Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35161989

RESUMO

This paper explores poly-silicon-germanium (poly-SiGe) avalanche photo-sensors (APSs) involving a device of heterojunction structures. A low pressure chemical vapor deposition (LPCVD) technique was used to deposit epitaxial poly-SiGe thin films. The thin films were subjected to annealing after the deposition. Our research shows that the most optimal thin films can be obtained at 800 °C for 30 min annealing in the hydrogen atmosphere. Under a 3-µW/cm2 incident light (with a wavelength of 550 nm) and up to 27-V biased voltage, the APS with a n+-n-p-p+ alloy/SiO2/Si-substrate structure using the better annealed poly-SiGe film process showed improved performance by nearly 70%, 96% in responsivity, and 85% in quantum efficiency, when compared to the non-annealed APS. The optimal avalanche multiplication factor curve of the APS developed under the exponent of n = 3 condition can be improved with an increase in uniformity corresponding to the APS-junction voltage. This finding is promising and can be adopted in future photo-sensing and optical communication applications.

2.
Membranes (Basel) ; 14(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38248712

RESUMO

Sodium hypochlorite (NaClO) is widely used for the chemical cleaning of fouled ultrafiltration (UF) membranes. Various studies performed on polymeric membranes demonstrate that long-term (>100 h) exposure to NaClO deteriorates the physicochemical properties of the membranes, leading to reduced performance and service life. However, the effect of NaClO cleaning on ceramic membranes, particularly the number of cleaning cycles they can undergo to alleviate irreversible fouling, remains poorly understood. Silicon carbide (SiC) membranes have garnered widespread attention for water and wastewater treatment, but their chemical stability in NaClO has not been studied. Low-pressure chemical vapor deposition (LP-CVD) provides a simple and economical route to prepare/modify ceramic membranes. As such, LP-CVD facilitates the preparation of SiC membranes: (a) in a single step; and (b) at much lower temperatures (700-900 °C) in comparison with sol-gel methods (ca. 2000 °C). In this work, SiC ultrafiltration (UF) membranes were prepared via LP-CVD at two different deposition temperatures and pressures. Subsequently, their chemical stability in NaClO was investigated over 200 h of aging. Afterward, the properties and performance of as-prepared SiC UF membranes were evaluated before and after aging to determine the optimal deposition conditions. Our results indicate that the SiC UF membrane prepared via LP-CVD at 860 °C and 100 mTorr exhibited excellent resistance to NaClO aging, while the membrane prepared at 750 °C and 600 mTorr significantly deteriorated. These findings not only highlight a novel preparation route for SiC membranes in a single step via LP-CVD, but also provide new insights about the careful selection of LP-CVD conditions for SiC membranes to ensure their long-term performance and robustness under harsh chemical cleaning conditions.

3.
Micromachines (Basel) ; 14(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004961

RESUMO

Passivation is commonly used to suppress current collapse in AlGaN/GaN HEMTs. However, the conventional PECV-fabricated SiNx passivation layer is incompatible with the latest process, like the "passivation-prior-to-ohmic" method. Research attention has therefore turned to high-temperature passivation schemes. In this paper, we systematically investigated the differences between the SiNx/GaN interface of two high-temperature passivation schemes, MOCVD-SiNx and LPCVD-SiNx, and investigated their effects on the ohmic contact mechanism. By characterizing the device interface using TEM, we reveal that during the process of MOCVD-SiNx, etching damage and Si diffuses into the semiconductor to form a leakage path and reduce the breakdown voltage of the AlGaN/GaN HEMTs. Moreover, N enrichment at the edge of the ohmic region of the LPCVD-SiNx device indicates that the device is more favorable for TiN formation, thus reducing the ohmic contact resistance, which is beneficial to improving the PAE of the device. Through the CW load-pull test with drain voltage VDS = 20V, LPCVD-SiNx devices obtain a high PAE of 66.35%, which is about 6% higher than MOCVD-SiNx devices. This excellent result indicates that the prospect of LPCVD-SiNx passivation devices used in 5G small terminals will be attractive.

4.
Sci Technol Adv Mater ; 12(6): 065004, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877464

RESUMO

Realistic integration of 1D materials into future nanodevices is limited by the lack of a manipulation process that allows a large number of nanowires to be arranged into an integrated circuit. In this work, we have grown Si nanowire bridges using a thin-film catalyst in a batch process at 200 °C and characterized the produced devices consisting of a p+-Si contact electrode, a suspended Si nanochannel, and a polysilicon contact electrode. Both the electrodes and connecting lines are made of Si-based materials by conventional low-pressure chemical vapor deposition. The results indicate that these devices can act as gate-controllable Schottky diodes in integrated nanocircuits.

5.
ACS Nano ; 13(3): 3132-3140, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30715854

RESUMO

Quantum technologies require robust and photostable single photon emitters (SPEs). Hexagonal boron nitride (hBN) has recently emerged as a promising candidate to host bright and optically stable SPEs operating at room temperature. However, the emission wavelength of the fluorescent defects in hBN has, to date, been shown to be uncontrolled, with a widespread of zero phonon line (ZPL) energies spanning a broad spectral range (hundreds of nanometers), which hinders the potential development of hBN-based devices and applications. Here we demonstrate chemical vapor deposition growth of large-area, few-layer hBN films that host large quantities of SPEs: ∼100-200 per 10 × 10 µm2. More than 85% of the emitters have a ZPL at (580 ± 10) nm, a distribution that is an order of magnitude narrower than reported previously. Furthermore, we demonstrate tuning of the ZPL wavelength using ionic liquid devices over a spectral range of up to 15 nm-the largest obtained to date from any solid-state SPE. The fabricated devices illustrate the potential of hBN for the development of hybrid quantum nanophotonic and optoelectronic devices based on two-dimensional materials.

6.
Materials (Basel) ; 10(6)2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28772986

RESUMO

To improve the thermal and mechanical stability of SiCf/SiC or C/SiC composites with SiBN interphase, SiBN coating was deposited by low pressure chemical vapor deposition (LPCVD) using SiCl4-BCl3-NH3-H2-Ar gas system. The effect of the SiCl4 flow rate on deposition kinetics was investigated. Results show that deposition rate increases at first and then decreases with the increase of the SiCl4 flow rate. The surface of the coating is a uniform cauliflower-like structure at the SiCl4 flow rate of 10 mL/min and 20 mL/min. The surface is covered with small spherical particles when the flow rate is 30 mL/min. The coatings deposited at various SiCl4 flow rates are all X-ray amorphous and contain Si, B, N, and O elements. The main bonding states are B-N, Si-N, and N-O. B element and B-N bonding decrease with the increase of SiCl4 flow rate, while Si element and Si-N bonding increase. The main deposition mechanism refers to two parallel reactions of BCl3+NH3 and SiCl4+NH3. The deposition process is mainly controlled by the reaction of BCl3+NH3.

7.
Beilstein J Nanotechnol ; 7: 75-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925355

RESUMO

The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

8.
ACS Appl Mater Interfaces ; 8(45): 30926-30932, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27734672

RESUMO

Interface design between current collector and electroactive materials plays a key role in the electrochemical process for lithium-ion batteries. Here, a thin graphene film has been successfully synthesized on the surface of Cu current collector by a large-scale low-pressure chemical vapor deposition (LPCVD) process. The modified Cu foil was used as a current collector to support spinel Li4Ti5O12 anode directly. Electrochemical test results demonstrated that graphene coating Cu foil could effectively improve overall Li storage performance of Li4Ti5O12 anode. Especially under high current rate (e.g., 10 C), the Li4Ti5O12 electrode using modified current collector maintained a favorable capacity, which is 32% higher than that electrode using bare current collector. In addition, cycling performance has been improved using the new type current collector. The enhanced performance can be attributed to the reduced internal resistance and improved charge transfer kinetics of graphene film by increasing electron collection and decreasing lithium ion interfacial diffusion. Furthermore, the graphene film adhered on the Cu foil surface could act as an effective protective film to avoid oxidization, which can effectively improve chemical stability of Cu current collector.

9.
ACS Appl Mater Interfaces ; 7(4): 2708-14, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25581720

RESUMO

Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH3NH3PbI3 absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA