Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(14): 3049-3061.e15, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311454

RESUMO

Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.


Assuntos
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia
2.
Cell ; 184(26): 6313-6325.e18, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34942099

RESUMO

How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5'-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering.


Assuntos
Espaço Extracelular/química , Ácido Hialurônico/farmacologia , Morfogênese , Especificidade de Órgãos , Pressão , Canais Semicirculares/citologia , Canais Semicirculares/embriologia , Actomiosina/metabolismo , Animais , Anisotropia , Comportamento Animal , Matriz Extracelular/metabolismo , Ácido Hialurônico/biossíntese , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Pressão Osmótica , Canais Semicirculares/diagnóstico por imagem , Comportamento Estereotipado , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
3.
Cell ; 177(6): 1463-1479.e18, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31080065

RESUMO

Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation.


Assuntos
Actinas/metabolismo , Ciclo Celular/fisiologia , Oócitos/metabolismo , Actinas/fisiologia , Animais , Polaridade Celular/fisiologia , Citoplasma/metabolismo , Gema de Ovo/fisiologia , Polimerização , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Zigoto
4.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675500

RESUMO

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Assuntos
Desenvolvimento Embrionário/genética , Mecanotransdução Celular/genética , Junções Íntimas/genética , Proteína da Zônula de Oclusão-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/genética , Ligação Proteica , Junções Íntimas/fisiologia , Saco Vitelino/crescimento & desenvolvimento , Saco Vitelino/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
5.
Cell ; 177(4): 925-941.e17, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982601

RESUMO

The synchronous cleavage divisions of early embryogenesis require coordination of the cell-cycle oscillator, the dynamics of the cytoskeleton, and the cytoplasm. Yet, it remains unclear how spatially restricted biochemical signals are integrated with physical properties of the embryo to generate collective dynamics. Here, we show that synchronization of the cell cycle in Drosophila embryos requires accurate nuclear positioning, which is regulated by the cell-cycle oscillator through cortical contractility and cytoplasmic flows. We demonstrate that biochemical oscillations are initiated by local Cdk1 inactivation and spread through the activity of phosphatase PP1 to generate cortical myosin II gradients. These gradients cause cortical and cytoplasmic flows that control proper nuclear positioning. Perturbations of PP1 activity and optogenetic manipulations of cortical actomyosin disrupt nuclear spreading, resulting in loss of cell-cycle synchrony. We conclude that mitotic synchrony is established by a self-organized mechanism that integrates the cell-cycle oscillator and embryo mechanics.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular/fisiologia , Divisão do Núcleo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Actomiosina/metabolismo , Animais , Núcleo Celular/metabolismo , Citocinese/fisiologia , Citoplasma , Citoesqueleto/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Microtúbulos/metabolismo , Mitose , Miosina Tipo II/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
6.
Cell ; 172(5): 1063-1078.e19, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474907

RESUMO

Interneurons navigate along multiple tangential paths to settle into appropriate cortical layers. They undergo a saltatory migration paced by intermittent nuclear jumps whose regulation relies on interplay between extracellular cues and genetic-encoded information. It remains unclear how cycles of pause and movement are coordinated at the molecular level. Post-translational modification of proteins contributes to cell migration regulation. The present study uncovers that carboxypeptidase 1, which promotes post-translational protein deglutamylation, controls the pausing of migrating cortical interneurons. Moreover, we demonstrate that pausing during migration attenuates movement simultaneity at the population level, thereby controlling the flow of interneurons invading the cortex. Interfering with the regulation of pausing not only affects the size of the cortical interneuron cohort but also impairs the generation of age-matched projection neurons of the upper layers.


Assuntos
Movimento Celular , Córtex Cerebral/citologia , Interneurônios/citologia , Morfogênese , Actomiosina/metabolismo , Animais , Carboxipeptidases/metabolismo , Ciclo Celular , Fatores Quimiotáticos/metabolismo , Embrião de Mamíferos/citologia , Feminino , Deleção de Genes , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Quinase de Cadeia Leve de Miosina/metabolismo , Neurogênese , Fenótipo
7.
Annu Rev Cell Dev Biol ; 33: 169-202, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28992442

RESUMO

Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.


Assuntos
Drosophila melanogaster/citologia , Modelos Biológicos , Morfogênese , Animais , Fenômenos Biomecânicos , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 121(25): e2318838121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870057

RESUMO

Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.


Assuntos
Caenorhabditis elegans , Fuso Acromático , Animais , Caenorhabditis elegans/embriologia , Camundongos , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Citocinese/fisiologia , Rotação , Zigoto/metabolismo , Zigoto/citologia , Zigoto/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Desenvolvimento Embrionário/fisiologia , Modelos Biológicos
9.
Proc Natl Acad Sci U S A ; 121(29): e2320769121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990949

RESUMO

Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, less is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of the plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of the plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane toward the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion, and cortical contractility. Overall, our work reveals cell-intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis, and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.


Assuntos
Actomiosina , Membrana Celular , Citocinese , Citocinese/fisiologia , Membrana Celular/metabolismo , Humanos , Actomiosina/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(39): e2407083121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39292751

RESUMO

Ovulation is critical for sexual reproduction and consists of the process of liberating fertilizable oocytes from their somatic follicle capsules, also known as follicle rupture. The mechanical force for oocyte expulsion is largely unknown in many species. Our previous work demonstrated that Drosophila ovulation, as in mammals, requires the proteolytic degradation of the posterior follicle wall and follicle rupture to release the mature oocyte from a layer of somatic follicle cells. Here, we identified actomyosin contraction in somatic follicle cells as the major mechanical force for follicle rupture. Filamentous actin (F-actin) and nonmuscle myosin II (NMII) are highly enriched in the cortex of follicle cells upon stimulation with octopamine (OA), a monoamine critical for Drosophila ovulation. Pharmacological disruption of F-actin polymerization prevented follicle rupture without interfering with the follicle wall breakdown. In addition, we demonstrated that OA induces Rho1 guanosine triphosphate (GTP)ase activation in the follicle cell cortex, which activates Ras homolog (Rho) kinase to promote actomyosin contraction and follicle rupture. All these results led us to conclude that OA signaling induces actomyosin cortex enrichment and contractility, which generates the mechanical force for follicle rupture during Drosophila ovulation. Due to the conserved nature of actomyosin contraction, this work could shed light on the mechanical force required for follicle rupture in other species including humans.


Assuntos
Actomiosina , Proteínas de Drosophila , Octopamina , Folículo Ovariano , Ovulação , Animais , Actomiosina/metabolismo , Ovulação/fisiologia , Folículo Ovariano/metabolismo , Folículo Ovariano/fisiologia , Feminino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Octopamina/metabolismo , Actinas/metabolismo , Drosophila melanogaster/fisiologia , Miosina Tipo II/metabolismo , Epitélio/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Oócitos/metabolismo , Drosophila/fisiologia
11.
Proc Natl Acad Sci U S A ; 121(2): e2309125121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175871

RESUMO

Living systems adopt a diversity of curved and highly dynamic shapes. These diverse morphologies appear on many length scales, from cells to tissues and organismal scales. The common driving force for these dynamic shape changes are contractile stresses generated by myosin motors in the cell cytoskeleton, that converts chemical energy into mechanical work. A good understanding of how contractile stresses in the cytoskeleton arise into different three-dimensional (3D) shapes and what are the shape selection rules that determine their final configurations is still lacking. To obtain insight into the relevant physical mechanisms, we recreate the actomyosin cytoskeleton in vitro, with precisely controlled composition and initial geometry. A set of actomyosin gel discs, intrinsically identical but of variable initial geometry, dynamically self-organize into a family of 3D shapes, such as domes and wrinkled shapes, without the need for specific preprogramming or additional regulation. Shape deformation is driven by the spontaneous emergence of stress gradients driven by myosin and is encoded in the initial disc radius to thickness aspect ratio, which may indicate shaping scalability. Our results suggest that while the dynamical pathways may depend on the detailed interactions between the different microscopic components within the gel, the final selected shapes obey the general theory of elastic deformations of thin sheets. Altogether, our results emphasize the importance for the emergence of active stress gradients for buckling-driven shape deformations and provide insights on the mechanically induced spontaneous shape transitions in contractile active matter, revealing potential shared mechanisms with living systems across scales.


Assuntos
Citoesqueleto de Actina , Actomiosina , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Microtúbulos/metabolismo
12.
J Cell Sci ; 137(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39258310

RESUMO

Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear. Here, we identified that ARHGAP32, a Rho GTPase-activating protein, is located in desmosomes through its interaction with desmoplakin (DSP) via its GAB2-interacting domain (GAB2-ID). We confirmed that ARHGAP32 is required for desmosomal organization, maturation and length regulation. Notably, loss of ARHGAP32 increased formation of F-actin stress fibers and phosphorylation of the regulatory myosin light chain Myl9 at T18/S19. Inhibition of ROCK activity in ARHGAP32-knockout (KO) cells effectively restored desmosomal organization and the integrity of epithelial cell sheets. Moreover, loss of DSP impaired desmosomal ARHGAP32 location and led to decreased actomyosin contractility. ARHGAP32 with a deletion of the GAB2-ID domain showed enhanced association with RhoA in the cytosol and failed to rescue the desmosomal organization in ARHGAP32-KO cells. Collectively, our study unveils that ARHGAP32 associates with and regulates desmosomes by interacting with DSP. This interaction potentially facilitates the crosstalk between desmosomes and F-actin.


Assuntos
Desmoplaquinas , Desmossomos , Proteínas Ativadoras de GTPase , Desmossomos/metabolismo , Humanos , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Animais , Actinas/metabolismo , Ligação Proteica , Proteína rhoA de Ligação ao GTP/metabolismo , Cães , Fosforilação , Células Madin Darby de Rim Canino , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Cadeias Leves de Miosina/metabolismo , Cadeias Leves de Miosina/genética
13.
J Cell Sci ; 137(15)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38988298

RESUMO

Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. We previously identified that interplay between the apical-medial actomyosin, which drives apical constriction, and the underlying longitudinal microtubule array has a key role during tube budding of salivary glands in the Drosophila embryo. At this microtubule-actomyosin interface, a hub of proteins accumulates, and we have shown before that this hub includes the microtubule-actin crosslinker Shot and the microtubule minus-end-binding protein Patronin. Here, we identify two actin-crosslinkers, ß-heavy (H)-Spectrin (also known as Karst) and Filamin (also known as Cheerio), and the multi-PDZ-domain protein Big bang as components of the protein hub. We show that tissue-specific degradation of ß-H-Spectrin leads to reduction of apical-medial F-actin, Shot, Patronin and Big bang, as well as concomitant defects in apical constriction, but that residual Patronin is still sufficient to assist microtubule reorganisation. We find that, unlike Patronin and Shot, neither ß-H-Spectrin nor Big bang require microtubules for their localisation. ß-H-Spectrin is instead recruited via binding to apical-medial phosphoinositides, and overexpression of the C-terminal pleckstrin homology domain-containing region of ß-H-Spectrin (ß-H-33) displaces endogenous ß-H-Spectrin and leads to strong morphogenetic defects. This protein hub therefore requires the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining apical constriction during tubulogenesis.


Assuntos
Actinas , Proteínas de Drosophila , Drosophila melanogaster , Microtúbulos , Morfogênese , Espectrina , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Espectrina/metabolismo , Espectrina/genética , Microtúbulos/metabolismo , Actinas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Filaminas/metabolismo , Filaminas/genética , Glândulas Salivares/metabolismo , Glândulas Salivares/embriologia , Glândulas Salivares/citologia , Forma Celular , Polaridade Celular , Actomiosina/metabolismo , Proteínas Associadas aos Microtúbulos
14.
J Cell Sci ; 137(13)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38899547

RESUMO

The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.


Assuntos
Proteínas de Drosophila , Exocitose , Miosina Tipo II , Proteínas rho de Ligação ao GTP , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo II/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Exocitose/fisiologia , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Larva/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Vesículas Secretórias/metabolismo
15.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39369303

RESUMO

Nonmuscle myosin II (NMII) generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here, we describe a Förster resonance energy transfer (FRET)-based tension sensor that can detect myosin-associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMII isoform B (NMIIB) exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.


Assuntos
Citoesqueleto de Actina , Transferência Ressonante de Energia de Fluorescência , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Miosina Tipo II/metabolismo , Animais , Humanos , Microscopia de Fluorescência/métodos , Actinas/metabolismo
16.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277157

RESUMO

S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.


Assuntos
Actomiosina , Adesões Focais , Humanos , Adesões Focais/metabolismo , Actomiosina/metabolismo , Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
17.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897564

RESUMO

During morphogenesis, large-scale changes of tissue primordia are coordinated across an embryo. In Drosophila, several tissue primordia and embryonic regions are bordered or encircled by supracellular actomyosin cables, junctional actomyosin enrichments networked between many neighbouring cells. We show that the single Drosophila Alp/Enigma-family protein Zasp52, which is most prominently found in Z-discs of muscles, is a component of many supracellular actomyosin structures during embryogenesis, including the ventral midline and the boundary of the salivary gland placode. We reveal that Zasp52 contains within its central coiled-coil region a type of actin-binding motif usually found in CapZbeta proteins, and this domain displays actin-binding activity. Using endogenously-tagged lines, we identify that Zasp52 interacts with junctional components, including APC2, Polychaetoid and Sidekick, and actomyosin regulators. Analysis of zasp52 mutant embryos reveals that the severity of the embryonic defects observed scales inversely with the amount of functional protein left. Large tissue deformations occur where actomyosin cables are found during embryogenesis, and in vivo and in silico analyses suggest a model whereby supracellular Zasp52-containing cables aid to insulate morphogenetic changes from one another.


Assuntos
Actomiosina , Proteínas de Drosophila , Animais , Actomiosina/metabolismo , Actinas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Sarcômeros/metabolismo , Morfogênese/genética
18.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36897576

RESUMO

Actin dynamics play an important role in tissue morphogenesis, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report an in vivo role of the actin-capping protein CAP-1 in the Caenorhabditis elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, and its depletion or overexpression led to severe structural defects in the syncytial germline and oocytes. A 60% reduction in the level of CAP-1 caused a twofold increase in F-actin and non-muscle myosin II activity, and laser incision experiments revealed an increase in rachis contractility. Cytosim simulations pointed to increased myosin as the main driver of increased contractility following loss of actin-capping protein. Double depletion of CAP-1 and myosin or Rho kinase demonstrated that the rachis architecture defects associated with CAP-1 depletion require contractility of the rachis actomyosin corset. Thus, we uncovered a physiological role for actin-capping protein in regulating actomyosin contractility to maintain reproductive tissue architecture.


Assuntos
Actomiosina , Caenorhabditis elegans , Animais , Actomiosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Células Germinativas/metabolismo
19.
Bioessays ; 46(10): e2400055, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39093597

RESUMO

In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.


Assuntos
Actomiosina , Movimento Celular , Actomiosina/metabolismo , Movimento Celular/fisiologia , Animais , Humanos , Adesão Celular/fisiologia , Miosina Tipo II/metabolismo , Quimiotaxia/fisiologia , Fenômenos Biomecânicos
20.
Proc Natl Acad Sci U S A ; 120(42): e2305283120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37819979

RESUMO

From flocks of birds to biomolecular assemblies, systems in which many individual components independently consume energy to perform mechanical work exhibit a wide array of striking behaviors. Methods to quantify the dynamics of these so-called active systems generally aim to extract important length or time scales from experimental fields. Because such methods focus on extracting scalar values, they do not wring maximal information from experimental data. We introduce a method to overcome these limitations. We extend the framework of correlation functions by taking into account the internal headings of displacement fields. The functions we construct represent the material response to specific types of active perturbation within the system. Utilizing these response functions we query the material response of disparate active systems composed of actin filaments and myosin motors, from model fluids to living cells. We show we can extract critical length scales from the turbulent flows of an active nematic, anticipate contractility in an active gel, distinguish viscous from viscoelastic dissipation, and even differentiate modes of contractility in living cells. These examples underscore the vast utility of this method which measures response functions from experimental observations of complex active systems.


Assuntos
Citoesqueleto de Actina , Miosinas , Actomiosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA