Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 95-109.e26, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181745

RESUMO

DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.


Assuntos
DNA Mitocondrial , Efetores Semelhantes a Ativadores de Transcrição , Animais , Humanos , Camundongos , Adenina , Citosina , DNA Mitocondrial/genética , Edição de Genes , RNA , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Engenharia de Proteínas
2.
Cell ; 183(1): 269-283.e19, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916130

RESUMO

Determining protein levels in each tissue and how they compare with RNA levels is important for understanding human biology and disease as well as regulatory processes that control protein levels. We quantified the relative protein levels from over 12,000 genes across 32 normal human tissues. Tissue-specific or tissue-enriched proteins were identified and compared to transcriptome data. Many ubiquitous transcripts are found to encode tissue-specific proteins. Discordance of RNA and protein enrichment revealed potential sites of synthesis and action of secreted proteins. The tissue-specific distribution of proteins also provides an in-depth view of complex biological events that require the interplay of multiple tissues. Most importantly, our study demonstrated that protein tissue-enrichment information can explain phenotypes of genetic diseases, which cannot be obtained by transcript information alone. Overall, our results demonstrate how understanding protein levels can provide insights into regulation, secretome, metabolism, and human diseases.


Assuntos
Proteoma/genética , Proteômica/métodos , Transcriptoma/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Proteoma/fisiologia , RNA/genética , RNA Mensageiro/metabolismo , Transcriptoma/fisiologia
3.
EMBO J ; 43(2): 225-249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177503

RESUMO

Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Animais , Camundongos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
4.
Annu Rev Physiol ; 86: 379-403, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38012047

RESUMO

Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.


Assuntos
Síndrome de Bartter , Síndrome de Kearns-Sayre , Nefropatias , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Síndrome de Bartter/metabolismo , Síndrome de Bartter/patologia , Síndrome de Kearns-Sayre/metabolismo , Síndrome de Kearns-Sayre/patologia , Nefropatias/patologia , Mitocôndrias
5.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792828

RESUMO

Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Leigh , Células-Tronco Neurais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Doença de Leigh/metabolismo , Mutação/genética , Células-Tronco Neurais/metabolismo , Organoides/metabolismo
6.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478578

RESUMO

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Assuntos
Doença de Leigh , Atrofia Óptica Hereditária de Leber , Humanos , Doença de Leigh/genética , Atrofia Óptica Hereditária de Leber/genética , Masculino , Feminino , Adulto , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Criança , Adolescente , NADH Desidrogenase/genética , Mutação , Adulto Jovem , Sequenciamento do Exoma , Pré-Escolar
7.
Genet Med ; 26(2): 101013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924258

RESUMO

PURPOSE: RNF213, encoding a giant E3 ubiquitin ligase, has been recognized for its role as a key susceptibility gene for moyamoya disease. Case reports have also implicated specific variants in RNF213 with an early-onset form of moyamoya disease with full penetrance. We aimed to expand the phenotypic spectrum of monogenic RNF213-related disease and to evaluate genotype-phenotype correlations. METHODS: Patients were identified through reanalysis of exome sequencing data of an unselected cohort of unsolved pediatric cases and through GeneMatcher or ClinVar. Functional characterization was done by proteomics analysis and oxidative phosphorylation enzyme activities using patient-derived fibroblasts. RESULTS: We identified 14 individuals from 13 unrelated families with (de novo) missense variants in RNF213 clustering within or around the Really Interesting New Gene (RING) domain. Individuals presented either with early-onset stroke (n = 11) or with Leigh syndrome (n = 3). No genotype-phenotype correlation could be established. Proteomics using patient-derived fibroblasts revealed no significant differences between clinical subgroups. 3D modeling revealed a clustering of missense variants in the tertiary structure of RNF213 potentially affecting zinc-binding suggesting a gain-of-function or dominant negative effect. CONCLUSION: De novo missense variants in RNF213 clustering in the E3 RING or other regions affecting zinc-binding lead to an early-onset syndrome characterized by stroke or Leigh syndrome.


Assuntos
Doença de Leigh , Doença de Moyamoya , Acidente Vascular Cerebral , Humanos , Criança , Doença de Moyamoya/genética , Doença de Leigh/complicações , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Zinco , Predisposição Genética para Doença , Adenosina Trifosfatases/genética
8.
Mov Disord ; 39(7): 1225-1231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685873

RESUMO

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Complexo Cetoglutarato Desidrogenase , Doença de Leigh , Doença de Leigh/genética , Humanos , Masculino , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/deficiência , Proteínas Mitocondriais/genética , Pré-Escolar , Lactente
9.
J Inherit Metab Dis ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385390

RESUMO

Leigh syndrome (LS) is a severe mitochondrial disease that results from mutations in the nuclear or mitochondrial DNA that impairs cellular respiration and ATP production. Mutations in more than 100 genes have been demonstrated to cause LS. The disease most commonly affects brain development and function, resulting in cognitive and motor impairment. The underlying pathogenesis is challenging to ascertain due to the diverse range of symptoms exhibited by affected individuals and the variability in prognosis. To understand the disease mechanisms of different LS-causing mutations and to find a suitable treatment, several different model systems have been developed over the last 30 years. This review summarizes the established disease models of LS and their key findings. Smaller organisms such as yeast have been used to study the biochemical properties of causative mutations. Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been used to dissect the pathophysiology of the neurological and motor symptoms of LS. Mammalian models, including the widely used Ndufs4 knockout mouse model of complex I deficiency, have been used to study the developmental, cognitive, and motor functions associated with the disease. Finally, cellular models of LS range from immortalized cell lines and trans-mitochondrial cybrids to more recent model systems such as patient-derived induced pluripotent stem cells (iPSCs). In particular, iPSCs now allow studying the effects of LS mutations in specialized human cells, including neurons, cardiomyocytes, and even three-dimensional organoids. These latter models open the possibility of developing high-throughput drug screens and personalized treatments based on defined disease characteristics captured in the context of a defined cell type. By analyzing all these different model systems, this review aims to provide an overview of past and present means to elucidate the complex pathology of LS. We conclude that each approach is valid for answering specific research questions regarding LS, and that their complementary use could be instrumental in finding treatment solutions for this severe and currently untreatable disease.

10.
Pediatr Radiol ; 54(10): 1758-1762, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39066889

RESUMO

A 23-month-old boy with poor growth, developmental delay, and hypotonia presented with acute onset of ataxia and fatigue. Magnetic resonance imaging (MRI) of the brain and spinal cord was performed as part of diagnostic work-up. MRI showed bilateral symmetrical lesions in basal ganglia, midbrain, and brainstem consistent with Leigh syndrome. Signal abnormalities were also present within the cervical cord, with enhancement of multiple cranial, spinal, and cauda equina nerve roots. Genetic testing confirmed compound heterozygosity for two pathogenic variants in SURF1 implicated in Leigh syndrome. Whilst nerve root enhancement has been described in other mitochondrial disorders, we believe this is the first published case of both cranial and spinal nerve root enhancement in Leigh syndrome.


Assuntos
Doença de Leigh , Imageamento por Ressonância Magnética , Proteínas de Membrana , Proteínas Mitocondriais , Humanos , Doença de Leigh/diagnóstico por imagem , Doença de Leigh/genética , Masculino , Lactente , Imageamento por Ressonância Magnética/métodos , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética
11.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732047

RESUMO

Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions. In this study, we examined the permeability of the BBB in the Ndufs4-/- mouse model of Leigh syndrome (LS). Our results indicated that the structural and functional integrity of the BBB was preserved in this severe model of mitochondrial disease. Our findings suggests that pharmacological or gene therapy strategies targeting the central nervous system in this mouse model and possibly other models of mitochondrial dysfunction require the use of specific tools to bypass the BBB. In addition, they raise the need for testing the integrity of the BBB in complementary in vivo models.


Assuntos
Barreira Hematoencefálica , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons , Doença de Leigh , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/deficiência , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/genética
12.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791166

RESUMO

Movement disorders such as bradykinesia, tremor, dystonia, chorea, and myoclonus most often arise in several neurodegenerative diseases with basal ganglia and white matter involvement. While the pathophysiology of these disorders remains incompletely understood, dysfunction of the basal ganglia and related brain regions is often implicated. The VPS13D gene, part of the VPS13 family, has emerged as a crucial player in neurological pathology, implicated in diverse phenotypes ranging from movement disorders to Leigh syndrome. We present a clinical case of VPS13D-associated disease with two variants in the VPS13D gene in an adult female. This case contributes to our evolving understanding of VPS13D-related diseases and underscores the importance of genetic screening in diagnosing and managing such conditions.


Assuntos
Ataxias Espinocerebelares , Humanos , Feminino , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/congênito , Proteínas de Transporte Vesicular/genética , Adulto , Fenótipo , Mutação , Genes Recessivos , Linhagem , Proteínas
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(9): 940-945, 2024.
Artigo em Zh | MEDLINE | ID: mdl-39267509

RESUMO

OBJECTIVES: To explore early diagnostic biological markers for Leigh syndrome caused by the m.8993T>G mutation. METHODS: A retrospective analysis was performed on the clinical data of four children diagnosed with m.8993T>G mutation-related mitochondrial disease at the Children's Hospital of Chongqing Medical University from January 2014 to January 2024. Additionally, a literature review was conducted. RESULTS: All four children had plasma amino acid and acylcarnitine analyses that revealed decreased citrulline levels, and one child was initially identified through neonatal genetic metabolic disease screening. According to the literature review, there were 26 children with mitochondrial disease and hypocitrullinemia caused by the m.8993T>G mutation (including the four children in this study). Among these, 12 children exhibited clinical phenotypes of Leigh syndrome or Leigh-like syndrome, while 18 children were identified with hypocitrullinemia and/or elevated levels of 3-hydroxyisovalerylcarnitine (C5-OH) during neonatal genetic metabolic disease screening. CONCLUSIONS: Hypocitrullinemia may serve as a potential biomarker for the early diagnosis of m.8993T>G mutation-associated Leigh syndrome, detectable as early as during neonatal genetic metabolic disease screening.


Assuntos
Citrulina , Doença de Leigh , Mutação , Humanos , Doença de Leigh/genética , Masculino , Feminino , Lactente , Citrulina/sangue , Pré-Escolar , Recém-Nascido , Carnitina/análogos & derivados , Carnitina/sangue , Estudos Retrospectivos
14.
Curr Issues Mol Biol ; 45(3): 1794-1809, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975485

RESUMO

Mitochondria are involved in many vital functions in living cells, including the synthesis of ATP by oxidative phosphorylation (OXPHOS) and regulation of nuclear gene expression through retrograde signaling. Leigh syndrome is a heterogeneous neurological disorder resulting from an isolated complex I deficiency that causes damage to mitochondrial energy production. The pathogenic mitochondrial DNA (mtDNA) variant m.13513G>A has been associated with Leigh syndrome. The present study investigated the effects of this mtDNA variant on the OXPHOS system and cell retrograde signaling. Transmitochondrial cytoplasmic hybrid (cybrid) cell lines harboring 50% and 70% of the m.13513G>A variant were generated and tested along with wild-type (WT) cells. The functionality of the OXPHOS system was evaluated by spectrophotometric assessment of enzyme activity and high-resolution respirometry. Nuclear gene expression was investigated by RNA sequencing and droplet digital PCR. Increasing levels of heteroplasmy were associated with reduced OXPHOS system complex I, IV, and I + III activities, and high-resolution respirometry also showed a complex I defect. Profound changes in transcription levels of nuclear genes were observed in the cell lines harboring the pathogenic mtDNA variant, indicating the physiological processes associated with defective mitochondria.

15.
Mov Disord ; 38(12): 2217-2229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752895

RESUMO

BACKGROUND: Rare mutations in NADH:ubiquinone oxidoreductase complex assembly factor 5 (NDUFAF5) are linked to Leigh syndrome. OBJECTIVE: We aimed to describe clinical characteristics and functional findings in a patient cohort with NDUFAF5 mutations. METHODS: Patients with biallelic NDUFAF5 mutations were recruited from multi-centers in Taiwan. Clinical, laboratory, radiological, and follow-up features were recorded and mitochondrial assays were performed in patients' skin fibroblasts. RESULTS: Nine patients from seven unrelated pedigrees were enrolled, eight homozygous for c.836 T > G (p.Met279Arg) in NDUFAF5 and one compound heterozygous for p.Met279Arg. Onset age had a bimodal distribution. The early-onset group (age <3 years) presented with psychomotor delay, seizure, respiratory failure, and hyponatremia. The late-onset group (age ≥5 years) presented with normal development, but slowly progressive dystonia. Combing 25 previously described patients, the p.Met279Arg variant was exclusively identified in Chinese ancestry. Compared with other groups, patients with late-onset homozygous p.Met279Arg were older at onset (P = 0.008), had less developmental delay (P = 0.01), less hyponatremia (P = 0.01), and better prognosis with preserved ambulatory function into early adulthood (P = 0.01). Bilateral basal ganglia necrosis was a common radiological feature, but brainstem and spinal cord involvement was more common with early-onset patients (P = 0.02). A modifier gene analysis showed higher concomitant mutation burden in early-versus late-onset p.Met279Arg homozygous cases (P = 0.04), consistent with more impaired mitochondrial function in fibroblasts from an early-onset case than a late-onset patient. CONCLUSIONS: The p.Met279Arg variant is a common mutation in our population with phenotypic heterogeneity and divergent prognosis based on age at onset. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Hiponatremia , Doença de Leigh , Transtornos dos Movimentos , Pré-Escolar , Humanos , Distúrbios Distônicos/complicações , Hiponatremia/complicações , Doença de Leigh/genética , Doença de Leigh/complicações , Metiltransferases/genética , Proteínas Mitocondriais/genética , Transtornos dos Movimentos/complicações , Mutação/genética , Criança , Adulto Jovem
16.
Am J Med Genet A ; 191(12): 2890-2897, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37654102

RESUMO

Mitochondrial disorders can present with a wide range of clinical and biochemical phenotypes. Mitochondrial DNA variants may be influenced by factors such as degree of heteroplasmy and tissue distribution. We present a four-generation family in which 10 individuals carry a pathogenic mitochondrial variant (m.5537_5538insT, MT-TW gene) with differing levels of heteroplasmy and clinical features. This genetic variant has been documented in two prior reports, both in individuals with Leigh syndrome. In the current family, three individuals have severe mitochondrial symptoms including Leigh syndrome (patient 1, 100% in blood), MELAS (patient 2, 97% heteroplasmy in muscle), and MELAS-like syndrome (patient 3, 50% heteroplasmy in blood and 100% in urine). Two individuals have mild mitochondrial symptoms (patient 4, 50% in blood and 67% in urine and patient 5, 50% heteroplasmy in blood and 30% in urine). We observe that this variant is associated with multiple mitochondrial presentations and phenotypes, including MELAS syndrome for which this variant has not previously been reported. We also demonstrate that the level of heteroplasmy of the mitochondrial DNA variant correlates with the severity of clinical presentation; however, not with the specific mitochondrial syndrome.


Assuntos
Doença de Leigh , Síndrome MELAS , Doenças Mitocondriais , Humanos , Síndrome MELAS/diagnóstico , Síndrome MELAS/genética , Síndrome MELAS/complicações , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença de Leigh/complicações , Mitocôndrias/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/complicações
17.
J Inherit Metab Dis ; 46(2): 243-260, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36502462

RESUMO

Leigh syndrome is a rare, inherited, complex neurometabolic disorder with genetic and clinical heterogeneity. Features present in affected patients range from classical stepwise developmental regression to ataxia, seizures, tremor, and occasionally psychiatric manifestations. Currently, more than 100 monogenic causes of Leigh syndrome have been identified, yet the pathophysiology remains unknown. Here, we sought to determine the cellular specificity within the brain of all genes currently associated with Leigh syndrome. Further, we aimed to investigate potential genetic commonalities between Leigh syndrome and other disorders with overlapping clinical features. Enrichment of our target genes within the brain was evaluated with co-expression (CoExp) network analyses constructed using existing UK Brain Expression Consortium data. To determine the cellular specificity of the Leigh associated genes, we employed expression weighted cell type enrichment (EWCE) analysis of single-cell RNA-Seq data. Finally, CoExp network modules demonstrating enrichment of Leigh syndrome associated genes were then utilised for synaptic gene ontology analysis and heritability analysis. CoExp network analyses revealed that Leigh syndrome associated genes exhibit the highest levels of expression in brain regions most affected on MRI in affected patients. EWCE revealed significant enrichment of target genes in hippocampal and somatosensory pyramidal neurons and interneurons of the brain. Analysis of CoExp modules enriched with our target genes revealed preferential association with pre-synaptic structures. Heritability studies suggested some common enrichment between Leigh syndrome and Parkinson disease and epilepsy. Our findings suggest a primary mitochondrial dysfunction as the underlying basis of Leigh syndrome, with associated genes primarily expressed in neuronal cells.


Assuntos
Doença de Leigh , Humanos , Doença de Leigh/genética , Transcriptoma , Mutação , Encéfalo/metabolismo , Imageamento por Ressonância Magnética
18.
Brain ; 145(1): 45-63, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34849584

RESUMO

Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce 'mitochondrial complex I deficiency, nuclear type 1' (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.


Assuntos
Complexo I de Transporte de Elétrons , Doença de Leigh , Doenças Mitocondriais , Animais , Complexo I de Transporte de Elétrons/genética , Humanos , Doença de Leigh/genética , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genética , Fosforilação Oxidativa
19.
Brain ; 145(5): 1624-1631, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148383

RESUMO

The recent description of biallelic DNAJC30 variants in Leber hereditary optic neuropathy (LHON) and Leigh syndrome challenged the longstanding assumption for LHON to be exclusively maternally inherited and broadened the genetic spectrum of Leigh syndrome, the most frequent paediatric mitochondrial disease. Herein, we characterize 28 so far unreported individuals from 26 families carrying a homozygous DNAJC30 p.Tyr51Cys founder variant, 24 manifesting with LHON, two manifesting with Leigh syndrome, and two remaining asymptomatic. This collection of unreported variant carriers confirms sex-dependent incomplete penetrance of the homozygous variant given a significant male predominance of disease and the report of asymptomatic homozygous variant carriers. The autosomal recessive LHON patients demonstrate an earlier age of disease onset and a higher rate of idebenone-treated and spontaneous recovery of vision in comparison to reported figures for maternally inherited disease. Moreover, the report of two additional patients with childhood- or adult-onset Leigh syndrome further evidences the association of DNAJC30 with Leigh syndrome, previously only reported in a single childhood-onset case.


Assuntos
Doença de Leigh , Atrofia Óptica Hereditária de Leber , Adulto , Criança , DNA Mitocondrial/genética , Feminino , Humanos , Doença de Leigh/genética , Masculino , Mutação/genética , Atrofias Ópticas Hereditárias , Atrofia Óptica Hereditária de Leber/genética
20.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675121

RESUMO

Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of 219 patients with LS and give the detailed description of three cases with rare findings in nuclear genes MORC2, NARS2 and VPS13D, demonstrating wide genetic heterogeneity of this mitochondrial disease. The most common cause of LS in Russian patients are pathogenic variants in the SURF1 gene (44.3% of patients). The most frequent pathogenic variant is c.845_846delCT (66.0% of mutant alleles; 128/192), which is also widespread in Eastern Europe. Five main LS genes, SURF1, SCO2, MT-ATP6, MT-ND5 and PDHA1, account for 70% of all LS cases in the Russian Federation. Using next generation sequencing (NGS) technique, we were able to detect pathogenic variants in other nuclear genes: NDUFV1, NDUFS2, NDUFS8, NDUFAF5, NDUFAF6, NDUFA10, SUCLG1, GFM2, COX10, PMPCB, NARS2, PDHB and SLC19A3, including two genes previously associated with Leigh-like phenotypes-MORC2 and VPS13D. We found 49 previously undescribed nucleotide variants, including two deep intronic variants which affect splicing.


Assuntos
Aspartato-tRNA Ligase , Doença de Leigh , Doenças Mitocondriais , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença de Leigh/patologia , Doenças Mitocondriais/genética , Mutação , Fenótipo , Federação Russa , Proteínas Mitocondriais/genética , Proteínas de Membrana Transportadoras/genética , Proteínas/genética , Fatores de Transcrição/genética , Aspartato-tRNA Ligase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA