Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104818, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182735

RESUMO

Encoded by ANK2, ankyrin-B (AnkB) is a multifunctional adapter protein critical for the expression and targeting of key cardiac ion channels, transporters, cytoskeletal-associated proteins, and signaling molecules. Mice deficient for AnkB expression are neonatal lethal, and mice heterozygous for AnkB expression display cardiac structural and electrical phenotypes. Human ANK2 loss-of-function variants are associated with diverse cardiac manifestations; however, human clinical 'AnkB syndrome' displays incomplete penetrance. To date, animal models for human arrhythmias have generally been knock-out or transgenic overexpression models and thus the direct impact of ANK2 variants on cardiac structure and function in vivo is not clearly defined. Here, we directly tested the relationship of a single human ANK2 disease-associated variant with cardiac phenotypes utilizing a novel in vivo animal model. At baseline, young AnkBp.E1458G+/+ mice lacked significant structural or electrical abnormalities. However, aged AnkBp.E1458G+/+ mice displayed both electrical and structural phenotypes at baseline including bradycardia and aberrant heart rate variability, structural remodeling, and fibrosis. Young and old AnkBp.E1458G+/+ mice displayed ventricular arrhythmias following acute (adrenergic) stress. In addition, young AnkBp.E1458G+/+ mice displayed structural remodeling following chronic (transverse aortic constriction) stress. Finally, AnkBp.E1458G+/+ myocytes harbored alterations in expression and/or localization of key AnkB-associated partners, consistent with the underlying disease mechanism. In summary, our findings illustrate the critical role of AnkB in in vivo cardiac function as well as the impact of single AnkB loss-of-function variants in vivo. However, our findings illustrate the contribution and in fact necessity of secondary factors (aging, adrenergic challenge, pressure-overload) to phenotype penetrance and severity.


Assuntos
Anquirinas , Miócitos Cardíacos , Animais , Humanos , Camundongos , Adrenérgicos/metabolismo , Anquirinas/metabolismo , Modelos Animais de Doenças , Canais Iônicos/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fenótipo , Envelhecimento/metabolismo
2.
Am J Hum Genet ; 108(6): 1012-1025, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34015270

RESUMO

The human genetic dissection of clinical phenotypes is complicated by genetic heterogeneity. Gene burden approaches that detect genetic signals in case-control studies are underpowered in genetically heterogeneous cohorts. We therefore developed a genome-wide computational method, network-based heterogeneity clustering (NHC), to detect physiological homogeneity in the midst of genetic heterogeneity. Simulation studies showed our method to be capable of systematically converging genes in biological proximity on the background biological interaction network, and capturing gene clusters harboring presumably deleterious variants, in an efficient and unbiased manner. We applied NHC to whole-exome sequencing data from a cohort of 122 individuals with herpes simplex encephalitis (HSE), including 13 individuals with previously published monogenic inborn errors of TLR3-dependent IFN-α/ß immunity. The top gene cluster identified by our approach successfully detected and prioritized all causal variants of five TLR3 pathway genes in the 13 previously reported individuals. This approach also suggested candidate variants of three reported genes and four candidate genes from the same pathway in another ten previously unstudied individuals. TLR3 responsiveness was impaired in dermal fibroblasts from four of the five individuals tested, suggesting that the variants detected were causal for HSE. NHC is, therefore, an effective and unbiased approach for unraveling genetic heterogeneity by detecting physiological homogeneity.


Assuntos
Biologia Computacional/métodos , Encefalite por Herpes Simples/genética , Encefalite por Herpes Simples/patologia , Fibroblastos/imunologia , Redes Reguladoras de Genes , Heterogeneidade Genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Encefalite por Herpes Simples/imunologia , Fibroblastos/metabolismo , Humanos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo , Sequenciamento do Exoma
3.
Clin Genet ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561231

RESUMO

Xq28 int22h-1/int22h-2 duplication is the result of non-allelic homologous recombination between int22h-1/int22h-2 repeats separated by 0.5 Mb. It is responsible for a syndromic form of intellectual disability (ID), with recurrent infections and atopic diseases. Minor defects, nonspecific facial dysmorphic features, and overweight have also been described. Half of female carriers have been reported with ID, whereas all reported evaluated born males present mild to moderate ID, suggesting complete penetrance. We collected data on 15 families from eight university hospitals. Among them, 40 patients, 21 females (one fetus), and 19 males (two fetuses), were carriers of typical or atypical Xq28 int22h-1/int22h-2 duplication. Twenty-one individuals were considered asymptomatic (16 females and 5 males), without significantly higher rate of recurrent infections, atopia, overweight, or facial dysmorphism. Approximately 67% live-born males and 23% live-born female carriers of the typical duplication did not have obvious signs of intellectual disability, suggesting previously undescribed incomplete penetrance or low expression in certain carriers. The possibility of a second-hit or modifying factors to this possible susceptibility locus is yet to be studied but a possible observational bias should be considered in assessing such challenging X-chromosome copy number gains. Additional segregation studies should help to quantify this newly described incomplete penetrance.

4.
Brain ; 146(7): 2730-2738, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36860166

RESUMO

ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Distonia/genética , Distúrbios Distônicos/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação de Sentido Incorreto , Linhagem , Proteínas/genética
5.
Anim Genet ; 55(3): 344-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38426585

RESUMO

Bovine familial convulsions and ataxia (BFCA) is considered an autosomal dominant syndrome with incomplete penetrance. Nine Angus calves from the same herd were diagnosed with BFCA within days of birth. Necropsy revealed cerebellar and spinal cord lesions associated with the condition. Parentage testing confirmed that all affected calves had a common sire. The sire was then bred to 36 cows across two herds using artificial insemination, producing an additional 14 affected calves. The objective of this investigation was to identify hypothesized dominant genetic variation underlying the condition. Whole-genome sequencing was performed on the sire, six affected and seven unaffected paternal half-sibling calves and combined with data from 135 unrelated controls. The sire and five of the six affected calves were heterozygous for a nonsense variant (Chr7 g.12367906C>T, c.5073C>T, p.Arg1681*) in CACNA1A. The other affected calves (N = 8) were heterozygous for the variant but it was absent in the other unaffected calves (N = 7) and parents of the sire. This variant was also absent in sequence data from over 6500 other cattle obtained via public repositories and collaborator projects. The variant in CACNA1A is expressed in the cerebellum of the ataxic calves as detected in the transcriptome and was not differentially expressed compared with controls. The CACNA1A protein is part of a highly expressed cerebellar calcium voltage gated channel. The nonsense variant is proposed to cause haploinsufficiency, preventing proper transmission of neuronal signals through the channel and resulting in BFCA.


Assuntos
Ataxia , Canais de Cálcio , Doenças dos Bovinos , Convulsões , Animais , Bovinos/genética , Canais de Cálcio/genética , Ataxia/veterinária , Ataxia/genética , Doenças dos Bovinos/genética , Convulsões/veterinária , Convulsões/genética , Masculino , Feminino , Sequenciamento Completo do Genoma/veterinária , Genes Dominantes , Mutação
6.
J Perinat Med ; 52(2): 171-180, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38081620

RESUMO

OBJECTIVES: To investigate the incidence of pathogenic recurrent CNVs in fetuses with different referral indications and review the intrauterine phenotypic features of each CNV. METHODS: A total of 7,078 amniotic fluid samples were collected for chromosome microarray analysis (CMA) and cases carrying pathogenic recurrent CNVs were further studied. RESULTS: The highest incidence of pathogenic recurrent CNVs was 2.25 % in fetal ultrasound anomalies (FUA) group. Moreover, regardless of other indications, pregnant women with advanced maternal age have a lower incidence compared with whom less than 35 years old (p<0.05). In total 1.17 % (83/7,078) samples carried pathogenic recurrent CNVs: 20 cases with 22q11.2 recurrent region (12 microdeletion and eight microduplication), 11 with 1q21.1 (five microdeletion and six microduplication) and 16p13.11 (four microdeletion and seven microduplication), 10 with 15q11.2 recurrent microdeletion, seven with Xp22.31 recurrent microdeletion and 16p11.2 (three microdeletion and four microduplication), four with 7q11.23 (two microdeletion and two microduplication), three with 17p11.2 (three microdeletion), 17p12 (two microdeletion and one microduplication) and 17q12 (two microdeletion and one microduplication). The rest ones were rare in this study. CONCLUSIONS: Pathogenic recurrent CNVs are more likely to be identified in FUA group. Pregnant women with advanced maternal age have a lower incidence of pathogenic recurrent CNVs. The profile of pathogenic recurrent CNVs between prenatal and postnatal is different, especially in 22q11.2, 1q21.1, 15q13.3 recurrent region and 15q11.2 deletion.


Assuntos
Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Deficiência Intelectual , Gravidez , Humanos , Feminino , Adulto , Análise em Microsséries , Cromossomos Humanos Par 15 , Diagnóstico Pré-Natal
7.
Am J Physiol Heart Circ Physiol ; 324(2): H179-H197, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36487185

RESUMO

Many cardiac diseases are characterized by an increased late sodium current, including heart failure, hypertrophic cardiomyopathy, and inherited long QT syndrome type 3 (LQT3). The late sodium current in LQT3 is caused by a gain-of-function mutation in the voltage-gated sodium channel Nav1.5. Despite a well-defined genetic cause of LQT3, treatment remains inconsistent because of incomplete penetrance of the mutation and variability of antiarrhythmic efficacy. Here, we investigate the relationship between LQT3-associated mutation incomplete penetrance and variability in ion channel expression, simulating a population of 1,000 individuals with the O'Hara-Rudy model of the human ventricular myocyte. We first simulate healthy electrical activity (i.e., in the absence of a mutation) and then incorporate heterozygous expression for three LQT3-associated mutations (Y1795C, I1768V, and ΔKPQ), to directly compare the effects of each mutation on individuals across a diverse population. For all mutations, we find that susceptibility, defined by either the presence of an early afterdepolarization (EAD) or prolonged action potential duration (APD), primarily depends on the balance between the conductance of IKr and INa, for which individuals with a higher IKr-to-INa ratio are less susceptible. Furthermore, we find distinct differences across the population, observing individuals susceptible to zero, one, two, or all three mutations. Individuals tend to be less susceptible with an appropriate balance of repolarizing currents, typically via increased IKs or IK1. Interestingly, the more critical repolarizing current is mutation specific. We conclude that the balance between key currents plays a significant role in mutant-specific presentation of the disease phenotype in LQT3.NEW & NOTEWORTHY An in silico population approach investigates the relationship between variability in ion channel expression and gain-of-function mutations in the voltage-gated sodium channel associated with the congenital disorder long QT syndrome type 3 (LQT3). We find that ion channel variability can contribute to incomplete penetrance of the mutation, with mutant-specific differences in ion channel conductances leading to susceptibility to proarrhythmic action potential duration prolongation or early afterdepolarizations.


Assuntos
Síndrome do QT Longo , Humanos , Potenciais de Ação , Canais Iônicos/genética , Síndrome do QT Longo/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Penetrância , Sódio/metabolismo , Simulação por Computador
8.
Genet Med ; 25(3): 100355, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496179

RESUMO

PURPOSE: The congenital Long QT Syndrome (LQTS) and Brugada Syndrome (BrS) are Mendelian autosomal dominant diseases that frequently precipitate fatal cardiac arrhythmias. Incomplete penetrance is a barrier to clinical management of heterozygotes harboring variants in the major implicated disease genes KCNQ1, KCNH2, and SCN5A. We apply and evaluate a Bayesian penetrance estimation strategy that accounts for this phenomenon. METHODS: We generated Bayesian penetrance models for KCNQ1-LQT1 and SCN5A-LQT3 using variant-specific features and clinical data from the literature, international arrhythmia genetic centers, and population controls. We analyzed the distribution of posterior penetrance estimates across 4 genotype-phenotype relationships and compared continuous estimates with ClinVar annotations. Posterior estimates were mapped onto protein structure. RESULTS: Bayesian penetrance estimates of KCNQ1-LQT1 and SCN5A-LQT3 are empirically equivalent to 10 and 5 clinically phenotype heterozygotes, respectively. Posterior penetrance estimates were bimodal for KCNQ1-LQT1 and KCNH2-LQT2, with a higher fraction of missense variants with high penetrance among KCNQ1 variants. There was a wide distribution of variant penetrance estimates among identical ClinVar categories. Structural mapping revealed heterogeneity among "hot spot" regions and featured high penetrance estimates for KCNQ1 variants in contact with calmodulin and the S6 domain. CONCLUSIONS: Bayesian penetrance estimates provide a continuous framework for variant interpretation.


Assuntos
Canalopatias , Canal de Potássio KCNQ1 , Humanos , Canal de Potássio KCNQ1/genética , Mutação , Penetrância , Teorema de Bayes , Canalopatias/genética , Arritmias Cardíacas/genética
10.
Hum Genomics ; 16(1): 31, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974416

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG)-recommended five variant classification categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign) have been widely used in medical genetics. However, these guidelines are fundamentally constrained in practice owing to their focus upon Mendelian disease genes and their dichotomous classification of variants as being either causal or not. Herein, we attempt to expand the ACMG guidelines into a general variant classification framework that takes into account not only the continuum of clinical phenotypes, but also the continuum of the variants' genetic effects, and the different pathological roles of the implicated genes. MAIN BODY: As a disease model, we employed chronic pancreatitis (CP), which manifests clinically as a spectrum from monogenic to multifactorial. Bearing in mind that any general conceptual proposal should be based upon sound data, we focused our analysis on the four most extensively studied CP genes, PRSS1, CFTR, SPINK1 and CTRC. Based upon several cross-gene and cross-variant comparisons, we first assigned the different genes to two distinct categories in terms of disease causation: CP-causing (PRSS1 and SPINK1) and CP-predisposing (CFTR and CTRC). We then employed two new classificatory categories, "predisposing" and "likely predisposing", to replace ACMG's "pathogenic" and "likely pathogenic" categories in the context of CP-predisposing genes, thereby classifying all pathologically relevant variants in these genes as "predisposing". In the case of CP-causing genes, the two new classificatory categories served to extend the five ACMG categories whilst two thresholds (allele frequency and functional) were introduced to discriminate "pathogenic" from "predisposing" variants. CONCLUSION: Employing CP as a disease model, we expand ACMG guidelines into a five-category classification system (predisposing, likely predisposing, uncertain significance, likely benign, and benign) and a seven-category classification system (pathogenic, likely pathogenic, predisposing, likely predisposing, uncertain significance, likely benign, and benign) in the context of disease-predisposing and disease-causing genes, respectively. Taken together, the two systems constitute a general variant classification framework that, in principle, should span the entire spectrum of variants in any disease-related gene. The maximal compliance of our five-category and seven-category classification systems with the ACMG guidelines ought to facilitate their practical application.


Assuntos
Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Frequência do Gene , Testes Genéticos , Variação Genética , Genômica , Humanos , Pancreatite Crônica/genética , Análise de Sequência de DNA , Inibidor da Tripsina Pancreática de Kazal/genética , Estados Unidos
11.
Doc Ophthalmol ; 146(3): 267-272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36609934

RESUMO

INTRODUCTION: Mutations in the peripherin-2 gene (PRPH2) are a common cause of inherited retinal dystrophies well known for their phenotypic diversity. We describe a novel presentation of the c.623G > A; p.(Gly208Asp) variant in association with cone-rod dystrophy and reduced penetrance. CASE DESCRIPTION: A 39-year-old man presents with a history of decreased visual acuity, photophobia, and dyschromatopsia. Fundus examination was largely unremarkable while spectral-domain optical coherence tomography (SD-OCT) demonstrated diffuse granularity at the ellipsoid zone. Full-field electroretinogram (ffERG) revealed a cone-rod dystrophy. Genetic testing revealed a heterozygous pathogenic variant, c.623G > A; p.(Gly208Asp), in the PRPH2 gene, also found in an unaffected brother. The 50-year-old brother had no visual symptoms and no findings on fundus examination. SD-OCT showed normal retinal architecture and ffERG was within normal limits bilaterally. CONCLUSION: This case report broadens the known phenotypic presentations of PRPH2-associated retinopathy and suggests that the PRPH2 variant c.623G > A; p.(Gly208Asp) may be associated with reduced penetrance.


Assuntos
Distrofias de Cones e Bastonetes , Retinose Pigmentar , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Penetrância , Eletrorretinografia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Mutação , Variação Biológica da População , Tomografia de Coerência Óptica , Fenótipo
12.
Hum Mutat ; 43(12): 1872-1881, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317459

RESUMO

ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.


Assuntos
Pseudoxantoma Elástico , Humanos , Mutação , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/metabolismo , Pseudoxantoma Elástico/patologia , Penetrância , Trifosfato de Adenosina , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
13.
New Phytol ; 234(3): 1059-1074, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170044

RESUMO

CRABS CLAW (CRC) orthologues play a crucial role in floral meristem (FM) determinacy and gynoecium formation across angiosperms, the key developmental processes for ensuring successful plant reproduction and crop production. However, the mechanisms behind CRC mediated FM termination are far from fully understood. Here, we addressed the functional characterization of tomato (Solanum lycopersicum) paralogous CRC genes. Using mapping-by-sequencing, RNA interference and CRISPR/Cas9 techniques, expression analyses, protein-protein interaction assays and Arabidopsis complementation experiments, we examined their potential roles in FM determinacy and carpel formation. We revealed that the incomplete penetrance and variable expressivity of the indeterminate carpel-inside-carpel phenotype observed in fruit iterative growth (fig) mutant plants are due to the lack of function of the S. lycopersicum CRC homologue SlCRCa. Furthermore, a detailed functional analysis of tomato CRC paralogues, SlCRCa and SlCRCb, allowed us to propose that they operate as positive regulators of FM determinacy by acting in a compensatory and partially redundant manner to safeguard the proper formation of flowers and fruits. Our results uncover for the first time the physical interaction of putative CRC orthologues with members of the chromatin remodelling complex that epigenetically represses WUSCHEL expression through histone deacetylation to ensure the proper termination of floral stem cell activity.


Assuntos
Proteínas de Arabidopsis , Solanum lycopersicum , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Flores , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Am J Med Genet A ; 188(6): 1808-1814, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253988

RESUMO

Pathogenic variants in USP9X, on X chromosome, have been implicated in syndromic intellectual disability (ID) in both males and females with distinct craniofacial features. We report a truncating variant, c.885_889delAAAAG, p.(Lys296Serfs*4), in the USP9X gene with incomplete penetrance in two nontwin female siblings with phenotypic resemblance to female-specific syndromic ID (MIM 300969, also known as MRX99F). To investigate the possible genetic etiology of the reduced penetrance, X-inactivation, RNA-Seq, and full quad exome analyses were attempted, but failed to identify a promising candidate modifier. While the penetrance of pathogenic variants in USP9X in female appears to be high (95%) and the variants frequently occur de novo, incomplete penetrance should be considered.


Assuntos
Deficiência Intelectual , Ubiquitina Tiolesterase , Exoma , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Penetrância , RNA-Seq , Ubiquitina Tiolesterase/genética , Sequenciamento do Exoma
15.
Int J Neurosci ; : 1-11, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36282036

RESUMO

Background: Hereditary sensory and autonomic neuropathies (HSANs) are rare heterogeneous group of neurological disorders caused by peripheral nerve deterioration. The HSANs sub-clinical classes have clinical and genetic overlap which often lead to misdiagnosis. In the present study a Pakistani family with five affected members suffering from severe neuropathy were genetically analyzed to identify the disease causative element in the family.Methods: Genome wide high-density single nucleotide polymorphism (SNP) microarray analysis was carried out followed by whole exome sequencing of the affected proband and another affected sibling. Shared homozygous regions in all severely affected members were identified through homozygosity mapping approach.Results: The largest homozygous region of 14.1 Mb shared by the five severely affected members of the family was identified on chromosome 2. Subsequent exome sequencing identified a novel single nucleotide deletion c.2658del; p.(Ser887Profs*64) in KIF1A. Segregation analysis revealed that this mutation was homozygous in all five affected individuals of the family with severe clinical manifestation, while members of the family that were heterozygous carriers shared abnormal skin features (scaly skin) only with the homozygous affected members.Conclusions: A novel frameshift mutation p.(Ser887Profs*64) in KIF1A is the potential cause of severe HSANIIC in a Pakistani family along with incomplete penetrance in mutation carriers. We demonstrate that using a combination of different techniques not only strengthens the gene finding approach but also helps in proper sub-clinical characterization along with identification of mutated alleles exhibiting incomplete penetrance leading to intrafamilial clinical variability in HSAN group of inherited diseases.

16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(6): 801-808, 2022 Jun 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-35837781

RESUMO

Episodic ataxia (EA) is a group of disorders characterized by recurrent spells of vertigo, truncal ataxia, and dysarthria. Episodic ataxia type 2 (EA2), the most common subtype of EA, is an autosomal dominant disease caused by mutation of the CACNA1A gene. EA2 has been rarely reported in the Chinese population. Here we present an EA2 family admitted to Xiangya Hospital in October 2018. The proband was a 22-year-old male who complained of recurrent spells of vertigo, slurred speech, and incoordination for 4 years. Brain magnetic resonance imaging (MRI) showed cerebellar atrophy. He had neuropsychological development disorder in childhood, and cognitive assessment in adulthood showed cognitive impairment. The proband's mother and grandmother had a similar history. Peripheral blood samples from the proband and family members were collected, and genomic DNA was isolated. Whole exome sequencing of the proband detected a heterozygous frameshift mutation c.2042_2043del (p.Q681Rfs*100) of CACNA1A gene. This mutation was verified in the proband and 2 family members using Sanger sequencing. One family member carrying this mutation was free of symptoms and signs, suggesting an incomplete penetrance of the mutation. We reported a variant c.2042_2043del of CACNA1A gene as the pathogenic mutation in a Chinese EA2 family for the first time. This case enriched the clinical spectrum of CACNA1A related EA2, and contributed to the understanding of clinical and genetic characteristics of EA2 to reduce misdiagnosis.


Assuntos
Canais de Cálcio , Vertigem , Adulto , Ataxia , Canais de Cálcio/genética , Humanos , Masculino , Mutação , Nistagmo Patológico , Linhagem , Adulto Jovem
17.
Hum Mutat ; 42(2): 177-188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259687

RESUMO

The MT-TL1 gene codes for the mitochondrial leucine transfer RNA (tRNALeu(UUR) ) necessary for mitochondrial translation. Pathogenic variants in the MT-TL1 gene result in mitochondriopathy in humans. The m.3250T>C variant in the MT-TL1 gene has been previously associated with exercise intolerance and mitochondrial myopathy, yet disease classification for this variant has not been consistently reported. Molecular studies suggest the m.3250T>C variant does not alter tRNALeu(UUR) structure but may have a modest impact on aminoacylation capacity. However, functional studies are limited. Our study aimed to further define the clinical presentation, inheritance pattern, and molecular pathology of the m.3250T>C variant. Families with the m.3250T>C variant were recruited from the Mitochondrial Disease Clinic at Cincinnati Children's Hospital Medical Center and GeneDx laboratory database. Affected individuals most frequently presented with cardiac findings, exercise intolerance, and muscle weakness. Hypertrophic cardiomyopathy was the most frequent cardiac finding. Many asymptomatic individuals had homoplasmic or near homoplasmic levels of the m.3250T>C variant, suggesting the penetrance is incomplete. Patient-derived fibroblasts demonstrated lowered ATP production and increased levels of reactive oxygen species. Our results demonstrate that the m.3250T>C variant exhibits incomplete penetrance and may be a possible cause of cardiomyopathy by impacting cellular respiration in mitochondria.


Assuntos
Cardiomiopatias , Genoma Mitocondrial , Miopatias Mitocondriais , Cardiomiopatias/genética , Criança , DNA Mitocondrial/genética , Humanos , Miopatias Mitocondriais/genética , Mutação , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/genética , Fatores de Risco
18.
J Clin Immunol ; 41(4): 780-790, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33501615

RESUMO

PURPOSE: Germline loss-of-function variants in the signal transducer and activator of transcription 3 (STAT3) gene result in autosomal dominant hyper IgE syndrome, whereas somatic gain-of-function (GOF) variants in STAT3 are associated with some malignancies. In addition, germline GOF variants in STAT3 are linked to disorders involving autoimmunity and lymphoproliferation. In this study, we describe five Japanese families with germline GOF variants in STAT3, including three novel variants. We also present the clinical and immunological characteristics of these patients. METHODS: Eight patients from five families were enrolled in this study. We performed genetic and immunological analyses, and collected the associated clinical information. RESULTS: We identified five heterozygous variants in STAT3 using whole-exome sequencing and target gene sequencing. Two of these (E286G and T716M) were previously reported and three (K348E, E415G, and G618A) were novel. A STAT3 reporter assay revealed that all of the variants were GOF. However, the immunological and clinical characteristics among the patients were highly variable. CONCLUSION: Patients with STAT3 GOF variants exhibited clinical and immunological heterogeneity with incomplete penetrance.


Assuntos
Variação Biológica da População , Mutação com Ganho de Função , Doenças do Sistema Imunitário/diagnóstico , Doenças do Sistema Imunitário/etiologia , Fenótipo , Fator de Transcrição STAT3/genética , Adulto , Alelos , Criança , Pré-Escolar , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Doenças do Sistema Imunitário/terapia , Imunofenotipagem , Lactente , Japão , Masculino , Linhagem , Penetrância , Conformação Proteica , Fator de Transcrição STAT3/química , Relação Estrutura-Atividade , Sequenciamento do Exoma
19.
Cytogenet Genome Res ; 161(3-4): 105-119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33849037

RESUMO

Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 7/genética , Metilação de DNA , Deficiências do Desenvolvimento/genética , Endopeptidases/genética , Deficiência Intelectual/genética , Adolescente , Adulto , Criança , Pré-Escolar , Ilhas de CpG/genética , Saúde da Família , Feminino , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Herança Materna/genética
20.
Clin Endocrinol (Oxf) ; 94(4): 656-666, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33296094

RESUMO

OBJECTIVE: The study aimed to identify the genetic basis of partial gonadal dysgenesis (PGD) in a non-consanguineous family from Estonia. PATIENTS: Cousins P (proband) 1 (12 years; 46,XY) and P2 (18 years; 46,XY) presented bilateral cryptorchidism, severe penoscrotal hypospadias, low bitesticular volume and azoospermia in P2. Their distant relative, P3 (30 years; 46,XY), presented bilateral cryptorchidism and cryptozoospermia. DESIGN: Exome sequencing was targeted to P1-P3 and five unaffected family members. RESULTS: P1-P2 were identified as heterozygous carriers of NR5A1 c.991-1G > C. NR5A1 encodes the steroidogenic factor-1 essential in gonadal development and specifically expressed in adrenal, spleen, pituitary and testes. Together with a previous PGD case from Belgium (Robevska et al 2018), c.991-1G > C represents the first recurrent NR5A1 splice-site mutation identified in patients. The majority of previous reports on NR5A1 mutation carriers have not included phenotype-genotype data of the family members. Segregation analysis across three generations showed incomplete penetrance (<50%) and phenotypic variability among the carriers of NR5A1 c.991-1G > C. The variant pathogenicity was possibly modulated by rare heterozygous variants inherited from the other parent, OTX2 p.P134R (P1) or PROP1 c.301_302delAG (P2). For P3, the pedigree structure supported a distinct genetic cause. He carries a previously undescribed likely pathogenic variant SOS1 p.Y136H. SOS1, critical in Ras/MAPK signalling and foetal development, is a strong novel candidate gene for cryptorchidism. CONCLUSIONS: Detailed genetic profiling facilitates counselling and clinical management of the probands, and supports unaffected mutation carriers in the family for their reproductive decision making.


Assuntos
Disgenesia Gonadal 46 XY , Penetrância , Fator Esteroidogênico 1 , Variação Biológica da População , Disgenesia Gonadal 46 XY/genética , Humanos , Masculino , Mutação , Fator Esteroidogênico 1/genética , Testículo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA