Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Dairy Sci ; 105(3): 2094-2107, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35180941

RESUMO

Staphylococcus aureus and its biofilm have emerged as a significant threat to the safety of dairy products. In recent years, lactic acid bacteria (LAB) bacteriocins have been widely acknowledged as the potential natural antibacterial substance in food biopreservation due to their excellent antibacterial effects. However, few LAB bacteriocins with antibacterial and antibiofilm activity against S. aureus have been reported in dairy products. In the present study, a novel bacteriocin LSX01 of Lactobacillus paracasei LS-6 isolated from a traditional fermented yogurt produced in Yunnan, China, was purified and characterized extensively. The LSX01 possessed a molecular weight of 967.49 Da and an AA sequence of LDQAGISYT. The minimum inhibitory concentration of LSX01 against S. aureus_45 was 16.90 µg/mL, which was close to or lower than the previously reported bacteriocins. The LSX01 exhibited an extensive antimicrobial spectrum against both gram-positive and gram-negative bacteria. Moreover, LSX01 exhibited excellent tolerance to heat and acid-base treatments, and sensitivity to the proteolytic enzymes, such as pepsin and proteinase K. Furthermore, the treatment of S. aureus_45 planktonic cells with LSX01 significantly reduced their metabolic activity and disrupted the cell membrane integrity. Scan electron microscopy results demonstrated that LSX01 induced cytoplasmic content leakage and cell deformation. Additionally, biofilm formation of S. aureus_45 was also significantly inhibited by LSX01. Overall, the results suggested that the novel LAB bacteriocin LSX01 possessed antibacterial activity and antibiofilm activity against S. aureus and, hence, could have potential for improving safety of dairy products.


Assuntos
Bacteriocinas , Lacticaseibacillus paracasei , Animais , Antibacterianos/metabolismo , Bacteriocinas/farmacologia , Biofilmes , China , Bactérias Gram-Negativas , Lactobacillus/metabolismo , Lacticaseibacillus paracasei/metabolismo , Staphylococcus aureus , Iogurte
2.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466808

RESUMO

This study investigates the modification of commercial cellulose acetate microfiltration membranes by supercritical solvent impregnation with thymol to provide them with antibacterial properties. The impregnation process was conducted in a batch mode, and the effect of pressure and processing time on thymol loading was followed. The impact of the modification on the membrane's microstructure was analyzed using scanning electron and ion-beam microscopy, and membranes' functionality was tested in a cross-flow filtration system. The antibiofilm properties of the obtained materials were studied against Staphyloccocus aureus and Pseudomonas aeruginosa, while membranes' blocking in contact with bacteria was examined for S. aureus and Escherichia coli. The results revealed a fast impregnation process with high thymol loadings achievable after just 0.5 h at 15 MPa and 20 MPa. The presence of 20% of thymol provided strong antibiofilm properties against the tested strains without affecting the membrane's functionality. The study showed that these strong antibacterial properties could be implemented to the commercial membranes' defined polymeric structure in a short and environmentally friendly process.


Assuntos
Antibacterianos/farmacologia , Celulose/análogos & derivados , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Solventes/química , Staphylococcus aureus/efeitos dos fármacos , Timol/farmacologia , Antibacterianos/química , Celulose/química , Membranas/química , Membranas/efeitos dos fármacos , Timol/química
3.
Fitoterapia ; 177: 106114, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971331

RESUMO

Morus alba L. is a plant with a long history of dietary and medicinal uses. We hypothesized that M. alba possesses a significant biological potential. In that sense, we aimed to generate the chemical, antimicrobial, toxicological, and molecular profile of M. alba leaf and fruit extracts. Our results showed that extracts were rich in vitamin C, phenols, and flavonoids, with quercetin and pterostilbene concentrated in the leaf, while fisetin, hesperidin, resveratrol, and luteolin were detected in fruit. Extracts exhibited antimicrobial activity against all tested bacteria, including multidrug-resistant strains. The widest inhibition zones were in Staphylococcus aureus ATCC 33591. The values of the minimum inhibitory concentration ranged from 15.62 µg/ml in Enterococcus faecalis to 500 µg/ml in several bacteria. Minimum bactericidal concentration ranged from 31.25 µg/ml to 1000 µg/ml. Extracts impacted the biofilm formation in a concentration-dependent and species-specific manner. A significant difference in the frequency of nucleoplasmic bridges between the methanolic extract of fruit (0.5 µg/ml, 1 µg/ml, 2 µg/ml), as well as for the frequency of micronuclei between ethanolic extract of leaf (2 µg/ml) and the control group was observed. Molecular docking suggested that hesperidin possesses the highest binding affinity for multidrug efflux transporter AcrB and acyl-PBP2a from MRSA, as well as for the SARS-CoV-2 Mpro. This study, by complementing previous research in this field, gives new insights that could be of great value in obtaining a more comprehensive picture of the Morus alba L. bioactive potential, chemical composition, antimicrobial and toxicological features, as well as molecular profile.

4.
Microorganisms ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543488

RESUMO

Grape pomace is the main by-product of vine-winery chains. It requires adequate treatment and disposal but is also an economically underused source of bioactive plant secondary metabolites. This study aimed to investigate the antibacterial effects of polyphenolic extracts from Aglianico (Vitis vinifera L.) grape pomace. In particular, hydroethanolic extracts obtained via an ultrasonic-assisted extraction technique were selected for antimicrobial tests. The extracts were screened for their antibacterial effects against foodborne pathogens that were both Gram-positive, in the case of Staphylococcus aureus and Bacillus cereus, and Gram-negative, in the case of Escherichia coli and Salmonella enterica subsp. enterica serovar Typhimurium, showing variable bacteriostatic and bactericidal effects. In addition, our results demonstrated that the tested grape pomace extracts can reduce the inhibitory concentration of standard antibiotics. Interestingly, selected extracts inhibited biofilm development by S. aureus and B. cereus. Overall, these new insights into the antibacterial properties of grape pomace extracts may represent a relevant step in the design of novel therapeutic tools to tackle foodborne diseases, and in the management of resistant biofilm-related infections.

5.
Plants (Basel) ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140461

RESUMO

Sanguisorba minor is a medicinal vegetable used in seasoning desserts, juices, and beverages. An evaluation of the total flavonoid, phenolic, tannin and anthocyanin contents indicated that these classes of compounds are distributed variably in the different fractions. In summary, the HPLC-DAD analyses enabled the identification and quantification of thirteen phenolic compounds in an ethyl acetate extract (EAE), nine in a dichloromethane extract (DCME), seven in an aqueous extract (AQE) and four in a butanol extract (BE). Rutin was the most abundant phenolic compound in the BE (278.4 ± 1.20 µg/g) and AQE (32.87 ± 0.23 µg/g) fractions, while apigenin was the most abundant in the DCME (84.75 ± 0.60 µg/g) and EAE (156.8 ± 0.95 µg/g) fractions. The presence of phenolic compounds in the fractions conferred good antioxidant capacity, especially the EAE and DCME fractions, which both exhibited higher antioxidant effects than BHA and α-tocopherol in DPPH• and CUPRAC assays. Additionally, in the ABTS•+ assay, EAE (IC50 = 9.27 ± 0.33 µg/mL) was more active than α-tocopherol (IC50 = 35.50 ± 0.55 µg/mL), and BHA (IC50 = 12.70 ± 0.10 µg/mL). At 200 µg/mL, the fractions inhibited acetylcholinesterase and butyrylcholinesterase as well as α-amylase and α-glucosidase, indicating that they can slow neurodegeneration and hyperglycemia. Minimal inhibitory concentration (MIC) values ranged from 0.312 mg/mL to 1.25 mg/mL, and fractions showed good biofilm inhibition against Staphylococcus aureus and Escherichia coli. The extracts exhibited good violacein inhibition in Chromobacterium violaceum CV12472 and Chromobacterium violaceum CV026, despite the supply of external acyl-homoserine lactone to CV026. The antioxidant, quorum-sensing, antibiofilm and enzyme inhibition attributes indicate the potential for the application of S. minor as a food preservative.

6.
J Colloid Interface Sci ; 607(Pt 2): 1849-1863, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34688976

RESUMO

Infected wounds show delayed and incomplete healing processes and even render patients at a high risk of death due to the formed bacterial biofilms in the wound site, which protect bacteria against antimicrobial treatments and immune response. Nitric oxide based therapy is considered a promising strategy for eliminating biofilms and enhancing wound healing, which encounters a significant challenge of controlling the NO release behavior at the wound site. Herein, a kind of phenylalanine based poly(ester urea)s with high thermal stability are synthesized and fabricated to electrospun films as NO loading vehicle for infected wound treatment. The resultant films can continuously and stably release nitric oxide for 360 h with a total concentration of 1.15 µmol L-1, which presents obvious advantages in killing the bacteria and removing biofilms. The results exhibit the films have no cytotoxicity and may accelerate the wound repair without causing inflammation, hemolysis, or cytotoxic reactions as well as stimulate the proliferation of fibroblasts and increase the synthesis of collagen. Therefore, the films may be a suitable NO releasing dressing for removing biofilms and repairing infected wounds.


Assuntos
Ésteres , Óxido Nítrico , Antibacterianos , Biofilmes , Humanos , Fenilalanina , Ureia , Cicatrização
7.
Front Microbiol ; 12: 779315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069481

RESUMO

Few bacteriocins with antibacterial activity against Shigella flexneri have been reported. Here, a novel bacteriocin (LFX01) produced by Lactiplantibacillus plantarum strain LF-8 from the intestine of tilapia was purified and extensively characterized. LFX01 possesses a molecular weight of 1049.56 Da and an amino acid sequence of I-T-G-G-P-A-V-V-H-Q-A. LFX01 significantly inhibited S. flexneri strain 14 (S. flexneri_14) growth. Moreover, it exhibited excellent stability under heat and acid-base stress, and presented sensitivity to a variety of proteases, such as proteinase K, pepsin, and trypsin. The minimum inhibitory concentration (MIC) of LFX01 against S. flexneri_14 was 12.65 µg/mL, which was smaller than that of most of the previously found bacteriocins. Furthermore, LFX01 significantly inhibited (p < 0.05) S. flexneri_14 cells and decreased their cell viability. In addition, LFX01 could significantly (p < 0.05) inhibit biofilm formation of S. flexneri_14. Scanning electron microscopy analysis presented that the cell membrane permeability of S. flexneri_14 was demolished by LFX01, leading to cytoplasmic contents leakage and cell rupture death. In summary, a novel bacteriocin of lactic acid bacteria (LAB) was found, which could effectively control S. flexneri in both planktonic and biofilm states.

8.
Biology (Basel) ; 10(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073519

RESUMO

Calcium silicate-based cements have reached excellent levels of performance in endodontics, providing predictable and successful results. To better assess the properties of these bioactive materials, the present study aimed to compare the biocompatibility and antibiofilm properties of ProRoot MTA and Biodentine. Human osteogenic sarcoma (Saos-2) cells were cultured on ProRoot MTA and Biodentine samples or in the presence of both cement extracts. Cell viability assay, measurement of reactive oxygen species (ROS), immunofluorescence analysis, as well as morphological evaluations were conducted. Moreover, Streptococcus mutans was used to assess the biofilm forming ability on ProRoot MTA and Biodentine disks. Finally, both cements were applied in vivo to treat immature permanent teeth affected by reversible pulpitis. Results: Cell viability assay demonstrated that Saos-2 cells had a dose- and time-dependent cytotoxicity to both analyzed cements, although cells exposed to ProRoot MTA showed a better cell vitality than those exposed to Biodentine (p < 0.001). Both cements demonstrated ROS production while this was greater in the case of Biodentine than ProRoot MTA (p < 0.001). Immunofluorescence images of the cytoskeleton and focal adhesions showed no differences in Saos-2 cells grown in the presence of ProRoot MTA eluate; whereas in the Biodentine groups, cells showed a morphology and focal adhesions more similar to that of the control sample, as the eluate concentration decreased. Morphological analysis revealed that Saos-2 cells were more flattened and exhibited better spreading when attached to ProRoot MTA disks than to Biodentine ones. The antibiofilm properties showed a time-dependent powerful inhibition of S. mutans superficial colonization and an antibiofilm effect of both cements. Clinically, complete root formation of the treated elements was achieved using the two studied cements, showing stable results over time. ProRoot MTA and Biodentine was demonstrated to be biocompatible and to possess antibiofilm properties. Their clinical application in vital pulp therapy provided successful outcomes after 2 years of follow-up.

9.
J Biomed Mater Res B Appl Biomater ; 109(6): 911-920, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33151037

RESUMO

Chronic wounds are greatly health threatening owing to the increasing morbidity, and bacterial biofilm is a major cause of chronic wounds. The critical for bacterial biofilm eradication is overcome the barrier of extracellular polymeric substances (EPS) produced by the bacteria, and promote the diffusion of drugs within the biofilm. In this article, composite microneedles (MNs) of chitosan and zinc nitrate (CS-Zn[II] MNs) were investigated to eradicate bacterial biofilm. The CS-Zn(II) MNs combined the structure characteristic of MNs with the antibacterial properties of CS and Zn2+ . The MNs can pierce the EPS due to the needle-like structure, and can transport directly the CS and Zn2+ into the bacterial biofilm. The needle-like structure of MNs also increased the contact area between drug carrier and bacterial biofilm nearly 14-23% comparing with membrane without needle-like structure, and facilitated the diffusion of drugs. What is more, the synergistic effect of CS and Zn2+ make the CS-Zn(II) MNs obtain excellent antibiofilm properties. Counting the colony forming units and bacterial live/dead staining tests confirmed the fascinating antibacterial abilities (up to 100% inhibition) and biofilm eradication properties, respectively, of the CS-Zn(II) MNs. The inhibition zone test shown that the antibiofilm effect of MNs was superior to membrane and the antibiofilm effect of MNs was become increasingly obvious along with the increase of the treatment time. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays proved that the CS-Zn(II) MNs possess brilliant cytocompatibility. These results indicate that the CS-Zn(II) MNs are promising method for bacterial biofilm eradication.


Assuntos
Biofilmes/crescimento & desenvolvimento , Quitosana/química , Escherichia coli/fisiologia , Agulhas , Nitratos/química , Staphylococcus aureus/fisiologia , Compostos de Zinco/química , Animais , Camundongos
10.
Microorganisms ; 8(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036373

RESUMO

At present, there is an urgent need in medicine and industry to develop new approaches to eliminate bacterial biofilms. Considering the low efficiency of classical approaches to biofilm eradication and the growing problem of antibiotic resistance, the introduction of nanomaterials may be a promising solution. Outstanding antimicrobial properties have been demonstrated by nanoparticles (NPs) of metal oxides and their nanocomposites. The review presents a comparative analysis of antibiofilm properties of various metal oxide NPs (primarily, CuO, Fe3O4, TiO2, ZnO, MgO, and Al2O3 NPs) and nanocomposites, as well as mechanisms of their effect on plankton bacteria cells and biofilms. The potential mutagenicity of metal oxide NPs and safety problems of their wide application are also discussed.

11.
Biomedicines ; 8(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932759

RESUMO

The increasing drug resistance of pathogenic microorganisms raises concern worldwide and necessitates the search for new natural compounds with antibacterial properties. Marine algae are considered a natural and attractive biotechnological source of novel antibiotics. The high antimicrobial activity of their polyphenolic compounds is a promising basis for designing innovative pharmaceuticals. They can become both a serious alternative to traditional antimicrobial agents and an effective supplement to antibiotic therapy. The present review summarizes the results of numerous studies on polyphenols from algae and the range of biological activities that determine their biomedical significance. The main focus is put on a group of the polyphenolic metabolites referred to as phlorotannins and, particularly, on their structural diversity and mechanisms of antimicrobial effects. Brown algae are an almost inexhaustible resource with a high biotechnological potential for obtaining these polyfunctional compounds. An opinion is expressed that the effectiveness of the antibacterial activity of phlorotannins depends on the methods of their extraction aimed at preserving the phenolic structure. The use of modern analytical tools opens up a broad range of opportunities for studying the metabolic pathways of phlorotannins and identifying their structural and functional relationships. The high antimicrobial activity of phlorotannins against both Gram-positive and Gram-negative bacteria provides a promising framework for creating novel drugs to be used in the treatment and prevention of infectious diseases.

12.
Arch Oral Biol ; 67: 46-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27023401

RESUMO

OBJECTIVE: The purpose of this study was evaluate, for the first time, the impact of incorporation of nanostructured silver vanadate (ß-AgVO3) in antibiofilm and mechanical properties of dental acrylic resins (poly(methyl methacrylate), PMMA). DESIGN: The ß-AgVO3 was synthesized and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and microanalysis (SEM/EDS). Resins specimens were prepared with 0-10% wt.% ß-AgVO3 and characterized by SEM, XRD and optical microscopy. The antibiofim activity of the samples against Candida albicans and Streptococcus mutans was investigated by XTT reduction test, colony-forming units (CFUs), and confocal laser scanning microscopy (CLSM). The flexural strength, hardness, and surface roughness of the samples containing ß-AgVO3 were compared with the pure PMMA matrix. RESULTS: The incorporation of 10% ß-AgVO3 significantly reduced the metabolic activity of C. albicans and S. mutans (p<0.05). There was a reduction in microbial load (CFU/mL) of microorganisms for the different concentrations used (p<0.05), which was confirmed by confocal microscopy. The addition of ß-AgVO3 did not change the mechanical properties of hardness and surface roughness of the resins (p>0.05). However, flexural strength decreased with the addition of amounts greater than 1% (p<0.05). CONCLUSIONS: ß-AgVO3 additions in dental acrylic resin may have an impact on inhibition of biofilm of main microorganisms associated with dental prostheses. However, the viability of clinical use should be evaluated in function of changed promoted in some mechanical properties.


Assuntos
Resinas Acrílicas/farmacologia , Biofilmes/efeitos dos fármacos , Nanocompostos/química , Prata/farmacologia , Vanadatos/farmacologia , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Resinas Compostas/química , Materiais Dentários/química , Dureza , Teste de Materiais , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Prata/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Vanadatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA