Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.869
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 221: 18-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040204

RESUMO

Drug-induced liver injury (DILI) is a significant issue in drug development and clinical treatment due to its potential to cause liver dysfunction or damage, which, in severe cases, can lead to liver failure or even fatality. DILI has numerous pathogenic factors, many of which remain incompletely understood. Consequently, it is imperative to devise methodologies and tools for anticipatory assessment of DILI risk in the initial phases of drug development. In this study, we present DMFPGA, a novel deep learning predictive model designed to predict DILI. To provide a comprehensive description of molecular properties, we employ a multi-head graph attention mechanism to extract features from the molecular graphs, representing characteristics at the level of compound nodes. Additionally, we combine multiple fingerprints of molecules to capture features at the molecular level of compounds. The fusion of molecular fingerprints and graph features can more fully express the properties of compounds. Subsequently, we employ a fully connected neural network to classify compounds as either DILI-positive or DILI-negative. To rigorously evaluate DMFPGA's performance, we conduct a 5-fold cross-validation experiment. The obtained results demonstrate the superiority of our method over four existing state-of-the-art computational approaches, exhibiting an average AUC of 0.935 and an average ACC of 0.934. We believe that DMFPGA is helpful for early-stage DILI prediction and assessment in drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Modelos Químicos , Humanos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Desenvolvimento de Medicamentos , Aprendizado Profundo
2.
Cell Mol Life Sci ; 81(1): 34, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214802

RESUMO

This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.


Assuntos
Gastroenteropatias , Hepatopatias Alcoólicas , Doenças Mitocondriais , Humanos , Fígado/metabolismo , Etanol/farmacologia , Apoptose , Estresse Oxidativo , Inflamação/patologia , Gastroenteropatias/metabolismo , Hepatócitos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Mitocondriais/metabolismo , Doenças Mitocondriais/metabolismo
3.
Curr Issues Mol Biol ; 46(2): 1219-1236, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392196

RESUMO

Drug-induced liver injury (DILI) is a liver disease that remains difficult to predict and diagnose, and the underlying mechanisms are yet to be fully clarified. The gut-liver axis refers to the reciprocal interactions between the gut and the liver, and its homeostasis plays a prominent role in maintaining liver health. It has been recently reported that patients and animals with DILI have a disrupted gut-liver axis, involving altered gut microbiota composition, increased intestinal permeability and lipopolysaccharide translocation, decreased short-chain fatty acids production, and impaired bile acid metabolism homeostasis. The present review will summarize the evidence from both clinical and preclinical studies about the role of the gut-liver axis in the pathogenesis of DILI. Moreover, we will focus attention on the potential therapeutic strategies for DILI based on improving gut-liver axis function, including herbs and phytochemicals, probiotics, fecal microbial transplantation, postbiotics, bile acids, and Farnesoid X receptor agonists.

4.
Curr Issues Mol Biol ; 46(4): 3022-3038, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38666919

RESUMO

A hepatocyte cell line was used to determine the hepatotoxicity of sedatives and opioids, as the hepatotoxicity of these drugs has not yet been well characterized. This might pose a threat, especially to critically ill patients, as they often receive high cumulative doses for daily analgosedation and often already have impaired liver function due to an underlying disease or complications during treatment. A well-established biosensor based on HepG2/C3A cells was used for the determination of the hepatotoxicity of commonly used sedatives and opioids in the intensive care setting (midazolam, propofol, s-ketamin, thiopental, fentanyl, remifentanil, and sufentanil). The incubation time was 2 × 3 days with clinically relevant (Cmax) and higher concentrations (C5× and C10×) of each drug in cell culture medium or human plasma. Afterward, we measured the cell count, vitality, lactate dehydrogenase (LDH), mitochondrial dehydrogenase activity, cytochrome P 450 1A2 (CYP1A2), and albumin synthesis. All tested substances reduced the viability of hepatocyte cells, but sufentanil and remifentanil showed more pronounced effects. The cell count was diminished by sufentanil in both the medium and plasma and by remifentanil only in plasma. Sufentanil and remifentanil also led to higher values of LDH in the cell culture supernatant. A reduction of mitochondrial dehydrogenase activity was seen with the use of midazolam and s-ketamine. Microalbumin synthesis was reduced in plasma after its incubation with higher concentrations of sufentanil and remifentanil. Remifentanil and s-ketamine reduced CYP1A2 activity, while propofol and thiopental increased it. Our findings suggest that none of the tested sedatives and opioids have pronounced hepatotoxicity. Sufentanil, remifentanil, and s-ketamine showed moderate hepatotoxic effects in vitro. These drugs should be given with caution to patients vulnerable to hepatotoxic drugs, e.g., patients with pre-existing liver disease or liver impairment as part of their underlying disease (e.g., hypoxic hepatitis or cholestatic liver dysfunction in sepsis). Further studies are indicated for this topic, which may use more complex cell culture models and global pharmacovigilance reports, addressing the limitation of the used cell model: HepG2/C3A cells have a lower metabolic capacity due to their low levels of CYP enzymes compared to primary hepatocytes. However, while the test model is suitable for parental substances, it is not for toxicity testing of metabolites.

5.
Cancer Sci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475962

RESUMO

The relationship between drug-induced liver injury and liver metastasis of colorectal cancer and the underlying mechanisms are not well understood. In this study, we used carbon tetrachloride to construct a classic mouse liver injury model and injected CT26 colorectal cancer cells into the mouse spleen to simulate the natural route of colorectal cancer liver metastasis. Liver injury significantly increased the number of colorectal cancer liver metastases. Transcriptome sequencing and data-independent acquisition protein quantification identified proteins that were significantly differentially expressed in injured livers, and orosomucoid (ORM) 2 was identified as a target protein for tumor liver metastasis. In vitro experiments showed that exogenous ORM2 protein increased the expression of EMT markers such as Twist, Zeb1, Vim, Snail1 and Snail2 and chemokine ligands to promote CT26 cell migration. In addition, liver-specific overexpression of the ORM2 protein in the mouse model significantly promoted tumor cell liver metastasis without inducing liver injury. Our results indicate that drug-induced liver injury can promote colorectal cancer liver metastasis and that ORM2 can promote cell migration by inducing EMT in tumor cells.

6.
Annu Rev Pharmacol Toxicol ; 61: 247-268, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32976738

RESUMO

Drug-induced liver injury (DILI) is a leading cause of attrition during the early and late stages of drug development and after a drug is marketed. DILI is generally classified as either intrinsic or idiosyncratic. Intrinsic DILI is dose dependent and predictable (e.g., acetaminophen toxicity). However, predicting the occurrence of idiosyncratic DILI, which has a very low incidence and is associated with severe liver damage, is difficult because of its complex nature and the poor understanding of its mechanism. Considering drug metabolism and pharmacokinetics, we established experimental animal models of DILI for 14 clinical drugs that cause idiosyncratic DILI in humans, which is characterized by the formation of reactive metabolites and the involvement of both innate and adaptive immunity. On the basis of the biomarker data obtained from the animal models, we developed a cell-based assay system that predicts the potential risks of drugs for inducing DILI. These findings increase our understanding of the mechanisms of DILI and may help predict and prevent idiosyncratic DILI due to certain drugs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatopatias , Animais , Biomarcadores , Humanos , Fígado , Modelos Animais
7.
J Hepatol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703829

RESUMO

BACKGROUND & AIMS: Idiosyncratic drug-induced liver injury (DILI) is a complex and unpredictable event caused by drugs, and herbal or dietary supplements. Early identification of human hepatotoxicity at preclinical stages remains a major challenge, in which the selection of validated in vitro systems and test drugs has a significant impact. In this systematic review, we analyzed the compounds used in hepatotoxicity assays and established a list of DILI-positive and -negative control drugs for validation of in vitro models of DILI, supported by literature and clinical evidence and endorsed by an expert committee from the COST Action ProEuroDILI Network (CA17112). METHODS: Following 2020 PRISMA guidelines, original research articles focusing on DILI which used in vitro human models and performed at least one hepatotoxicity assay with positive and negative control compounds, were included. Bias of the studies was assessed by a modified 'Toxicological Data Reliability Assessment Tool'. RESULTS: A total of 51 studies (out of 2,936) met the inclusion criteria, with 30 categorized as reliable without restrictions. Although there was a broad consensus on positive compounds, the selection of negative compounds lacked clarity. 2D monoculture, short exposure times and cytotoxicity endpoints were the most tested, although there was no consensus on drug concentrations. CONCLUSIONS: Extensive analysis highlighted the lack of agreement on control compounds for in vitro DILI assessment. Following comprehensive in vitro and clinical data analysis together with input from the expert committee, an evidence-based consensus-driven list of 10 positive and negative control drugs for validation of in vitro models of DILI is proposed. IMPACT AND IMPLICATIONS: Prediction of human toxicity early in the drug development process remains a major challenge, necessitating the development of more physiologically relevant liver models and careful selection of drug-induced liver injury (DILI)-positive and -negative control drugs to better predict the risk of DILI associated with new drug candidates. Thus, this systematic study has crucial implications for standardizing the validation of new in vitro models of DILI. By establishing a consensus-driven list of positive and negative control drugs, the study provides a scientifically justified framework for enhancing the consistency of preclinical testing, thereby addressing a significant challenge in early hepatotoxicity identification. Practically, these findings can guide researchers in evaluating safety profiles of new drugs, refining in vitro models, and informing regulatory agencies on potential improvements to regulatory guidelines, ensuring a more systematic and efficient approach to drug safety assessment.

8.
Clin Gastroenterol Hepatol ; 22(7): 1444-1452.e4, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38401693

RESUMO

BACKGROUND & AIMS: Guidelines recommend hospitalization for severe immune checkpoint inhibitor (ICI) hepatitis. We compared patient outcomes in the inpatient versus outpatient settings. METHODS: We conducted a multicenter, retrospective cohort study of 294 ICI-treated patients who developed grade 3-4 ICI hepatitis. The primary outcome was time to alanine aminotransferase (ALT) normalization (≤40); secondary outcomes included time to ALT ≤100 U/L and time to death. To account for confounding by indication, inverse probability of treatment weighting was applied to perform Cox regression. A sensitivity analysis was performed excluding patients with grade 4 hepatitis. RESULTS: One hundred and sixty-six patients (56.5%) were hospitalized for a median of 6 (interquartile range, 3-11) days. On inverse probability of treatment weighting Cox regression, hospitalization was not associated with time to ALT normalization (hazard ratio [HR], 1.11; 95% confidence interval [CI], 0.86-1.43; P = .436) or time to ALT ≤100 U/L (HR, 1.11; 95% CI, 0.86-1.43; P = .420). In the sensitivity analysis limited to patients with grade 3 hepatitis, hospitalization was also not associated with time to ALT normalization (HR, 1.11; 95% CI, 0.83-1.50; P = .474) or time to ALT ≤100 U/L (HR, 1.19; 95% CI, 0.90-1.58; P = .225). In a subgroup analysis of 152 patients with melanoma, hospitalization was not associated with reduced risk of all-cause death (HR, 0.93; 95% CI, 0.53-1.64; P = .798). Notably, despite their Common Terminology Criteria for Adverse Events classification of high-grade hepatitis, 94% of patients had "mild" liver injury based on International Drug-Induced Liver Injury Criteria. CONCLUSIONS: Hospitalization of patients with high-grade ICI hepatitis was not associated with faster hepatitis resolution and did not affect mortality. Routine hospitalization may not be necessary in all patients with high-grade ICI hepatitis and Common Terminology Criteria for Adverse Events criteria may overestimate severity of liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hospitalização , Inibidores de Checkpoint Imunológico , Humanos , Masculino , Feminino , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Pessoa de Meia-Idade , Hospitalização/estatística & dados numéricos , Idoso , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Alanina Transaminase/sangue
9.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35656709

RESUMO

In the previous study, we developed the generalized drug-induced liver injury (DILI) prediction model-ResNet18DNN to predict DILI based on multi-source combined DILI dataset and achieved better performance than that of previously published described DILI prediction models. Recently, we were honored to receive the invitation from the editor to response the Letter to Editor by Liu Zhichao, et al. We were glad that our research has attracted the attention of Liu's team and they has put forward their opinions on our research. In this response to Letter to the Editor, we will respond to these comments.


Assuntos
Inteligência Artificial , Doença Hepática Induzida por Substâncias e Drogas , Humanos
10.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35848999

RESUMO

Drug-induced liver injury (DILI) is one of the most significant concerns in medical practice but yet it still cannot be fully recapitulated with existing in vivo, in vitro and in silico approaches. To address this challenge, Chen et al. [ 1] developed a deep learning-based DILI prediction model based on chemical structure information alone. The reported model yielded an outstanding prediction performance (i.e. 0.958, 0.976, 0.935, 0.947, 0.926 and 0.913 for AUC, accuracy, recall, precision, F1-score and specificity, respectively, on a test set), far outperforming all publicly available and similar in silico DILI models. This extraordinary model performance is counter-intuitive to what we know about the underlying biology of DILI and the principles and hypothesis behind this type of in silico approach. In this Letter to the Editor, we raise awareness of several issues concerning data curation, model validation and comparison practices, and data and model reproducibility.


Assuntos
Inteligência Artificial , Doença Hepática Induzida por Substâncias e Drogas , Simulação por Computador , Humanos , Modelos Biológicos , Reprodutibilidade dos Testes
11.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34882224

RESUMO

Drug-induced liver injury (DILI) has always been the focus of clinicians and drug researchers. How to improve the performance of the DILI prediction model to accurately predict liver injury was an urgent problem for researchers in the field of medical research. In order to solve this scientific problem, this research collected a comprehensive and accurate dataset of DILI with high recognition and high quality based on clinically confirmed DILI compound datasets, including 1446 chemical compounds. Then, the residual neural network with 18-layer by using more 5-layer blocks (ResNet18) with deep neural network (ResNet18DNN) model was proposed to predict DILI, which was an improved model for DILI prediction through vectorization of compound structure image. In predicting DILI, the ResNet18DNN learned greatly and outperformed the existing state-of-the-art DILI predictors. The results of DILI prediction model based on ResNet18DNN showed that the AUC (area under the curve), accuracy, recall, precision, F1-score and specificity of the training set were 0.973, 0.992, 0.995, 0.994, 0.995 and 0.975; those of test set were, respectively, 0.958, 0.976, 0.935, 0.947, 0.926 and 0.913, which were better than the performance of previously published described DILI prediction models. This method adopted ResNet18 embedding method to vectorize molecular structure images and the evaluation indicators of Resnet18DNN were obtained after 10 000 iterations. This prediction approach will greatly improve the performance of the predictive model of DILI and provide an accurate and precise early warning method for DILI in drug development and clinical medication.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Modelos Biológicos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Estrutura Molecular , Redes Neurais de Computação
12.
Histopathology ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773813

RESUMO

Liver biopsies have consistently contributed to our understanding of the pathogenesis and aetiologies of acute liver disease. As other diagnostic modalities have been developed and refined, the role of biopsy in the management of patients with acute liver failure (ALF), acute-on-chronic liver failure (ACLF) and acute hepatitis, including acute liver injury (ALI), has changed. Liver biopsy remains particularly valuable when first-line diagnostic algorithms fail to determine aetiology. Despite not being identified as a mandatory diagnostic tool in recent clinical guidelines for the management of ALF or ACLF, many centres continue to undertake biopsies given the relative safety of transjugular biopsy in this setting. Several studies have demonstrated that liver biopsy can provide prognostic information, particularly in the context of so-called indeterminate hepatitis, and is extremely useful in excluding conditions such as metastatic tumours that would preclude transplantation. In addition, its widespread use of percutaneous biopsies in cases of less severe acute liver injury, for example in the establishment of a diagnosis of acute presentation of autoimmune hepatitis or confirmation of a probable or definite drug-induced liver injury (DILI), has meant that many centres have seen a shift in the ratio of specimens they are receiving from patients with chronic to acute liver disease. Histopathologists therefore need to be equipped to deal with these challenging specimens. This overview provides an insight into the contemporary role of biopsies (as well as explant and autopsy material) in diagnosing acute liver disease. It outlines up-to-date clinical definitions of liver injury and considers recent recommendations for the diagnosis of AIH and drug-induced, autoimmune-like hepatitis (DI-AIH).

13.
Respir Res ; 25(1): 254, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907347

RESUMO

Tuberculosis (TB) remains the second leading cause of death from a single infectious agent and long-term medication could lead to antituberculosis drug-induced liver injury (ATB-DILI). We established a prospective longitudinal cohort of ATB-DILI with multiple timepoint blood sampling and used untargeted metabolomics to analyze the metabolic profiles of 107 plasma samples from healthy controls and newly diagnosed TB patients who either developed ATB-DILI within 2 months of anti-TB treatment (ATB-DILI subjects) or completed their treatment without any adverse drug reaction (ATB-Ctrl subjects). The untargeted metabolome revealed that 77 metabolites (of 895 total) were significantly changed with ATB-DILI progression. Among them, levels of multiple fatty acids and bile acids significantly increased over time in ATB-DILI subjects. Meanwhile, metabolites of the same class were highly correlated with each other and pathway analysis indicated both fatty acids metabolism and bile acids metabolism were up-regulated with ATB-DILI progression. The targeted metabolome further validated that 5 fatty acids had prediction capability at the early stage of the disease and 6 bile acids had a better diagnostic performance when ATB-DILI occurred. These findings provide evidence indicating that fatty acids metabolism and bile acids metabolism play a vital role during ATB-DILI progression. Our report adds a dynamic perspective better to understand the pathological process of ATB-DILI in clinical settings.


Assuntos
Antituberculosos , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas , Metabolômica , Humanos , Antituberculosos/efeitos adversos , Masculino , Metabolômica/métodos , Feminino , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estudos Longitudinais , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Estudos Prospectivos , Valor Preditivo dos Testes , Tuberculose/tratamento farmacológico , Tuberculose/sangue , Tuberculose/metabolismo , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo
14.
Allergy ; 79(1): 200-214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37515456

RESUMO

BACKGROUND: Exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBU) and naproxen (NAP) is associated with idiosyncratic drug-induced liver injury (DILI). Carboxylate bioactivation into reactive metabolites (e.g., acyl glucuronides, AG) and resulting T-cell activation is hypothesized as causal for this adverse event. However, conclusive evidence supporting this is lacking. METHODS: In this work, we identify CD4+ and CD8+ T-cell hepatic infiltration in a biopsy from an IBU DILI patient. Lymphocyte transformation test and IFN-γ ELIspot, conducted on peripheral blood mononuclear cells (PBMCs) of patients with NAP-DILI, were used to explore drug-specific T-cell activation. T-cell clones (TCC) were generated and tested for drug specificity, phenotype/function, and pathways of T-cell activation. Cells were exposed to NAP, its oxidative metabolite 6-O-desmethyl NAP (DM-NAP), its AG or synthesized NAP-AG human-serum albumin adducts (NAP-AG adduct). RESULTS: CD4+ and CD8+ T-cells from patients expressing a range of different Vß receptors were stimulated to proliferate and secrete IFN-γ and IL-22 when exposed to DM-NAP, but not NAP, NAP-AG or the NAP-AG adduct. Activation of the CD4+ TCC was HLA-DQ-restricted and dependent on antigen presenting cells (APC); most TCC were activated with DM-NAP-pulsed APC, while fixation of APC blocked the T-cell response. Cross-reactivity was not observed with structurally-related drugs. CONCLUSION: Our results confirm hepatic T-cell infiltrations in NSAID-induced DILI, and show a T-cell memory response toward DM-NAP indicating an immune-mediated basis for the adverse event. Whilst bioactivation at the carboxylate group is widely hypothesized to be pathogenic for NSAID associated DILI, we found no evidence of this with NAP.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Naproxeno , Humanos , Naproxeno/efeitos adversos , Naproxeno/metabolismo , Glucuronídeos/metabolismo , Linfócitos T CD8-Positivos , Leucócitos Mononucleares/metabolismo , Anti-Inflamatórios não Esteroides , Ibuprofeno , Estresse Oxidativo , Ativação Linfocitária
15.
FASEB J ; 37(12): e23286, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37950623

RESUMO

Drug-induced liver injury (DILI) is frequently induced by high dose of acetaminophen (APAP) and is concomitant with disturbances of gut flora. Akkermansia muciniphila is beneficial for the repair of liver injury. Lycium barbarum polysaccharide, yam polysaccharide, and chrysanthemum polysaccharide all have anti-inflammatory and antioxidation effects. The objective of this study is to investigate the potential of lycium barbarum polysaccharide, yam polysaccharide, and chrysanthemum polysaccharide (LYC) in improving DILI by increasing the abundance of A. muciniphila. Initially, screening for the optimal concentrations of wolfberry, yam, and chrysanthemum (WYC) or LYC to promote A. muciniphila proliferation in vitro and validated in antibiotic (ATB)-treated KM mice. Subsequently, APAP-induced DILI model in BALB/c mice were constructed to examine the treatment effects of LYC. Our findings indicate that the optimal concentration ratio of WYC was 2:3:2, and LYC was 1:1:1. WYC increased A. muciniphila proliferation in vitro and in ATB-treated mice under this ratio. Meanwhile, LYC increased A. muciniphila abundance in vitro and the combination LYC with A. muciniphila promoted the proliferation of A. muciniphila in ATB-treated mice. The overdose of APAP resulted in the impairment of the intestinal barrier function and subsequent leakage of lipopolysaccharide (LPS). Moreover, LYC increased A. muciniphila abundance, reduced intestinal inflammation and permeability, and upregulated the expression of the tight junction protein zonula occludens protein 1 (ZO-1) and occludin contents in the gut. Lastly, LYC inhibited LPS leakage and upregulated hepatic YAP1 expression, ultimately leading to the repair of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Chrysanthemum , Dioscorea , Lycium , Camundongos , Animais , Lipopolissacarídeos , Acetaminofen , Verrucomicrobia , Polissacarídeos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
16.
Liver Int ; 44(3): 760-775, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217387

RESUMO

BACKGROUND AND AIMS: Drug-induced liver injury (DILI) is one of the most frequent reasons for failure of drugs in clinical trials or market withdrawal. Early assessment of DILI risk remains a major challenge during drug development. Here, we present a mechanism-based weight-of-evidence approach able to identify certain candidate compounds with DILI liabilities due to mitochondrial toxicity. METHODS: A total of 1587 FDA-approved drugs and 378 kinase inhibitors were screened for cellular stress response activation associated with DILI using an imaging-based HepG2 BAC-GFP reporter platform including the integrated stress response (CHOP), DNA damage response (P21) and oxidative stress response (SRXN1). RESULTS: In total 389, 219 and 104 drugs were able to induce CHOP-GFP, P21-GFP and SRXN1-GFP expression at 50 µM respectively. Concentration response analysis identified 154 FDA-approved drugs as critical CHOP-GFP inducers. Based on predicted and observed (pre-)clinical DILI liabilities of these drugs, nine antimycotic drugs (e.g. butoconazole, miconazole, tioconazole) and 13 central nervous system (CNS) agents (e.g. duloxetine, fluoxetine) were selected for transcriptomic evaluation using whole-genome RNA-sequencing of primary human hepatocytes. Gene network analysis uncovered mitochondrial processes, NRF2 signalling and xenobiotic metabolism as most affected by the antimycotic drugs and CNS agents. Both the selected antimycotics and CNS agents caused impairment of mitochondrial oxygen consumption in both HepG2 and primary human hepatocytes. CONCLUSIONS: Together, the results suggest that early pre-clinical screening for CHOP expression could indicate liability of mitochondrial toxicity in the context of DILI, and, therefore, could serve as an important warning signal to consider during decision-making in drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos , Humanos , Células Hep G2 , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Perfilação da Expressão Gênica
17.
Liver Int ; 44(6): 1409-1421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38451034

RESUMO

OBJECTIVE: To describe patients with NSAID-DILI, including genetic factors associated with idiosyncratic DILI. METHODS: In DILIN, subjects with presumed DILI are enrolled and followed for at least 6 months. Causality is adjudicated by a Delphic approach. HLA sequencing of multiethnic NSAID-DILI patients and HLA allele imputation of matching population controls were performed following overall, class and drug-based association analysis. Significant results were tested in a non-Hispanic White (NHW) case-control replication cohort. RESULTS: Between September 2004 and March 2022, causality was adjudicated in 2498, and 55 (41 [75%] women) were assessed as likely due to NSAIDs. Median age at onset was 55 y (range 22-83 y). Diclofenac was the causative drug in 29, celecoxib in 7, ibuprofen in 5, etodolac and meloxicam each in 4. Except for meloxicam and oxaprozin (n = 2), the liver injury was hepatocellular with median R 15-25. HLA-DRB1*04:03 and HLA-B*35:03 were significantly more frequent in NSAID-DILI patients than in non-NSAID DILI controls. Interestingly, 85% of the HLA-DRB1*04:03 carriers developed DILI due to the use of acetic acid derivative NSAIDs, supporting the hypothesis that HLA-DRB1*04:03 could be a drug and/or class risk factor. HLA-B*35:03 but not HLA-DRB1*04:03 association was confirmed in the independent NHW replication cohort, which was largely driven by diclofenac. CONCLUSIONS: Despite prevalent use, NSAID-DILI is infrequent in the United States. Diclofenac is the most commonly implicated, and adherence to warnings of risk and close observation are recommended. The increased frequency of HLA-B*35:03 and DRB1*04:03, driven by diclofenac, suggests the importance of immune-mediated responses.


Assuntos
Anti-Inflamatórios não Esteroides , Doença Hepática Induzida por Substâncias e Drogas , Diclofenaco , Humanos , Anti-Inflamatórios não Esteroides/efeitos adversos , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Masculino , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Adulto Jovem , Diclofenaco/efeitos adversos , Fatores de Risco , Celecoxib/efeitos adversos
18.
Liver Int ; 44(6): 1435-1447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483145

RESUMO

BACKGROUND AND AIMS: The use of corticosteroids in chronic drug-induced liver injury (DILI) is an important issue. Our previous randomized controlled trial showed that patients with chronic DILI benefited from a 48-week steroid stepwise reduction (SSR) regimen. However, it remains unclear whether a shorter course of therapy can achieve similar efficacy. In this study, we aimed to assess whether a 36-week SSR can achieve efficacy similar to that of 48-week SSR. METHODS: A randomized open-label trial was performed. Eligible patients were randomly assigned to the 36- or 48-week (1:1) SSR group. Liver biopsies were performed at baseline and at the end of treatment. The primary outcome was the proportion of patients with relapse rate (RR). The secondary outcomes were improvement in liver histology and safety. RESULTS: Of the 90 participants enrolled, 84 (87.5%) completed the trial, and 62 patients (68.9%) were women. Hepatocellular damage was observed in 53.4% of the cohort. The RR was 7.1% in the 36-week SSR group but 4.8% in the 48-week SSR group, as determined by per-protocol set analysis (p = 1.000). Significant histological improvements in histological activity (93.1% vs. 92.9%, p = 1.000) and fibrosis (41.4% vs. 46.4%, p = .701) were observed in both the groups. Biochemical normalization time did not differ between the two groups. No severe adverse events were observed. CONCLUSIONS: Both the 36- and 48-week SSR regimens demonstrated similar biochemical response and histological improvements with good safety, supporting 36-week SSR as a preferable therapeutic choice (ClinicalTrials.gov, NCT03266146).


Assuntos
Fígado , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Fígado/patologia , Fígado/efeitos dos fármacos , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Resultado do Tratamento , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Recidiva , Idoso , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Esquema de Medicação
19.
Pharmacol Res ; 199: 107030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072217

RESUMO

The impact of prior drug allergies (PDA) on the clinical features and outcomes of patients who develop idiosyncratic drug-induced liver injury (DILI) is largely unknown. We aimed to assess the clinical presentation and outcomes of DILI patients based on the presence or absence of PDA and explore the association between culprit drugs responsible for DILI and allergy. We analysed a well-vetted cohort of DILI cases enrolled from the Spanish DILI Registry. Bootstrap-enhanced least absolute shrinkage operator procedure was used in variable selection, and a multivariable logistic model was fitted to predict poor outcomes in DILI. Of 912 cases with a first episode of DILI, 61 (6.7%) had documented PDA. Patients with PDA were older (p = 0.009), had higher aspartate aminotransferase (AST) levels (p = 0.047), lower platelet count (p = 0.011) and higher liver-related mortality than those without a history of drug allergies (11% vs. 1.6%, p < 0.001). Penicillin was the most common drug associated with PDA in DILI patients (32%). A model including PDA, nR-based type of liver injury, female sex, AST, total bilirubin, and platelet count showed an excellent performance in predicting poor outcome in patients from the Spanish DILI Registry (area under the ROC curve [AUC] 0.887; 95% confidence interval [CI] 0.794 - 0.981) and the LATINDILI Network (AUC 0.932; 95% CI 0.884 - 0.981). Patients with suspected DILI should be screened for PDA as they would require a close monitoring for early detection of worsening clinical course.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hipersensibilidade a Drogas , Humanos , Feminino , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/epidemiologia , Bilirrubina , Medição de Risco
20.
Pharmacol Res ; 203: 107183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631619

RESUMO

INTRODUCTION: Data on positive rechallenge in idiosyncratic drug-induced liver injury (DILI) are scarce. We aim to analyse the clinical presentation, outcome and drugs associated with positive rechallenge in two DILI registries. METHODS: Cases from the Spanish and Latin American DILI registries were included. Demographics, clinical characteristics and outcome of cases with positive rechallenge according to CIOMS/RUCAM and current definitions were analysed. RESULTS: Of 1418 patients with idiosyncratic DILI, 58 cases had positive rechallenge (4.1%). Patients with positive rechallenge had shorter duration of therapy (p=0.001) and latency (p=0.003). In patients with rechallenge, aspartate transaminase levels were increased (p=0.026) and showed a prolonged time to recovery (p=0.020), albeit no differences were seen in terms of fatal outcomes. The main drug implicated in rechallenge was amoxicillin-clavulanate (17%). The majority of re-exposure events were unintentional (71%). Using both existing definitions of positive rechallenge, there were four cases which exclusively fulfilled the current criteria and five which only meet the historical definition. All cases of positive rechallenge, irrespective of the pattern of damage, fulfilled the criteria of either alanine transaminase (ALT) ≥3 times the upper limit of normal (ULN) and/or alkaline phosphatase (ALP) ≥2 times ULN. CONCLUSIONS: Episodes of rechallenge were characterised by shorter duration of therapy and latency, and longer time to resolution, but did not show an increased incidence of fatal outcome. Based on our findings, ALT ≥3 times ULN and/or ALP ≥2 times ULN, regardless of the pattern of damage, is proposed as a new definition of rechallenge in DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Sistema de Registros , Humanos , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Estudos Prospectivos , Espanha/epidemiologia , Aspartato Aminotransferases/sangue , Combinação Amoxicilina e Clavulanato de Potássio/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA