Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(3): 850-867, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837419

RESUMO

Canopy architecture in cereals plays an important role in determining yield. Leaf width represents one key aspect of this canopy architecture. However, our understanding of leaf width control in cereals remains incomplete. Classical mutagenesis studies in barely identified multiple morphological mutants, including those with differing leaf widths. Of these, we characterized the broad leaf13 (blf13) mutant in detail. Mutant plants form wider leaves due to increased post-initiation growth and cell proliferation. The mutant phenotype perfectly co-segregated with a missense mutation in the HvHNT1 gene which affected a highly conserved region of the encoded protein, orthologous to the rice NARROW LEAF1 (NAL1) protein. Causality of this mutation for the blf13 phenotype is further supported by correlative transcriptomic analyses and protein-protein interaction studies showing that the mutant HvNHT1 protein interacts more strongly with a known interactor than wild-type HvHNT1. The mutant HvHNT1 protein also showed stronger homodimerization compared with wild-type HvHNT1, and homology modelling suggested an additional interaction site between HvHNT1 monomers due to the blf13 mutation. Thus, the blf13 mutation parallels known gain-of-function NAL1 alleles in rice that increase leaf width and grain yield, suggesting that the blf13 mutation may have a similar agronomic potential in barley.


Assuntos
Hordeum , Oryza , Hordeum/metabolismo , Mutação com Ganho de Função , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Mutação , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Ann Bot ; 134(3): 501-510, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38832532

RESUMO

BACKGROUND AND AIMS: Leaf area (A) is a crucial indicator of the photosynthetic capacity of plants. The Montgomery equation (ME), which hypothesizes that A is proportional to the product of leaf length (L) and width (W), is a valid tool for non-destructively measuring A for many broadleaved plants. At present, the methods used to compute L and W for the ME can be broadly divided into two kinds: using computer recognition and measuring manually. However, the potential difference in the prediction accuracy using either method has not been thoroughly examined in previous studies. METHODS: In the present study, we measured 540 Alangium chinense leaves, 489 Liquidambar formosana leaves and 215 Liriodendron × sinoamericanum leaves, utilizing computer recognition and manual measurement methods to determine L and W. The ME was used to fit the data determined by the two methods, and the goodness of fits were compared. The prediction errors of A were analysed by examining the correlations with two leaf symmetry indices (areal ratio of the left side to the right side, and standardized index for bilateral asymmetry), as well as the leaf shape complexity index (the leaf dissection index). KEY RESULTS: The results indicate that there is a neglectable difference in the estimation of A between the two methods. This further validates that the ME is an effective method for estimating A in broadleaved tree species, including those with lobes. Additionally, leaf shape complexity significantly influenced the estimation of A. CONCLUSIONS: These results show that the use of computer recognition and manual measurement in the field are both effective and feasible, although the influence of leaf shape complexity should be considered when applying the ME to estimate A in the future.


Assuntos
Folhas de Planta , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia
3.
BMC Plant Biol ; 23(1): 418, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689677

RESUMO

BACKGROUND: Mitochondrion is the key respiratory organ and participate in multiple anabolism and catabolism pathways in eukaryote. However, the underlying mechanism of how mitochondrial membrane proteins regulate leaf and grain development remains to be further elucidated. RESULTS: Here, a mitochondria-defective mutant narrow leaf and slender grain 1 (nlg1) was identified from an EMS-treated mutant population, which exhibits narrow leaves and slender grains. Moreover, nlg1 also presents abnormal mitochondria structure and was sensitive to the inhibitors of mitochondrial electron transport chain. Map-based cloning and transgenic functional confirmation revealed that NLG1 encodes a mitochondrial import inner membrane translocase containing a subunit Tim21. GUS staining assay and RT-qPCR suggested that NLG1 was mainly expressed in leaves and panicles. The expression level of respiratory function and auxin response related genes were significantly down-regulated in nlg1, which may be responsible for the declination of ATP production and auxin content. CONCLUSIONS: These results suggested that NLG1 plays an important role in the regulation of leaf and grain size development by maintaining mitochondrial homeostasis. Our finding provides a novel insight into the effects of mitochondria development on leaf and grain morphogenesis in rice.


Assuntos
Oryza , Oryza/genética , Membranas Mitocondriais , Folhas de Planta/genética , Mitocôndrias , Grão Comestível/genética , Ácidos Indolacéticos , Proteínas de Membrana/genética
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835485

RESUMO

Rice leaf width (RLW) is a crucial determinant of photosynthetic area. Despite the discovery of several genes controlling RLW, the underlying genetic architecture remains unclear. In order to better understand RLW, this study conducted a genome-wide association study (GWAS) on 351 accessions from the rice diversity population II (RDP-II). The results revealed 12 loci associated with leaf width (LALW). In LALW4, we identified one gene, Narrow Leaf 22 (NAL22), whose polymorphisms and expression levels were associated with RLW variation. Knocking out this gene in Zhonghua11, using CRISPR/Cas9 gene editing technology, resulted in a short and narrow leaf phenotype. However, seed width remained unchanged. Additionally, we discovered that the vein width and expression levels of genes associated with cell division were suppressed in nal22 mutants. Gibberellin (GA) was also found to negatively regulate NAL22 expression and impact RLW. In summary, we dissected the genetic architecture of RLW and identified a gene, NAL22, which provides new loci for further RLW studies and a target gene for leaf shape design in modern rice breeding.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Estudo de Associação Genômica Ampla/métodos , Genótipo , Oryza/genética , Edição de Genes , Melhoramento Vegetal/métodos , Folhas de Planta/genética
5.
Plant J ; 107(3): 817-830, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34009654

RESUMO

Leaf width (LW) is an important component of plant architecture that extensively affects both light capture during photosynthesis and grain yield, particularly under dense planting conditions. However, the genetic and molecular mechanisms regulating LW remain largely elusive in maize (Zea mays L.). In this study, qLW4a, a major quantitative trait locus controlling LW, was identified in a population constructed with maize inbred lines PH6WC, with wide leaves, and Lin387, with narrow leaves. Map-based cloning revealed that ZmNL4, a kelch-repeat superfamily gene, emerged to be the candidate for qLW4a, and a single-base deletion in the conserved SMC_prok_B domain of ZmNL4 in Lin387 caused a frame shift, leading to premature termination. Consistently, the knockout of ZmNL4 by CRISPR/Cas9 editing significantly reduced the LW, which was attributed to a reduction in the cell number instead of cell size, indicating a role of ZmNL4 in regulating cell division. Transcriptomic comparison of ZmNL4 knockout lines with the wild type B73-329 revealed that ZmNL4 might participate in cell wall biogenesis, asymmetric cell division, metabolic processes, transmembrane transport and response to external stimulus, etc. These results provide insights into the genetic and molecular mechanisms of ZmNL4 in controlling LW and could potentially contribute to optimizing plant architecture for maize breeding.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Zea mays/anatomia & histologia , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ligação Genética , Estudo de Associação Genômica Ampla , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Locos de Características Quantitativas , Zea mays/crescimento & desenvolvimento
6.
J Appl Clin Med Phys ; 23(5): e13575, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35239259

RESUMO

PURPOSE: Whole-brain radiotherapy (WBRT) is commonly used in patients with multiple brain metastases. Compared with conventional WBRT, hippocampal avoidance WBRT (HA-WBRT) more favorably preserves cognitive function and the quality of life. The hippocampal volume is considerably small (approximately 3.3 cm3 ). Therefore, downsizing the leaf width of a multileaf collimator (MLC) may provide higher spatial resolution and better plan quality. Volumetric modulated arc therapy (VMAT) could simulate the half MLC leaf width through couch shifting between arcs. This study investigated changes in VMAT quality for HA-WBRT with a simulated fine MLC leaf width. METHODS: We included 18 patients with brain metastasis. All target and avoidance structures were contoured by an experienced radiation oncologist. The prescribed dose was 30 Gy in 10 fractions. For each patient, three different treatment plans were generated for comparison: VMAT with couch-shift, VMAT without couch-shift, and TomoTherapy. All treatment plans fulfilled Radiation Therapy Oncology Group (RTOG) 0933 criteria for HA-WBRT. The Wilcoxon paired signed-rank test was used to compare different treatment plans. RESULTS: VMAT with couch-shift had the better average conformity index (0.823) with statistically significant difference compared to VMAT without couch-shift (0.810). VMAT with couch-shift (0.219) had a more favorable average homogeneity index (HI) than did VMAT without couch-shift (0.230), although the difference was not significant. TomoTherapy had an optimal average HI of 0.070. In terms of the hippocampus, all three treatment plans met the RTOG 0933 criteria. VMAT with couch-shift had a lower average Dmax (15.2 Gy) than did VMAT without couch-shift (15.3 Gy, p = 0.071) and TomoTherapy (15.5 Gy, p = 0.133). The average D100% of hippocampus was the same for both VMAT with and without couch-shift (8.5 Gy); however, TomoTherapy had a lower average D100% value of 7.9 Gy. The treatment delivery time was similar between VMAT with and without couch-shift (average, 375.0 and 369.6 s, respectively). TomoTherapy required a long average delivery time of 1489.9 s. CONCLUSION: The plan quality of VMAT for HA-WBRT was improved by using the couch-shift technique to simulate the half MLC leaf width. However, the improvement was not statistically significant except conformity index. The downsizing effect decreased with the use of the sophisticated grade of VMAT. TomoTherapy offered superior plan quality but required the longest delivery time.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Hipocampo/efeitos da radiação , Humanos , Qualidade de Vida , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
7.
Rep Pract Oncol Radiother ; 27(1): 76-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402026

RESUMO

Background: Several authors investigated a dosimetric impact of leaf width on radiotherapy plan quality subjectively, and concluded that thinner leaf-width multileaf collimators (MLC) are beneficial because of their better coverage of clinically relevant structures. Study aimed to investigate the dosimetric effect of MLC leaf width on volumetric modulated arc therapy plan quality by objective approach. Materials and methods: Twelve of each prostate and head-and-neck patients were planned for volumetric modulated arc therapy (VMAT) treatments for MLC leaf widths of 4 mm and 10 mm. Three different VMAT schemes single-arc, dual-arc and two combined independent single-arcs were optimized. Dose volume histogram and Isodose distribution were used for quantitative and qualitative comparison of the treatment plan, respectively. Dose-volume-indices of the planning target volume, organs at risk and number of delivered monitor units were compared. The 4 mm leaf width being reference over 10 mm and results were noted as statistically significant if p ≤ 0.05 using student t-test. Results: All VMAT schemes for both tumor sites showed a gain in target coverage, similar organs at risk doses and higher monitor units to be delivered, when changing leaf width from 10 mm to 4 mm. The p-values were significant for majority of head-and-neck dose indices. Conclusion: The thinner-leaf MLCs, owing to their better spatial resolution, result in an overall gain for target coverage, while maintaining permissible doses to the organs at risk.

8.
BMC Plant Biol ; 21(1): 222, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001008

RESUMO

BACKGROUND: Leaf length and width could be a functioning relationship naturally as plant designs. Single-vein leaves have the simplest symmetrical distribution and structural design, which means that fast-growing single-vein species could interpret the scheme more efficiently. The distribution of leaf length and width can be modulated for better adaptation, providing an informative perspective on the various operational strategies in an emergency, while this mechanism is less clear. Here we selected six age groups of Cunninghamia lanceolata pure forests, including saplings, juveniles, mature, and old-growth trees. We pioneered a tapering model to describe half-leaf symmetric distribution with mathematical approximation based on every measured leaf along developmental sequence, and evaluated the ratio of leaf basal part length to total length (called tipping leaf length ratio). RESULTS: The tipping leaf length ratio varied among different tree ages. That means the changes of tipping leaf length ratio and leaf shape are a significant but less-noticed reflection of trees tradeoff strategies at different growth stages. For instance, there exhibited relatively low ratio during sapling and juvenile, then increased with increasing age, showing the highest value in their maturity, and finally decreased on mature to old-growth transition. The tipping leaf length ratio serves as a cost-benefit ratio, thus the subtle changes in the leaf symmetrical distribution within individuals reveal buffering strategy, indicating the selection for efficient design of growth and hydraulic in their developmental sequences. CONCLUSIONS: Our model provides a physical explanation of varied signatures for tree operations in hydraulic buffering through growth stages, and the buffering strategy revealed from leaf distribution morphologically provides evidence on the regulation mechanism of leaf biomechanics, hydraulics and physiologies. Our insight contributes greatly to plant trait modeling, policy and management, and will be of interest to some scientists and policy makers who are involved in climate change, ecology and environment protection, as well as forest ecology and management.


Assuntos
Cunninghamia/crescimento & desenvolvimento , Cunninghamia/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Árvores/crescimento & desenvolvimento , Árvores/genética , Fatores Etários , Florestas , Modelos Teóricos
9.
Ann Bot ; 128(4): 395-406, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34157097

RESUMO

BACKGROUND AND AIMS: Leaf size has considerable ecological relevance, making it desirable to obtain leaf size estimations for as many species worldwide as possible. Current global databases, such as TRY, contain leaf size data for ~30 000 species, which is only ~8% of known species worldwide. Yet, taxonomic descriptions exist for the large majority of the remainder. Here we propose a simple method to exploit information on leaf length, width and shape from species descriptions to robustly estimate leaf areas, thus closing this considerable knowledge gap for this important plant functional trait. METHODS: Using a global dataset of all major leaf shapes measured on 3125 leaves from 780 taxa, we quantified scaling functions that estimate leaf size as a product of leaf length, width and a leaf shape-specific correction factor. We validated our method by comparing leaf size estimates with those obtained from image recognition software and compared our approach with the widely used correction factor of 2/3. KEY RESULTS: Correction factors ranged from 0.39 for highly dissected, lobed leaves to 0.79 for oblate leaves. Leaf size estimation using leaf shape-specific correction factors was more accurate and precise than estimates obtained from the correction factor of 2/3. CONCLUSION: Our method presents a tractable solution to accurately estimate leaf size when only information on leaf length, width and shape is available or when labour and time constraints prevent usage of image recognition software. We see promise in applying our method to data from species descriptions (including from fossils), databases, field work and on herbarium vouchers, especially when non-destructive in situ measurements are needed.


Assuntos
Folhas de Planta , Software , Plantas
10.
Am J Bot ; 107(11): 1481-1490, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33169366

RESUMO

PREMISE: The nondestructive measurement of leaf area is important for expediting data acquisition in the field. The Montgomery equation (ME) assumes that leaf area (A) is a proportional function of the product of leaf length (L) and width (W), i.e., A = cLW, where c is called the Montgomery parameter. The ME has been successfully applied to calculate the surface area of many broad-leaved species with simple leaf shapes. However, whether this equation is valid for more complex leaf shapes has not been verified. METHODS: Leaf A, L, and W were measured directly for each of 5601 leaves of 15 vine species, and ME and three other models were used to fit the data. All four models were compared based on their root mean square errors (RMSEs) to determine whether ME provided the best fit. RESULTS: The ME was a reliable method for estimating the A of all 15 species. In addition, the numerical values of 13 of the 15 values of c fell within a previously predicted numerical range (i.e., between 1/2 and π/4). The data show that the numerical values of c are largely affected by the value of W/L, the concavity of the leaf base, and the number of lobes on the lamina. CONCLUSIONS: The Montgomery parameter can reflect the influence of leaf shape on leaf-area calculations and can serve as an important tool for nondestructive measurements of leaf area for many broad-leaved species and for the investigation of leaf morphology.


Assuntos
Folhas de Planta
11.
Planta ; 249(3): 635-646, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30327883

RESUMO

MAIN CONCLUSION: Cell-size enlargement plays a pivotal role in increasing the leaf size of triploid poplar, and polyploidization could change leaf shape. ABP1 was highly expressed in triploid plants and positively related to cell size. In the plant kingdom, the leaf is the most important energy production organ, and polyploidy often exhibits a "Gigas" effect on leaf size, which benefits agriculture and forestry. However, little is known regarding the cellular and molecular mechanisms underlying the leaf size superiority of polyploid woody plants. In the present study, the leaf area and abaxial epidermal cells of diploid and triploid full-sib groups and their parents were measured at three different positions. We measured the expression of several genes related to cell division and cell expansion. The results showed that the leaf area of triploids was significantly larger than that of diploids, and the triploid group showed transgressive variation compared to their full-sib diploid group. Cell size but not cell number was the main reason for leaf size variation. Cell expansion was in accordance with leaf enlargement. In addition, the leaf shape changes in triploids primarily resulted from a significant decrease in the leaf ratio of length to -width. Auxin-binding protein 1 (ABP1) was highly expressed in triploids and positively related to leaf size. These results enhanced the current understanding that giant leaf is affected by polyploidy vigor. However, significant heterosis is not exhibited in diploid offspring. Overall, polyploid breeding is an effective strategy to enhance leaf size, and Populus, as an ideal material, plays an important role in studying the leaf morphological variations of polyploid woody plants.


Assuntos
Diploide , Folhas de Planta/anatomia & histologia , Ploidias , Populus/genética , Triploidia , Tamanho Celular , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Folhas de Planta/citologia , Folhas de Planta/genética , Populus/anatomia & histologia , Populus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
12.
J Appl Clin Med Phys ; 20(1): 89-100, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30412346

RESUMO

PURPOSE: To quantify the contribution of penumbra in the improvement of healthy tissue sparing at reduced source-to-axis distance (SAD) for simple spherical target and different prescription isodoses (PI). METHOD: A TPS-independent method was used to estimate three-dimensional (3D) dose distribution for stereotactic treatment of spherical targets of 0.5 cm radius based on single beam two-dimensional (2D) film dosimetry measurements. 1 cm target constitutes the worst case for the conformation with standard Multi-Leaf Collimator (MLC) with 0.5 cm leaf width. The measured 2D transverse dose cross-sections and the profiles in leaf and jaw directions were used to calculate radial dose distribution from isotropic beam arrangement, for both quadratic and circular beam openings, respectively. The results were compared for standard (100 cm) and reduced SAD 70 and 55 cm for different PI. RESULTS: For practical reduction of SAD using quadratic openings, the improvement of healthy tissue sparing (HTS) at distances up to 3 times the PTV radius was at least 6%-12%; gradient indices (GI) were reduced by 3-39% for PI between 40% and 90%. Except for PI of 80% and 90%, quadratic apertures at SAD 70 cm improved the HTS by up to 20% compared to circular openings at 100 cm or were at least equivalent; GI were 3%-33% lower for reduced SAD in the PI range 40%-70%. For PI = 80% and 90% the results depend on the circular collimator model. CONCLUSION: Stereotactic treatments of spherical targets delivered at reduced SAD of 70 or 55 cm using MLC spare healthy tissue around the target at least as good as treatments at SAD 100 cm using circular collimators. The steeper beam penumbra at reduced SAD seems to be as important as perfect target conformity. The authors argue therefore that the beam penumbra width should be addressed in the stereotactic studies.


Assuntos
Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Desenho de Equipamento , Humanos , Modelos Biológicos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
13.
Int J Mol Sci ; 20(10)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130602

RESUMO

Leaf blade width, curvature, and cuticular wax are important agronomic traits of rice. Here, we report the rice Oschr4-5 mutant characterized by pleiotropic phenotypes, including narrow and rolled leaves, enhanced cuticular wax deposition and reduced plant height and tiller number. The reduced leaf width is caused by a reduced number of longitudinal veins and increased auxin content. The cuticular wax content was significantly higher in the Oschr4-5 mutant, resulting in reduced water loss rate and enhanced drought tolerance. Molecular characterization reveals that a single-base deletion results in a frame-shift mutation from the second chromodomain of OsCHR4, a CHD3 (chromodomain helicase DNA-binding) family chromatin remodeler, in the Oschr4-5 mutant. Expressions of seven wax biosynthesis genes (GL1-4, WSL4, OsCER7, LACS2, LACS7, ROC4 and BDG) and four auxin biosynthesis genes (YUC2, YUC3, YUC5 and YUC6) was up-regulated in the Oschr4-5 mutant. Chromatin immunoprecipitation assays revealed that the transcriptionally active histone modification H3K4me3 was increased, whereas the repressive H3K27me3 was reduced in the upregulated genes in the Oschr4-5 mutant. Therefore, OsCHR4 regulates leaf morphogenesis and cuticle wax formation by epigenetic modulation of auxin and wax biosynthetic genes expression.


Assuntos
DNA Helicases/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Montagem e Desmontagem da Cromatina , Secas , Epigênese Genética , Mutação da Fase de Leitura , Oryza/fisiologia , Oryza/ultraestrutura , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/ultraestrutura , Estresse Fisiológico , Ceras/análise , Ceras/metabolismo
14.
Plant J ; 91(4): 601-612, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28482117

RESUMO

Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number.


Assuntos
Hordeum/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Genes Homeobox , Estudo de Associação Genômica Ampla , Genótipo , Hordeum/citologia , Hordeum/crescimento & desenvolvimento , Mutação , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética
15.
Plant Biotechnol J ; 16(1): 186-196, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28509374

RESUMO

Molecular genetic analyses revealed that the WUSCHEL-related homeobox (WOX) gene superfamily regulates several programs in plant development. Many different mechanisms are reported to underlie these alterations. The WOX family member STENOFOLIA (STF) is involved in leaf expansion in the eudicot Medicago truncutula. Here, we report that when this gene was ectopically expressed in a locally adapted hard red winter wheat cultivar (Triticum aestivum), the transgenic plants showed not only widened leaves but also accelerated flowering and increased chlorophyll content. These desirable traits were stably inherited in the progeny plants. STF binds to wheat genes that have the (GA)n /(CT)n DNA cis element, regardless of sequences flanking the DNA repeats, suggesting a mechanism for its pleiotropic effects. However, the amino acids between position 91 and 262 in the STF protein that were found to bind with the (GA)n motif have no conserved domain with any other GAGA-binding proteins in animals or plants. We also found that STF interacted with a variety of proteins in wheat in yeast 2 hybrid assays. We conclude that the eudicot STF gene binds to (GA)n /(CT)n DNA elements and can be used to regulate leaf width, flowering time and chlorophyll content in monocot wheat.


Assuntos
Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Triticum/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética
16.
New Phytol ; 219(2): 565-573, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29766502

RESUMO

Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages.


Assuntos
Florestas , Congelamento , Internacionalidade , Folhas de Planta/fisiologia , Clima , Modelos Teóricos , Especificidade da Espécie
17.
Plant Cell Environ ; 41(7): 1618-1631, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603771

RESUMO

Given anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10-day period and assessed whether and why patterns may vary among species. We found large leaf-to-air temperature differences (maximum 18.3 °C) and high leaf temperatures (over 35 °C) despite much lower air temperatures (maximum 22 °C). Leaf-to-air temperature differences were influenced strongly by radiation, whereas leaf temperatures were also influenced by air temperature. Leaf energy balance modelling informed by our measurements showed that observed differences in leaf temperature between 2 species were due to variation in leaf width and stomatal conductance. The results suggest a trade-off between water use and leaf thermoregulation; Miconia cabussu has more conservative water use compared with Alchornea triplinervia due to lower transpiration under high vapour pressure deficit, with the consequence of higher leaf temperatures under thermal stress conditions. We highlight the importance of leaf functional traits for leaf thermoregulation and also note that the high radiation levels that occur in montane forests may exacerbate the threat from increasing air temperatures.


Assuntos
Folhas de Planta/fisiologia , Árvores/fisiologia , Regulação da Temperatura Corporal/fisiologia , Brasil , Metabolismo Energético , Euphorbiaceae/metabolismo , Euphorbiaceae/fisiologia , Melastomataceae/metabolismo , Melastomataceae/fisiologia , Nyctaginaceae/metabolismo , Nyctaginaceae/fisiologia , Folhas de Planta/metabolismo , Temperatura , Árvores/metabolismo , Água/metabolismo
18.
Plant Cell Environ ; 40(9): 2017-2028, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28639691

RESUMO

Leaf expansion depends on both carbon and water availabilities. In cereals, most of experimental effort has focused on leaf elongation, with essentially hydraulic effects. We have tested if evaporative demand and light could have distinct effects on leaf elongation and widening, and if short-term effects could translate into final leaf dimensions. For that, we have monitored leaf widening and elongation in a field experiment with temporary shading, and in a platform experiment with 15 min temporal resolution and contrasting evaporative demands. Leaf widening showed a strong (positive) sensitivity to whole-plant intercepted light and no response to evaporative demand. Leaf elongation was (negatively) sensitive to evaporative demand, without effect of intercepted light per se. We have successfully tested resulting equations to predict leaf length and width in an external dataset of 15 field and six platform experiments. These effects also applied to a panel of 251 maize hybrids. Leaf length and width presented quantitative trait loci (QTLs) whose allelic effects largely differed between both dimensions but were consistent in the field and the platform, with high QTL × Environment interaction. It is therefore worthwhile to identify the genetic and environmental controls of leaf width and leaf length for prediction of plant leaf area.


Assuntos
Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/fisiologia , Zea mays/fisiologia , Zea mays/efeitos da radiação , Alelos , Meio Ambiente , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas/genética , Fatores de Tempo , Pressão de Vapor
19.
Plant Cell Environ ; 40(2): 237-248, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28026874

RESUMO

Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. We used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (∆T) and temperature range across laminae (Trange ) during winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (we ), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but we strongly predicted τ and ∆T, whereas leaf area influenced Trange . Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we , has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.


Assuntos
Modelos Biológicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Temperatura , Ar , Processamento de Imagem Assistida por Computador , Proteaceae/anatomia & histologia , Proteaceae/fisiologia , Fatores de Tempo
20.
Ann Bot ; 120(5): 633-652, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28961937

RESUMO

Background and Aims: While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Methods: Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Key Results: Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Conclusions: Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL. 1974. Flowering plants: evolution above the species level . Cambridge, MA: Belknap Press) is perhaps associated with both seed and leaf development, and major taxa appear routinely specialized with respect to ecologically important size-related traits.


Assuntos
Características de História de Vida , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Sementes/fisiologia , Ecossistema , Inglaterra , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA