to transform cell lines or increase the colony formation of bone marrow cells, suggesting their survival-supporting ability, which prompted us to examine M-fusion-targeting drugs. To identify compounds that reduce the protein expression level of MEF2D, we developed a high-throughput screening system using 293T cells stably expressing a fusion protein of MEF2D and luciferase, in which the protein expression level of MEF2D was easily measured by a luciferase assay. We screened 3766 compounds with known pharmaceutical activities using this system and selected staurosporine as a potential inducer of the proteolysis of MEF2D. Staurosporine induced the proteolysis of M-fusion proteins in M-fusion (+) ALL cell lines. Proteolysis was inhibited by caspase inhibitors, not proteasome inhibitors, suggesting caspase dependency. Consistent with this result, the growth inhibitory effects of staurosporine were stronger in M-fusion (+) ALL cell lines than in negative cell lines, and caspase inhibitors blocked apoptosis induced by staurosporine. We identified the cleavage site of MEF2D-HNRNPUL1 by caspases and confirmed that its caspase cleavage-resistant mutant was resistant to staurosporine-induced proteolysis. Based on these results, we investigated another Food and Drug Administration-approved caspase activator, venetoclax, and found that it exerted similar effects to staurosporine, namely, the proteolysis of M-fusion proteins and strong growth inhibitory effects in M-fusion (+) ALL cell lines. The present study provides novel insights into drug screening strategies and the clinical indications of venetoclax.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Caspases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Estaurosporina/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Fusão Gênica , Células HEK293 , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteólise , Transdução de Sinais
4.
Biochem Pharmacol ; 146: 87-100, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29074104

RESUMO

Multidrug resistance is the main obstacle in cancer chemotherapy. Emerging evidence demonstrates the important role of autophagy in cancer cell resistance to chemotherapy. Therefore, autophagy inhibition by natural compounds may be a promising strategy for overcoming drug resistance in liver cancer cells. Here, we found that ADCX, a natural cycloartane triterpenoid extracted from the traditional Chinese medicine (TCM) source Cimicifugae rhizoma (Shengma), impaired autophagic degradation by suppressing lysosomal cathepsin B (CTSB) expression in multidrug-resistant liver cancer HepG2/ADM cells, thereby leading to autophagic flux inhibition. Moreover, impairing autophagic flux promoted ADCX-induced apoptotic cell death in HepG2/ADM cells. Interestingly, Akt was overactivated by ADCX treatment, which downregulated CTSB and inhibited autophagic flux. Together, our results provide the first demonstration that an active TCM constituent can overcome multidrug resistance in liver cancer cells via Akt-mediated inhibition of autophagic degradation.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-akt/genética , Saponinas/química , Triterpenos/química
5.
Biochem Pharmacol ; 127: 90-100, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012958

RESUMO

The aim of the study is to demonstrate the effect of Romidepsin in hepatocellular carcinoma (HCC) by inducing G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis through JNK/c-Jun/caspase3 pathway in vitro and in vivo. Human HCC cell lines were cultured with Romidepsin and DMSO (negative control) and 5-fluorouracil (positive control). Then the cells' viability and apoptosis were determined by cell proliferation assay and flow cytometry. Protein concentrations and expression changes were measured by Western blot. Subsequently, Huh7 cells were subcutaneously inoculated into the nude mice, which were employed to further probe the tumor-suppressive effect of Romidepsin in vivo. Romidepsin treatment led to a time- and dose-dependent induction of cell cycle arrest in the G2/M phase and apoptosis. G2/M phase arrest inhibited the proliferation of HCC cells by alterations in p21/cdc25C/cdc2/cyclinB proteins. Increased concentrations of Erk and JNK phosphorylations were observed in a dose-dependent manner in the Romidepsin group, but p38 phosphorylation was not affected. G2/M phase arrest and the apoptosis of HCC cells induced by Romidepsin were mediated by the activation of Erk/MAPK pathways and JNK/MAPK pathways. The tumor size was significantly larger in the negative control group compared to Romidepsin group and no significant loss in body weight was observed in the Romidepsin group. Our findings offer proof-of-concept for use of Romidepsin as a novel class of chemotherapy in the treatment of HCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Carcinoma Hepatocelular/metabolismo , Depsipeptídeos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Hepáticas Experimentais/metabolismo , Animais , Antineoplásicos/uso terapêutico , Proteína Quinase CDC2 , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Depsipeptídeos/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Xenoenxertos , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos Nus , Transplante de Neoplasias , Transdução de Sinais , Fosfatases cdc25/metabolismo
6.
Biochem Pharmacol ; 112: 13-23, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27157412

RESUMO

The cyclic pyrimidine nucleotides cCMP and cUMP have been recently identified in numerous mammalian cell lines, in primary cells and in intact organs, but very little is still known about their biological function. A recent study of our group revealed that the membrane-permeable cCMP analog cCMP-acetoxymethylester (cCMP-AM) induces apoptosis in mouse lymphoma cells independent of protein kinase A via an intrinsic and mitochondria-dependent pathway. In our present study, we examined the effects of various cNMP-AMs in human tumor cell lines. In HEL cells, a human erythroleukemia cell line, cCMP-AM effectively reduced the number of viable cells, effectively induced apoptosis by altering the mitochondrial membrane potential and thereby caused changes in the cell cycle. cCMP itself was biologically inactive, indicating that membrane penetration is required to trigger intracellular effects. cCMP-AM did not induce apoptosis in K-562 cells, a human chronic myelogenous leukemia cell line, due to rapid export via multidrug resistance-associated proteins. The biological effects of cCMP-AM differed from those of other cNMP-AMs. In conclusion, cCMP effectively induces apoptosis in HEL cells, cCMP export prevents apoptosis of K-562 cells and cNMPs differentially regulate various aspects of apoptosis, cell growth and mitochondrial function. In a broader perspective, our data support the concept of distinct second messenger roles of cAMP, cGMP, cCMP and cUMP.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Nucleotídeos Cíclicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Células K562 , Leucemia Eritroblástica Aguda/patologia , Leucemia Mieloide/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA